


A voltage-controlled oscillator (VCO) with a five-stage ring oscillator is shown in the figure. Transistor pairs such as  $M_2$ - $M_3$  make up the inverters. In addition, we have transistors (e.g.,  $M_1, M_4$ ) which control the current available during switching.

As the input voltage  $V_i = V_{G5}$  is changed from one DC value to another, the charging and discharging capability of each inverter changes, leading to a change in the propagation delays and therefore a change in the oscillation frequency. It is instructive to look at mos\_vco\_1a.sqproj and understand how the propagation delays change with  $V_i$ .

## Exercise Set

1. Simulate the circuit, and find the frequency of oscillation  $f_o$  for  $V_i = V_{G5} = 2$  V.

2. Repeat for  $V_i = 2.5, 3, 3.5, 4, 4.5$  V. Plot  $f_o$  as a function of  $V_i$ .

## References

 R. J. Baker, H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, Prentice-Hall India, 1998.