
mos_vco_1b.sqproj

The circuit shown in the figure is used to control the current drive in a voltage-controlled oscillator (VCO) and thereby the oscillation frequency of a ring oscillator. The complete VCO circuit can be found in mos_vco_1.sqproj.

As V_i increases, $I_{M6} = I_{M5}$ increases, and the increase in I_{M6} is accompanied by an increase in $V_{SG}^{M6} = V_{SD}^{M6}$, i.e., a decrease in V_o . The circuit is designed so that V_o varies over a wide range of V_i . This should be contrasted with an inverter in which the fall in V_o with increasing V_i is designed to be as sharp as possible in order to get good noise margins.

Exercise Set

- 1. Simulate the circuit, and plot V_o versus V_i .
- 2. Make the following changes and compare the V_o - V_i plot with the original plot. (i) w_n = 3 μ m, (ii) w_n = 10 μ m, (iii) w_p = 5 μ m, (iv) w_p = 25 μ m.

References

 R. J. Baker, H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, Prentice-Hall India, 1998.