

Figure 1: Parallel *RLC* circuit with a current step input.

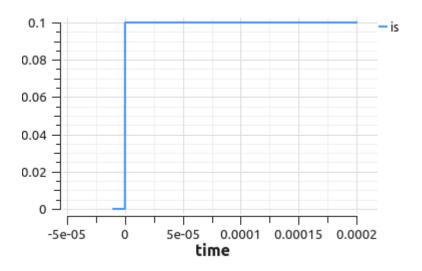


Figure 2: Current step input.

Consider the parallel RLC circuit shown in Fig. 1. A current step input as shown in Fig. 2 is applied.

Exercise Set

- 1. From KCL, obtain a second-order differential equation in V(t) describing the circuit for t > 0 (where V(t) is the voltage across the parallel combination).
- 2. Write the corresponding characteristic equation and find its roots.
- 3. Write the general form of the solution for V(t).
- 4. Find the conditions $V(\infty)$, $V(0^{-})$, $i_L(0^{-})$.

- 5. Note that $V(0^+) = V(0^-)$, and $i_L(0^+) = i_L(0^-)$. Find $\frac{dV}{dt}(0^+)$.
- 6. Substituting $V(\infty)$, $V(0^+)$, and $\frac{dV}{dt}(0^+)$, find the constants in your general solution.
- 7. From V(t), obtain expressions for $i_R(t)$, $i_L(t)$, $i_C(t)$.
- 8. Sketch $i_R(t)$, $i_L(t)$, $i_C(t)$, $i_s(t)$ for -0.1 ms < t < 0.2 ms.
- 9. Compare your answers with simulation results.