ee101_rc1b.sqproj

The *RC* circuit shown in the figure is driven by a clock, with T_1 and T_2 as the high and low interval, respectively (and period $T = T_1 + T_2$). Show that the following results hold in the steady state:

- (a) $V_{\max} = V_0 \frac{1-k_1}{1-k_0}$, $V_{\min} = k_2 V_{\max}$, where $k_1 = e^{-T_1/\tau}$, $k_2 = e^{-T_2/\tau}$, $k_0 = k_1 k_2$, $\tau = R C$. Hint: Obtain $V_C(t)$ in the T_1 and T_2 intervals, use the condition of periodicity of V_C in the steady state.
- (b) The average value of V_C is the same as the average value of V_s . i.e.,
 - $\frac{1}{T} \int_0^T V_s dt = \frac{1}{T} \int_0^T V_C dt.$

Hint: write KVL for the circuit and integrate.

Exercise Set

- 1. For R = 1 k, $C = 1 \mu F$, T = 2 ms, simulate the circuit for different values of T_1 and T_2 (but keeping the period T the same), e.g., $(T_1 = 1 \text{ ms}, T_2 = 1 \text{ ms})$, $(T_1 = 0.2 \text{ ms}, T_2 = 1.8 \text{ ms})$, $(T_1 = 0.5 \text{ ms}, T_2 = 1.5 \text{ ms})$, etc. In each case, compare the simulation result with the expressions given above.
- 2. Derive an expression for the current i(t) in steady state. For the conditions in (1), validate your analytic result with simulation.
- 3. For $(T_1 = 0.5 \text{ ms}, T_2 = 1.5 \text{ ms})$, work out the minimum and maximum values of V_C for the following combinations:
 - (i) $R = 1 \,\mathrm{k}\Omega, C = 0.2 \,\mu F.$

- (ii) $R = 0.2 \,\mathrm{k}\Omega, C = 1 \,\mu F.$
- (iii) $R = 0.2 \,\mathrm{k}\Omega, C = 0.2 \,\mu F.$
- (iv) $R = 5 \mathrm{k}\Omega, C = 5 \mu F.$

Compare your values with simulation results.

4. Repeat for the current i(t).