
solar_iv_2.sqproj

I-V characteristics for different r shunt values

The purpose of the simulation set-up shown in the figure is to observe the effect of the shunt resistance¹ on the performance of a solar cell, with a fixed photo current. In the solve block, for each value of R_{shunt} , the load resistance R_L is varied, and the current and power are stored. This procedure amounts to varying the cell voltage from 0 V to V_{oc} , and it gives the I-V curve for one specific value of R_{shunt} .

Exercise Set

- 1. Run the simulation. Plot I versus V, and observe how R_{shunt} affects the solar cell performance.
- 2. Plot P (output power of the cell) versus V. For each value of R_{shunt} , note down the maximum power P_{max} . Now plot manually P_{max} on linear scale versus R_{shunt} on log scale.

¹Note that by shunt resistance, we mean the *internal* shunt resistance of the solar cell; it should not be confused with R_L which is *external*.