wien_osc_2.sqproj

Figure 1: Wien bridge oscillator circuit.

Fig. 1 shows the Wien bridge oscillator. The circuit oscillates at frequency $f = \frac{1}{2\pi RC}$ if the gain provided by the amplifier (implemented here with a non-inverting Op-Amp amplifier configuration) is equal to 3 (see ee101/ee101_osc_1.sqproj). In practice, a gain limiting block is also required to limit the amplitude of the oscillations.

Fig. 2 shows the oscillator circuit with the gain limiting block implemented with a diode-resistor network. As the amplitude of the output voltage increases, diode D_1 or D_2 turns on, changing the effective value of R_2 and therefore the gain of the amplifier.

Exercise Set

- 1. Simulate the circuit and verify that the frequency of oscillation is what you would expect from the Barkhausen criterion.
- 2. Decrease the capacitances in the β network by a factor of 2 and see its effect on the frequency of oscillation.

References

 S. Franco, Design with Operation Amplifiers and Analog Integrated Circuits, McGraw-Hill, 1998.

Figure 2: Complete Wien bridge oscialltor circuit with gain limiting network.

- 2. J. Millman and A. Grabel, *Microelectronics*, McGraw-Hill, 1988.
- A. S. Sedra, K. C. Smith, and A. .N. Chandorkar, *Microelectronic Circuits*, Oxford University Press, 2004.