low_pass_filter_trns_1.sqproj

The circuit shown in the figure is an illustration of the functioning of a filter in the time domain. The corresponding frequency-domain description of the filter circuit can be found in low_pass_filter_1.sqproj.

Exercise Set

- Simulate the filter circuit in the frequency domain and note the cut-off frequency (see low_pass_filter_1.sqproj).
- 2. How is V_{out1} related to V_a , V_b , V_c ? Verify with simulation by plotting V_a , V_b , V_c , and V_{out1} versus time.
- 3. What is $V_{\text{out2}}(t)$ expected to be? Verify with simulation by plotting V_{out1} and V_{out2} versus time. Compare the filter ouput $V_{\text{out2}}(t)$ with the input voltages for the summer circuit $V_a(t)$, $V_b(t)$, $V_c(t)$. Explain your observations.

References:

- 1. J. M. Fiore, Op amps and linear integrated circuits, Delmar, 2001.
- A. S. Sedra, K. C. Smith, and A. .N. Chandorkar, *Microelectronic Circuits*, Oxford University Press, 2004.