opamp_osc_2.sqproj

An Op Amp oscillator circuit with individually controllable high and low time intervals is shown in the figure. The OA1 part of the circuit is an integrator, and the OA2 part works as a Schmitt trigger. The D5-D6 combination clamps the output voltage V_8 to $\pm V_m$ with $V_m = (V_Z + V_D)$, where V_Z is the Zener voltage and V_D is the forward turn-on voltage of D5 and D6.

Exercise Set

- 1. Run the simulation, and plot V_3 and V_8 versus time to get an idea of the working of the circuit.
- 2. Show that the threshold voltages for the Scmitt trigger are $V_T^+ = \frac{R_1}{R_2} (V_m V_D)$ and $V_T^- = -\frac{R_1}{R_2} (V_m V_D)$, where V_D is the turn-on voltage of the diodes (about 0.7 V).
- 3. When $V_8 = V_m$, what is the capacitor current? (Note that node 2 is at virtual ground.)
- 4. When $V_8 = -V_m$, what is the capacitor current?
- 5. Using the above information and the fact that V_3 varies between V_T^+ and V_T^- , show that the high and low time intervals of V_8 are given by $T_H = 2C \frac{R_1}{R_2} (R + R_4)$, $T_L = 2C \frac{R_1}{R_2} (R + R_3)$.

6. Verify your T_H and T_L values with simulation.

References

 S. Franco, Design with Operation Amplifiers and Analog Integrated Circuits, McGraw-Hill, 1998.