
mos_inverter_dc.sqproj

Shown in the figure is a CMOS inverter circuit. Let V_{Tn} and V_{Tp} be the threshold voltages of M_1 and M_2 , respectively. If $V_i < V_{Tn}$, M_1 does not conduct, and V_o gets pulled up to V_{DD} . When $V_{DD} - V_i < -V_{Tp}$, i.e., $V_i > V_{DD} + V_{Tp}$, M_2 does not conduct¹, and V_o gets pulled down to 0 V. Between these two limits, both M_1 and M_2 conduct. The modes of operation of the transistors are summarised in the figure for a representative example.

Exercise Set

- 1. Plot qualitatively I_D versus V_i .
- 2. How would the V_o versus V_i curve change if
 - (a) V_{Tn} is increased by 0.5 V.
 - (b) V_{Tp} is increased (in magnitude) by 0.5 V.
 - (c) The width of M_1 is doubled.

¹Note that V_{Tn} and V_{Tp} are the actual values of the threshold voltages, and not the absolute values. Typically V_{Tn} is positive, and V_{Tp} is negative.

- (d) The width of M_2 is doubled.
- (e) The channel length modulation parameter lambda is changed from $0 V^{-1}$ to $0.5 V^{-1}$.
- 3. Check your answers against simulation results.

References

- 1. H. Taub and D. Schilling, Digital Integrated Electronics, McGraw-Hill, 1977.
- 2. M.B. Patil, Basic Electronic Devices and Circuits, Prentice-Hall India, 2013.