mos_vco_1a.sqproj

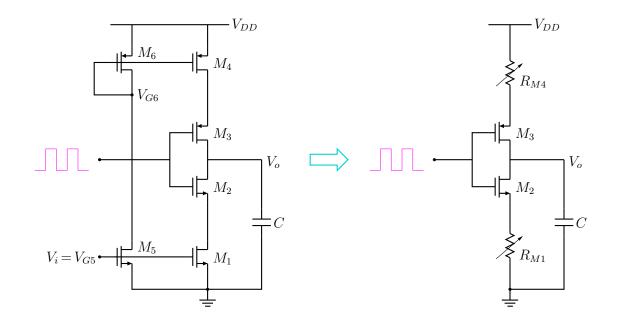


Figure 1: (a) Circuit to illustrate the working principle of the VCO in mos_vco_1.sqproj, (b) Simplified circuit.

The purpose of this example is to illustrate the principle of operation of the voltage-controlled oscillator (VCO) in the circuit file $mos_vco_1.sqproj$. The input voltage V_i is applied to the gate of M_5 (see Fig. 1 (a)). If V_i is increased, V_{G6} decreases, as seen in $mos_vco_1b.sqproj$. Since G_5 and G_6 are tied to G_1 and G_4 , respectively, I_{M1} and I_{M4} increase as V_i is increased, and vice versa.

In the present example, we do not have an oscillator. Instead, we have a single inverter M_2 - M_3 , as shown in the figure. Our intention is to look at the propagation delays of this inverter as V_i – a DC voltage – is varied. The effect of a change in V_i can be described with the simplified circuit shown in Fig. 1 (b) in which the transistors M_1 and M_4 have been replaced with resistances¹ which vary with the input voltage V_i . As V_i increases, R_{M1} and R_{M4} decrease. As a result, larger currents (I_{M2}, I_{M3}) become available to charge or discharge

¹Note that this is an oversimplification. A MOS transistor is a nonlinear device and must be treated as such. The variable resistances must be viewed as a crude approximation made only for the purpose of conceptual understanding of the circuit.

the load capacitor C, leading to smaller propagation delays of the inverter.

The operation of a VCO is similar: A change in the input voltage causes a change in the propagation delays in each inverter in the ring oscillator, thereby causing a change in the oscillation frequency.

Exercise Set

- 1. Study the circuit file mos_vco_1b.sqproj to understand how V_{G6} is affected by V_{G5} .
- 2. Run the simulation, and plot the inverter input and output voltages versus time for $V_i \equiv V_{G5} = 2$ V. From the plot, find t_{PHL} and t_{PLH} .
- 3. Repeat for $V_i = 2.5, 3, 3.5, 4, 4.5$ V. Plot t_{PHL} and t_{PLH} as a function of V_i .

References

 R. J. Baker, H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, Prentice-Hall India, 1998.