



Figure 1: (a) Voltage doubler circuit, (b) Ideal waveforms with $V_{\rm on} = 0 V$ for the diodes, and $R \to \infty$.

Shown in Fig. 1 (a) is a voltage doubler circuit which produces a DC output voltage $V_o = 2 V_m$ where V_m is the amplitude of the AC input voltage, $V_i(t) = V_m \sin \omega t$. The circuit operation is easier to understand if we make some simplifying assumptions: (a) V_{on} for the diodes is 0 V, (b) The load resistance is large, i.e., $R \to \infty$. With these assumptions, the waveforms shown in Fig. 1 (b) are obtained. The first part of the circuit serves to clamp $V_b(t)$ at 0 V (as the lower limit). The second part detects the peak of this clamped voltage and holds it constant. If the resistance R is finite, it draws some current, causing a voltage drop (ripple) in V_c .

Exercise Set

1. Let $C_1 = C_2 = 1 \,\mu\text{F}$, and for the voltage source, $V_m = 10 \,\text{V}$ and $f = 1 \,\text{kHz}$. Simulate the circuit with $V_{\text{on}} = 0 \,\text{V}$ for the diodes and with a large value of R (say, $10 \,\text{M}\Omega$), and verify that you get the theoretically expected waveforms shown in Fig. 1 (b).

Note that the simulation plot will include the initial transient leading to the steady state. Our main interest is in the steady-state behaviour; however, it is instructive to look at how the capacitor charging takes place in the beginning as described by the initial transient.

2. What will happen to $V_c(t)$ if $V_{on} = 0.7 \text{ V}$ for the diodes? Verify with simulation.

- 3. Simulate the circuit with (a) $R = 100 \text{ k}\Omega$ and (b) $R = 10 \text{ k}\Omega$. Comment on your observations.
- 4. For $R = 10 \text{ k}\Omega$, what will you do to reduce the ripple voltage at the output? Verify with simulation.
- 5. Compare the $V_o(t)$ waveforms for two values of C_2 : 1 μ F and 10 μ F, with $C_1 = 1 \mu$ F. Explain your observations.

(Hint: See ee101_rc8.sqproj.)