schmitt_741.sqproj

The Schmitt trigger circuit shown in the figure works on the basis of positive feedback, which makes the gain very high. As a result of the high gain, the Op Amp operates in the saturation region, i.e., $V_o = \pm V_{\text{sat}}$. Let us consider these two cases:

(a) V_o =+V_{sat}: Since the input current of an Op Amp can be neglected (at the non-inverting terminal), we have, by voltage division,

$$V_{+} = \frac{R_1}{R_1 + R_2} \times V_{\text{sat}} \equiv V_{TH} \,. \tag{1}$$

For the Op Amp output V_o to change to $-V_{\text{sat}}$, the input voltage V_s needs cross V_{TH} .

(b) $V_o = -V_{\text{sat}}$: Again, since the input current at the non-inverting terminal can be neglected, we have

$$V_{+} = \frac{R_{1}}{R_{1} + R_{2}} \times (-V_{\text{sat}}) \equiv V_{TL} \,.$$
⁽²⁾

For V_o to change to $+V_{\text{sat}}$, V_s needs cross V_{TL} .

The above considerations give rise to the V_o versus V_s relationship shown in the figure, and the circuit is therefore called "inverting" Schmitt trigger.

Exercise Set

- 1. For the component values shown in the figure, what are the values of V_{TL} and V_{TH} ?
- 2. Simulate the circuit with a sinusoidal input voltage of amplitude 10 V and frequency 50 Hz for, say, two cycles. Plot V_o versus V_s and check if your computed values of V_{TL} , V_{TH} are correct. Also observe V_o and V_s versus time.

- 3. Plot V_+ versus V_s and explain your observation.
- 4. If R_2 is changed to 1 k, how will the transfer characteristic change? Verify by simulation.

References

- S. Franco, Design with Operation Amplifiers and Analog Integrated Circuits, McGraw-Hill, 1998.
- 2. J. Millman and A. Grabel, *Microelectronics*, McGraw-Hill, 1988.
- A. S. Sedra, K. C. Smith, and A. .N. Chandorkar, *Microelectronic Circuits*, Oxford University Press, 2004.