
ee101_jk_3.sqproj

Note: positive edge-triggered flip-flops

The flip-flops in the above circuit start initially with $Q_2Q_1 = 00$. We are interested in their behaviour for the next few (say, four) clock cycles. Toward this goal, we can prepare a table in the following format:

clock	Q_1	Q_2	J_1	K_1	J_2	K_2	$Q_1^{ m next}$	$Q_2^{ m next}$
1								
2								
3								
4								

Note that Q_1^{next} , Q_2^{next} of the first row will be Q_1 , Q_2 , respectively, of the second row, and so on.

Exercise Set

- 1. Work out the counter sequence.
- 2. Verify your sequence with simulation.
- 3. Is this circuit doing anything useful?