
solar_iv_5b.sqproj

In the circuit shown in the figure, six solar cells are connected in series. One bypass diode is connected for every two cells. One of the cells (C_4) is under shade, and its photocurrent is reduced to $I_{p4} = 0.5$ A. All other cells have a photocurrent of $I_p = 4$ A.

Exercise Set

1. Plot (on paper) the I-V relationship for the array in two cases: (a) The above condition where $I_{p4} = 0.5 \,\mathrm{A}$ and all other photocurrents are $4 \,\mathrm{A}$, (b) All photocurrents are equal (4 A).

Note: A critical examination of solar_iv_5a.sqproj will be helpful.

- 2. Plot the bypass diode currents (I_{D1}, I_{D2}, I_{D3}) versus the total voltage drop with C_4 under shade.
- 3. Plot the cell voltages (V_{C1}, \dots, V_{C6}) versus the total voltage drop with C_4 under shade.
- 4. Compare your plots with simulation results.

References

- 1. L. Castaner and S. Silvestre, *Modelling Photovoltaic Systems with PSpice*, John Wiley and Sons, 2002.
- C. S. Solanki, Solar Photovoltaics: Fundamentals, Technologies, and Applications, Prentice-Hall India, 2011.