
test_filter_1.sqproj

Shown in the figure is a filter given by

$$H(s) = \frac{a_0^{(1)}}{b_0^{(1)} + b_1^{(1)}s} \times \frac{a_0^{(2)} + a_1^{(2)}s}{b_0^{(2)} + b_1^{(2)}s}.$$
 (1)

Exercise Set

- 1. With the coefficient values as specified in the figure, draw the asymptotic gain and phase plots (Bode plots) for the filter for $0.1\,\mathrm{Hz} < f < 10\,\mathrm{kHz}$. The frequency and gain axes should be logarithmic, and the phase axis should be linear.
- 2. Compare your plots with simulation results obtained by setting the global parameter flag_asymptote to 1.

(Note that the output is equal to the transfer function since the filter input \mathbf{V}_i is set to $1 \angle 0$.)

3. Compare the asymptotic plots with the actual gain and phase plots obtained by setting flag_asymptote to 0.