miller_1.sqproj

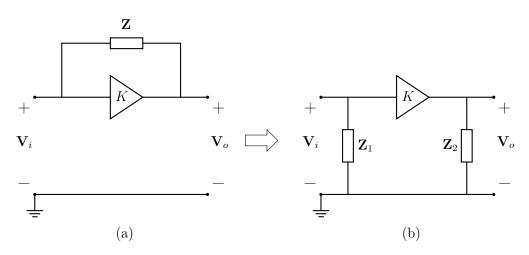


Figure 1: (a) Original circuit, (b) Equivalent circuit after application of Miller's theorem.

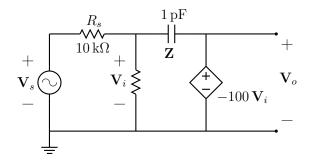


Figure 2: Example for application of Miller's theorem.

Miller's theorem can be used to simplify the small-signal equivalent circuit of an amplifier when an impedance appears between the input and output nodes. Fig. 1 (a) shows an amplifier with gain K, and an impedance \mathbf{Z} connected between the input and output nodes. Using Miller's theorem, \mathbf{Z} can be replaced with \mathbf{Z}_1 and \mathbf{Z}_2 as shown in Fig. 1 (b), where

$$\mathbf{Z}_1 = \frac{\mathbf{Z}}{1-K}, \quad \mathbf{Z}_2 = \frac{\mathbf{Z}}{1-(1/K)}.$$
 (1)

In this exercise, we want to analyse the circuit shown in Fig. 2 using Miller's theorem. We will treat R_i to be infinite for simplicity.

Exercise Set

1. Find $\mathbf{Z}_1(s)$ and $\mathbf{Z}_2(s)$ for the circuit shown in Fig. 2.

- 2. Replace **Z** with **Z**₁ and **Z**₂, and obtain the transfer function $H(s) = V_o(s)/V_s(s)$.
- 3. Plot $H(j\omega)$ versus frequency (Bode plot).
- 4. Verify your results with simulation.

References

A. S. Sedra, K. C. Smith, and A. N. Chandorkar, *Microelectronic Circuits: Theory and Applications*, Fifth edition, Oxford University Press, 2009.