## precision\_full\_wave\_1.sqproj



A precision full wave rectifier circuit is shown in the figure. Of the two Op Amps, OA2 operates as a buffer.

Consider first the case that the diode is conducting. The feedback loop is closed in this case, and the Op Amp (OA1) operates in the linear regime, making  $V_- \approx 0$  V. The diode current flows through  $R_2$  and  $R_1$ , which means that  $V_s$  can only be negative. The circuit operates as an inverting amplifier, with  $V_o = -\frac{R_2}{R_1} V_i$ . In the other case, i.e.,  $V_s > 0$  V, the diode does not conduct, there is no current through  $R_1$ and  $R_2$  (since each of the Op Amps has a large input resistance, ideally infinite), and we have  $V_o = V_s$ . Note that the Op Amp (OA1) operates in the open-loop condition in this case, and with  $V_+ = 0$  V and  $V_- = V_s$ , it enters saturation. Since  $V_- = V_s > V_+ = 0$  V, the Op Amp output voltage is  $-V_{\text{sat}}$ .

Putting the above cases together, with  $R_1 = R_2$ , we can conclude that the circuit works as a precision full wave rectifier.

## Exercise Set

- 1. Run the simulation, plot  $V_s(t)$  and  $V_{out2}(t)$  (together), and verify that the circuit performs precision full wave rectification.
- 2. Plot  $V_s(t)$  and  $V_{out1}(t)$ , the voltage at the output node of OA1, and verify that the Op Amp enters saturation when  $V_s > 0$  V as we expect.

## References

- S. Franco, Design with Operation Amplifiers and Analog Integrated Circuits, McGraw-Hill, 1998.
- 2. A. S. Sedra, K. C. Smith, and A. N. Chandorkar, *Microelectronic Circuits: Theory and Applications*, Fifth edition, Oxford University Press, 2009.
- 3. J. Millman and A. Grabel, *Microelectronics*, McGraw-Hill, 1988.