opamp_current_source.sqproj

The circuit shown in the figure can be used to provide a constant current to a load, irrespective of the voltage across the load. Assuming the Op Amp to be operating in the linear region, we have

$$V_{-} \approx V_{+} = V_{s} \rightarrow I_{R0} = \frac{V_{s}}{R_{0}}.$$
(1)

Since the Op amp input current is negligible, the load current is nearly¹ equal to I_{R0} , irrespective of the value of R_L or the voltage across R_L , as long as the transistor is in its active mode.

Exercise Set

- 1. Run the simulation and plot I_{RL} versus R_L . Note that the current is independent of R_L for a wide range of R_L .
- 2. It can be seen from the plot that, if R_L is larger than a certain value (say, R_L^{max}), I_{RL} starts dropping. Why does this happen? Can you predict R_L^{max} ?
- 3. Plot I_C , I_E , I_B (together) of the BJT versus R_L . Use this plot to understand the drop in current when R_L is increased beyond R_L^{max} .

References

 S. Franco, Design with Operation Amplifiers and Analog Integrated Circuits, McGraw-Hill, 1998.

¹We assume that the base current of the transistor is negligibly small.