
mos_ring_osc.sqproj

A ring oscillator with five CMOS inverters is shown in the figure. The oscillation frequency is given by

$$f_o = \frac{1}{n \ (t_{PHL} + t_{PLH})} \,, \tag{1}$$

where n is the number of inverters, and t_{PHL} , t_{PLH} are the propagation delays of one inverter driving another identical inverter. The delays are determined broadly by two factors: (i) the capacitance seen at the output of the inverter, (ii) the current carrying capability of the transistors. The capacitance seen at the inverter output node is proportional to $W \times L$ (the transistor area), and the current carried by a transistor is proportional to W/L.

Exercise Set

- Run the simulation, plot the voltages at the five inverter output nodes (together), and explain how they are related. From the plot, calculate the oscillation period and frequency.
- 2. Make the following changes, run the simulation, plot V_{G1}(t), and compare the oscillation period with the original value. Explain qualitatively your results in each case. (Note that the global parameters w_n, w_p, phi_n, phi_p are convenient here, with phi_n, phi_p controlling the threshold voltages¹ of the n- and p-channel transistors, respectively.)

¹The circuit file mos_iv_1.sqproj may be used to see the effect of phi on the I_D - V_G curve.

- (a) The length as well as width of each *n*-channel transistor are doubled.
- (b) Width of each *n*-channel transistor is changed from $5 \,\mu\text{m}$ to $20 \,\mu\text{m}$.
- (c) Width of each *p*-channel transistor is changed from $5 \,\mu\text{m}$ to $20 \,\mu\text{m}$.
- (d) Width of each transistor is changed from $5 \,\mu m$ to $20 \,\mu m$.
- (e) The parameter phin is decreased by 0.5.
- (f) The parameter phi_p is decreased by 0.5.

References

 R. J. Baker, H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, Prentice-Hall India, 1998.