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Chapter 1

Introduction

There are many situations in science and engineering where certain parameters need to be
optimised for a specific objective. For example, we may have a model (a set of equations)
whose parameter values are to be assigned so that the model produces an accurate description
of the corresponding physical situation, such as the electrical behaviour of a transistor or the
speed versus torque curve of a machine. Or we may have a design problem in which a circuit
or a system needs to be designed to meet certain specifications. The design process would call
for assigning appropriate values to the system parameters such that the system performance is
as close as possible to the specifications.

Optimisation problems can be (a) single-objective where only one function (of one or more
variables) is to be optimised, i.e., minimised or maximised, or (b) multi-objective where multiple
functions are to be optimised.

Several methods have been developed for optimisation. Methods in which only the
objective function values are used to locate the optimum (minimum or maximum) point are
called “direct search” methods. Methods which require to use the objective function values as
well as the derivative (gradient) values are called gradient-based methods. The success of these
methods, i.e., whether and how fast it converges to the optimum point, depends on various
factors, including the starting point used. A comprehensive description of the various methods,
their advantages and disadvantages, is given in [1].

If the objective function space has several optimum positions, the direct search or gradient-based
methods may find a local optimum but fail to find the global optimum. In such cases,
stochastic methods, which incorporate randomness in the search process, are more effective.
The randomness – which is inherent in stochastic methods – ensures that the search process
does not get stuck in a narrow region (such as a local minimum) of the search space. In other
words, stochastic methods enable a more thorough exploration of the search space. Furthermore,
these methods do not require gradient information from the user. In the rest of this manual,
we will focus on one of the stochastic methods, viz., particle swarm optimisation.

1.1 Particle Swarm Optimisation

As the name suggests, the Particle Swarm Optimisation (PSO) algorithm is based on a swarm
(group) of particles. The motion of the particles within the search space is governed by certain
rules such that each particle improves its fitness over a sufficiently long interval. What exactly
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is a “particle” and how is the “fitness” of a particle evaluated? That depends on the problem
being solved, as we will soon illustrate with an example.

The movement of the particles is carried out in discrete steps or “iterations.” To understand
the PSO algorithm, let us first define the attributes of the particles as follows1.

xi
k: position of the ith particle in the kth iteration

vi
k: velocity of the ith particle in the kth iteration

pi
k: the best personal position of the ith particle so far, i.e., the best position

which the ith particle has visited up to the kth iteration
gk: the best global position in the whole swarm up to the kth iteration,

i.e., the best of all pi
k

In the “standard” PSO algorithm, which is the subject of this manual, the velocity of each
particle is upgraded as

vi
k+1 = ω vi

k + φ1R
i
1k(pi

k − xi
k) + φ2R

i
2k(gk − xi

k), (1.1)

where ω, φ1, φ2 are constant positive real numbers, andRi
1k, Ri

2k are random numbers distributed
uniformly over [0, 1]. Let us look at the significance of each of the terms on the right-hand side.

xi
k

φ2R
i
2k
(gk − xik)

vi
k+1

xi
k+1

pi
k

gk

φ 1
R
i
1k
(p
i
k
− x

i
k
)

ωvi
k

Figure 1.1: Schematic representation of velocity update (Eq. 1.1), assuming two-dimensional search
space.

(a) ω vi
k represents the influence of the current velocity (in the kth iteration) on the next

velocity (in the (k + 1)th iteration). In other words, it represents the tendency of the
particle to continue its motion in the present direction, and the parameter ω is therefore
termed as the “inertia weight.” In the standard PSO algorithm, ω remains constant (with
respect the the iteration number).

1We will use bold letters to denote vectors.
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(b) φ1R
i
1k(pi

k−xi
k) makes the particle move toward the best personal position it has attained

so far, i.e., up to the kth iteration.

(c) φ2R
i
2k(gk − xi

k) makes the particle move toward the best global position so far.

The net velocity of the particle is the vector sum of these three terms (see Fig. 1.1) and is then
used to move the particle using

xi
k+1 = xi

k + vi
k+1, (1.2)

which is similar to xnew = xold + v ×∆t, with ∆t= 1.
The complete PSO algorithm can now be described as follows.

1. Define the search-space boundaries (a rectangle in case of a two-dimensional search).

2. Generate a population (swarm) of particles by assigning an initial position xi
0 (lying within

the search space) and an initial velocity vi
0 to each particle.

3. Set PSO iteration number k= 0.

4. Set a criterion for termination of the PSO iterations, e.g., we may want to terminate the
iterations when the particles attain a certain average fitness value or when the number of
iterations exceeds a pre-specified number.

5. Compute the fitness of each particle.

6. Check if the termination criterion is satisfied; exit the PSO loop if it is.

7. Find the personal best position pi
k for each particle and the global best position gk for

the entire population.

8. Compute the updated velocity vi
k+1 for each particle using Eq. 1.1.

9. Move the particles according to Eq. 1.2, assign the new position xi
k+1 for each particle. If

the new position for any particle lies outside the search space, place it inside the search
space.

10. PSO iteration k ← k + 1; go to step 5.

The PSO algorithm is conceptually very simple – it is in fact inspired by social behaviour of
birds in search of food. During the search process, the particles explore the search space, and
their trajectories get biased by their personal past best positions as well as the best position so
far among all particles of the population. As time progresses, each particle improves its fitness.
When most of the particles have attained sufficiently high fitness, the search process can be
stopped, and we say that the PSO algorithm has converged to a solution.

The choice of the algorithm parameters (φ1, φ2, ω in Eq. 1.1) is important in deciding the
performance of the PSO algorithm [2]. A particularly disastrous situation is “swarm explosion”
in which the velocity becomes indefinitely large for all particles for certain values of φ1, φ2, ω.
The set φ1 =φ2 = 1.4962, ω= 0.7298 has been shown to be effective for a variety of problems [3].
This set of parameters has also been found to work well for a variety of applications considered
at IIT Bombay [4]-[10]. In PSOFT, the above values are therefore used by default, and the user
is given a choice to change them if required.
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1.2 PSO Examples

We will now illustrate the ideas discussed in Sec. 1.1 with the help of specific examples. In
this section, we will only show how PSO works through a few plots. The examples considered
here are also available in the PSOFT distribution so that the user can run them and generate
additional information and plots, as explained later.

1.2.1 Intersection of two lines

−2  0  2  4  6
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 6
y

x

P

Figure 1.2: Graphs of y=−x+ 4 and y=x− 1.

Consider two straight lines y=−x + 4 and y=x − 1, as shown in Fig. 1.2. We are
interested in finding their intersection (point P in the figure). This problem is of course far
too trivial, and the use of any optimisation program in this case would be like employing a
construction-grade crane to lift a basket of flowers. However, it is a convenient problem for
illustrating the functioning of the PSO algorithm, and we will view it in that spirit.

In this example, a “particle” is a point (x, y) in the search space. Let us suppose that we
have an approximate idea of where the solution lies, and we define the search space accordingly
as the region bounded by x=x1 = −1, x=x2 = 5, y= y1 = −1, and y= y2 = 5. We generate an
initial population of 100 particles by assigning random values to the two attributes (parameters)
x and y of each particle such that x1 < xi < x2 and y1 < yi < y2 (see Fig. 1.3).

What about the particle velocities? We would generally not have a clue about what is
a reasonable number for the particle velocity, and it makes sense to initialise all velocities to
zero. As the PSO iterations proceed, the particles will acquire suitable velocities anyway.

We know what a “particle” means in the context of the present example – it is specified by
two parameters, x and y. How do we assign a “fitness” value to a given particle? That depends
on the solution we are looking for, viz., the intersection of the two lines shown in Fig. 1.2. A
particle should be considered to have a higher fitness if it is closer to the point of intersection.
We cannot find the distance between a given particle and the point of intersection (which is
not known). However, we can get an idea of this distance indirectly, as shown in Fig. 1.4. The
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Figure 1.3: Search space (pink rectangle) and initial population of particles for the example of
Sec. 1.2.1.

distances ∆y1 and ∆y2 in the figure should both be zero when the particle coincides with P ,
the point of intersection. The measure

εi =
√

∆y2
1 + ∆y2

2 =

√
[yi − (m1xi + c1)]2 + [yi − (m2xi + c2)]2, (1.3)

can thus be used to assess the fitness of the ith particle with parameters (xi, yi). A particle
with a smaller value of ε would be considered to have a higher fitness. It should be noted that,
in the PSO algorithm, we need the fitness values of particles only for the purpose of ordering
the particles; no computations using the above εi values are required.
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x

∆y2
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Figure 1.4: Fitness computation for the ith particle with parameters xi and yi for the example of
Sec. 1.2.1.
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With the initial population, search-space definition, and a method for fitness evaluation,
the PSO algorithm can now be implemented2. Fig. 1.4 shows how the particle positions change
with time. As the PSO iterations proceed, the particles are seen to be moving closer to the
solution, the point of intersection of the two lines. Fig. 1.6 (a) shows how the rms value of ε
over the entire population varies as a function of the PSO iteration number on a linear scale,
and Fig. 1.6 (b) shows the same on a logarithmic scale.

In this example, it was easy to view the evolution of the population directly (see Fig. 1.5)
since we had only two parameters, viz., x and y, associated with each particle. In general,
we could have more than two parameters per particle, and to assess the progress of the PSO
process, we have to rely on an average measure of the closeness of the particles to the expected
solution, such as εrms in this example.

Figs. 1.7 (a) and 1.7 (b) show how the average parameter values (x and y) evolve. As
the particles move toward the solution, the average values of x and y approach 2.5 and 1.5,
respectively, i.e., the solution we are seeking.

2In this example, we will perform a fixed number of PSO iterations. In practice, it may be desirable to stop
the PSO iterations when a suitable termination criterion is satisfied.



Introduction 7

−2  0  2  4  6
−2

 0

 2

 4

 6

−2

 0

 2

 4

 6

−2  0  2  4  6

x

y
y

x

N =10N =1

N =20 N =30

Figure 1.5: Distribution of particles for the example of Sec. 1.2.1 during the PSO process. N denotes
the PSO iteration number.
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Figure 1.6: εrms for the example of Sec. 1.2.1 as a function of PSO iteration number: (a) linear scale,
(b) logarithmic scale.
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Figure 1.7: Evolution of average parameter values for the example of Sec. 1.2.1: (a)xavg, (b) yavg.

1.2.2 Design of RLC circuit for a specified frequency response

We now consider a design problem. The frequency response, i.e., |I| versus frequency for a series
RLC circuit (see Fig. 1.8) is given, and we want to use PSO to obtain the circuit parameters,
viz., R, L, C, which will satisfy the frequency response specification. This exercise can be
carried out analytically by solving equations (in terms of R, L, C) for the resonance frequency,
|I|max, and the bandwidth. However, our purpose here is to demonstrate the use of PSO in
the design process, and we will therefore not take the analytical route. The frequency response
shown in Fig. 1.8 (b) has been obtained by computing |I| at different frequencies, with R= 10 Ω,
L= 1 mH, and C = 1µF. We will compare the solution given by the PSO algorithm with these
values.

For this example, our “particle” is the series RLC circuit, and the position vector xi for
the ith particle has three components: the R, L, C values. The search space is therefore
three-dimensional. We define the boundaries of the search space as 0.1 Ω < R < 103 Ω,
0.01 mH < L < 10 mH, 0.001µF < C < 10µF, and generate an initial population of 100
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Figure 1.8: (a) Series RLC circuit, (b) Frequency response specification.

particles within this search space. Since the parameter ranges used are relatively wide, we
generate uniform random numbers in the interval (log pmin, log pmax) – where p stands for R, L,
or C – rather than in (pmin, pmax). The distribution of the initial L values is shown in Fig. 1.9
as an example.
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Figure 1.9: Histogram showing the initial distribution of L values in the RLC example of Sec. 1.2.2.

To evaluate the fitness of a particle, we generate the frequency response (|I| at the
frequencies of interest) using the R, L, C values of the particle and compute

εrms =

√√√√ 1

Nf

Nf∑
j=1

(
|I|j − |Iref |j

)2
, (1.4)

where |I|j is the current magnitude for the given particle at frequency fj, |Iref |j is the current
magnitude in the frequency response specification (also at frequency fj), and Nf is the total
number of frequencies used in the frequency response specification. A particle with a smaller
εrms is considered to have a higher fitness value.
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It should be obvious that fitness evaluation in this example is computationally more
expensive than in the previous example (compare Eqs. 1.3 and 1.4), and the PSO program would
therefore take longer for the same number of particles and PSO iterations. In this example,
the quantity of interest |I|j can be computed analytically. However, in some situations, use of
a circuit simulator may be required for fitness computation, and that would make the process
substantially slower. Fitness evaluation is clearly the most expensive operation in each PSO
iteration, the other operations, viz., computation of particle velocity (Eq. 1.1) and position
update (Eq. 1.2), being relatively trivial.

Fig. 1.10 shows the evolution of the average values of the particle parameters. The
parameter values are seen to converge to the expected solution, viz., R= 10 Ω, L= 1 mH, and
C = 1µF. Fig. 1.11 shows how the average value of εrms varies with the number of PSO iterations.

Histograms of the particle parameters are useful for visualising the progress of the PSO
iterations. As an example, Fig. 1.12 shows a histogram for the L parameter after 50 PSO
iterations. We observe that, at this stage, most of the particles have already attained the
expected L value, viz., L= 10−3 H (i.e., logL=−3).
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of Sec. 1.2.2.
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Figure 1.11: Average value of εrms versus PSO iteration number for the RLC example of Sec. 1.2.2.
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Figure 1.12: Histogram showing the distribution of L values after 50 PSO iterations in the RLC
example of Sec. 1.2.2.



Chapter 2

PSOFT: Files and Syntax

The PSO algorithm has been used for various applications at IIT Bombay [4]-[10]. It was found
to be easy to implement and yet very effective for a variety of applications. Based on this
experience, the package PSOFT (Particle Swarm Optimisation with Flexible Templates) was
developed to facilitate application of the PSO algorithm to new problems. In PSOFT, the PSO
algorithm is decoupled from the application under consideration, thus making it easier for the
user to focus on the application.

In this chapter, we describe the organisation of the PSOFT program and the syntax for
the files to be supplied by the user. We will then describe the PSOFT implementation of the
examples discussed in Chapter 1.

2.1 PSOFT Organisation

The organisation of the PSOFT program is shown in Fig. 2.1. The user supplies the files
particle class.h and particle class.cpp which define the particle behaviour, and input
files pso parms.in and pso control.in. The file pso parms.in specifies the PSO algorithm
parameters (φ1, φ2, ω in Eq. 1.1) which generally would not need to be altered from their
default values. The other input file, pso control.in, conveys various input values such as
the number of particles, number of PSO iterations to be performed, parameter values related
to fitness evaluation, names of particle parameters with their minimum and maximum limits,
names and contents of the output files to be generated, and plots to be displayed at the end of
the PSO loop. We will describe each of these files in more detail a little later.

The “preprocessor” (psoprep) creates a file pso1.h which defines some integer variables,
based on the parameter list supplied by the user in pso control.in. This will become more
clear when we look at implementation of specific examples.

The user’s C++ file particle class.cpp is then compiled and linked with the PSO
main program pso fixed.o, to produce the final executable file, pso. The user needs to change
only the problem-specific files (particle class.h, particle class.cpp, pso control.in, and
pso parms.in) to solve a new problem. It is a good idea to save these four files with different
names so that they remain available for later use. For example, in the PSOFT archive, there
are files named particle class xy.h, particle class xy.cpp, and pso control xy.in for
the example of Sec. 1.2.1. To run this example, the user can use the following commands.

13
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pso fixed.o
util1.h

pso1.hpso control.in psoprep

particle class.cpp
particle class.h

pso parms.in
pso control.in

Output files

g++ pso

and plots

Figure 2.1: Organisation of the PSOFT package. Files to be supplied by the user are shown in blue,
executable files in magenta, and other files in green.

cp particle_class_xy.h particle_class.h

cp particle_class_xy.cpp particle_class.cpp

cp pso_control_xy.in pso_control.in

./psoprep

g++ -O3 -c particle_class.cpp

g++ -O3 pso_fixed.o particle_class.o -o pso

./pso

The new files are actually used by PSOFT, and the old files remain available for future use.

2.2 Input File Syntax

As seen in Fig. 2.1, the user needs to supply two input files: pso parms.in and pso control.in.
Before looking at the statements involved in these files, let us make a few general remarks about
the syntax.

(a) Blank lines are ignored. Also, lines starting with # are treated as comments and ignored.

(b) The character + at the beginning of a line indicates continuation of the previous line.

(c) In a given line, strings are separated by one or more spaces, and in some cases, by the =

character. In the latter case, spaces are allowed before or after the = character; they are
ignored.

(d) A character string is denoted by string, an integer by int, and a real number by real.

(e) Keywords are shown in red in the description of the files below.

The input file pso parms.in specifies the PSO algorithm parameters. It has the following
lines.

pso parms.in

p1 = 1.4962

p2 = 1.4962

w = 0.7298

iseed = int
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The parameters p1, p2, w represent φ1, φ2, ω, respectively, in Eq. 1.1. As mentioned in in
Chapter 1, the parameter values mentioned above have been found to perform well for a variety
of problems [3], and the user generally would not need to change these values.

The parameter iseed (a positive integer) is the “seed” for the random number generator
used in the program. It controls the sequence of random numbers used in a specific run. If
iseed is changed, it amounts to repeating the PSO “experiment” with a different set of random
numbers. Typically, the user would not need to change this parameter, either.

The other input file, pso control.in, is problem-specific, i.e., its content depends on the
problem being solved. The general format of pso control.in is given below.

pso control.in

title: string(s)

n_particles=int

parameters: string1 string2 ...

fitness_int_parameters: string=int string=int ...

fitness_real_parameters: string=real string=real ...

output_format:

+ int_width=int

+ double_precision=int

+ double_width=int

plotting_program: gnuplot/python3

begin_opt

....

....

end_opt

begin_opt

....

....

end_opt

end_file

The first part of pso control.in contains common information about the user’s problem.
That is followed by the optimisation block(s), starting with begin opt and ending with end opt.
Let us look at the statements involved in the first part.

* title: string(s)

Problem title.

* n_particles=int

Number of particles.

* parameters: string1 string2 ...

List of parameters (to be optimised).

* fitness_int_parameters: string=int string=int ...

List of integer parameters related to fitness evaluation (parameter names and values).



16 PSOFT Users’ Manual

* fitness_real_parameters: string=real string=real ...

List of real parameters related to fitness evaluation (parameter names and values).

* output_format:

+ int_width=int

+ double_precision=int

+ double_width=int

Formatting information used in writing integers (e.g., PSO iteration number) and real
numbers (e.g., parameter values) to output files.

* plotting_program: gnuplot/python3

Whether gnuplot or python3 should be used for plotting output data.

The general form of an optimisation block is given below.

begin_opt

begin_parms

....

....

end_parms

begin_algo_parms

....

....

end_algo_parms

begin_output

....

....

end_output

begin_plots

....

....

end_plots

end_opt

Let is look at the various sub-blocks and statements within the optimisation block.

2.2.1 Parameter definition blocks

The optimisation block starts with the particle parameter block, starting with begin parms

and ending with end parms. The purpose of this block is to specify various attributes for each
particle parameter, and it has the following structure.

begin_parms

parm 1 type=string string1=string2 ...

parm 2 type=string string1=string2 ...

....

....

end_parms

parm 1, parm 2, etc. are the particle parameter names, and they must appear in the same order
as that in the parameters: statement seen earlier (see p. 15). Immediately after the parameter
name, the type=string assignment must appear. It can take one of the following forms.
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* type=free

The parameter is allowed to vary between x
(i)
min and x

(i)
max which are specified by the user.

The superscript i denotes the parameter number.

* type=hold

The parameter is allowed to vary between k
(i)
minx

(i)
0 and k

(i)
maxx

(i)
0 where k

(i)
min, k

(i)
max, and x

(i)
0

are specified by the user.

* type=previous

The parameter is allowed to vary between k
(i)
minx

(i)
g and k

(i)
maxx

(i)
g where k

(i)
min and k

(i)
max are

specified by the user, and x
(i)
g is the value of the ith parameter for the globally best particle

in the previous optimisation block.

* type=file

The parameter is allowed to vary between k
(i)
minx

(i)
file and k

(i)
maxx

(i)
file where k

(i)
min and k

(i)
max are

specified by the user, and x
(i)
file is taken from a file specified by the user.

After the type=string assignment, we have assignments of the form string1=string2 where
string1 and string2 take different values, as listed below. Note that only some of these
assignments are required, depending on the type of the parameter (free, hold, previous, or
file).

* log=yes/no

Suppose the parameter of interest is x(i), with limits x
(i)
min and x

(i)
max.

If log=yes is specified, then the initial values (at the beginning of the PSO loop) are

assigned such that the distribution of log x(i) is uniform between log x
(i)
min and log x

(i)
max

(where x
(i)
min and x

(i)
max are expected to be positive). This option is useful when a wide

range of values is to be explored for the ith parameter.

If log=no is specified, the distribution of x(i) is made uniform between x
(i)
min and x

(i)
max in

the initial assignment.

Note that, apart from affecting the initial distribution, x
(i)
min and x

(i)
max also serve to define

the search space during the PSO process.

* min=real

(required if type is free)

Specifies the minimum allowed value x
(i)
min for the ith parameter.

* max=real

(required if type is free)

Specifies the maximum allowed value x
(i)
max for the ith parameter.

* value_hold=real
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(required if type is hold)

If type is hold, this assignment gives x
(i)
0 (see the description of the type=hold option).

* file=string

(required if type is file)

If type is file, this assignment specifies the name of the file to be used for assigning x
(i)
file

(see the description of the type=file option). We will soon see how the file in question
is to be generated.

* k_min=real

(required if type is hold/previous/file)

Specifies k
(i)
min for the ith parameter (see the description of the type=hold/previous/file

options).

* k_max=real

(required if type is hold/previous/file)

Specifies k
(i)
max for the ith parameter (see the description of the type=hold/previous/file

options).

* user_init=yes/no

If user init=yes is specified, the initialisation of particle parameter values (at the
beginning of the PSO loop) is performed by the user’s routine, user init parms in file
particle class.cpp.

* user_limit=yes/no

If user limit=yes is specified, the limiting of parameter values during the PSO process
is performed by the user’s routine, user limit parms in file particle class.cpp.

* round_to_int=yes/no

If round to int=yes is specified, the parameter value is converted to integer before writing
to output files meant for best particle and rank information.

That brings us to the end of the particle parameter block. After this block, we have the
algorithm parameter block, starting with begin algo parms and ending with end algo parms,
with the following statements.

* itmax_pso=int

(required) It specifies the number of PSO iterations to be performed.

The keyword iter last can be used in the subsequent statements to refer to the value
assigned to itmax pso.

* flag_fitness_computation=int

(optional) flag fitness computation can be specified if the user wants to try out
different fitness computation options. This flag is passed to particle class.cpp.
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2.2.2 Output blocks

With the information supplied in the particle parameter block and the algorithm parameter
block, the program has all the required inputs to perform the PSO iterations1. The rest of the
optimisation block contains the following (optional) blocks.

(a) Output block: This block starts with begin output and ends with end output. It conveys
to the program the names of the output files to be generated and what information is to
be written to each of the output files.

(b) Plotting block: This block starts with begin plots and ends with end plots. It tells the
program how many plots are to be shown (when the PSO loop is completed), and what
information is to be presented in each plot.

To display the plots requested by the user, the program prepares python or gnuplot

script files and then calls python3 or gnuplot for the actual plotting.

We should point out here that the use of a plotting block is optional. For example, if the user
does not have python3 or gnuplot installed, she can still make use of the output files generated
by the output block, and view the data using other plotting programs such as xmgrace.

We now look at the syntax of the output block. The overall structure of the output block
is shown below.

begin_output

begin_file

....

....

end_file

begin_file

....

....

end_file

....

....

end_output

The output block consists of one or more file blocks, each starting with begin file and
ending with end file. A file block is meant to convey (a) the name of the output file to be
created and (b) what information should be written to the output file. The syntax for the
various types of file blocks is given below.

1. begin_file

type=best_particle

filename=string

variables: string1 string2 ...

control: string1=string2 ...

end_file

1The other crucial component is of course the particle behaviour, supplied by the user in
particle class.cpp. We will look at that separately.
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2. begin_file

type=avg_value

filename=string

variables: string1 string2 ...

control: string1=string2 ...

end_file

3. begin_file

type=track

filename=string

variables: string1 string2 ...

control: string1=string2 ...

particles: int1 int2 ...

end_file

4. begin_file

type=snapshot

filename=string

variables: string1 string2 ...

control: string1=string2 ...

end_file

5. begin_file

type=fitness_stats

filename=string

control: string1=string2 ...

end_file

6. begin_file

type=ranks

filename=string

variables: string1 string2 ...

end_file

7. begin_file

type=gbest_final

filename=string

end_file

8. begin_file

type=gvalues

filename=string

end_file

9. begin_file

type=user_file

filename=string

control: string1=string2 ...

end_file

Let us first look at the type=string statement and then the syntax of the other statements of
a file block.
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* type=best_particle

Write parameter values of the globally best particle.

* type=avg_value

Write the average parameter values (averaged over all particles) at regular intervals.

* type=track

Write parameter values of specified particles at regular intervals.

* type=snapshot

Write parameter values of all particles after the specified PSO iteration.

* type=fitness_stats

Write information related to the average fitness (over all particles).

* type=ranks

Write the rank (in terms of fitness) and parameter values of all particles at the end of the
PSO loop.

* type=gbest_final

Write all parameter values of the globally best particle at the end of the PSO loop. The
output file created using this option is used to provide the initial parameter value when
the option type=file is employed in the particle parameter block (see Sec. 2.2.1).

* type=gvalues

Write values of special variables called “gvalue” (defined by the user in particle class.cpp)
to the output file.

* type=user_file

Write user-specified information to the output file after the specified PSO iteration.

We now describe the syntax of the other statements in the file block.

* filename=string file_format=cols/rows

(required)

Specifies the name of the output file to be created.

In addition, the filename statement is also used to specify (optionally) the format of
the file – column-wise or row-wise – when the file type is best particle, avg value,
snapshot, ranks, or gvalues. The default option is cols.

For other file types, the file format is fixed and cannot be specified by the user.

* variables: string1 string2 ...
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(required for type=best particle, avg value, track, snapshot, ranks)

Specifies which parameter values are to be written to the output file. variables: ALL

can be used to specify all parameters.

The variables: statement, when required, must appear immediately after the filename
statement.

* particles: int1 int2 ...

(required for type=track)

Specifies the particles to be tracked for the type=track option.

* control: string1=string2 ...

The control statement allows one or more assignments of the form string1=string2,
where string1 and string2 take different values, as listed below.

- interval=int

Specifies the writing interval in terms of PSO iterations. For example, if interval
is 10, the information requested by the user to the output file once in every 10
iterations.

(Default: 1. Relevant for type=best particle, avg value, fitness stats, track)

- write_start=int

Specifies the iteration number for which writing to the output file is to start.

(Default: 1. Relevant for type=best particle, avg value, fitness stats, track)

- write_end=int

Specifies the iteration number for which writing to the output file is to end.

(Default: The total number of PSO iterations specified by the statement itmax pso=int.
Relevant for type=best particle, avg value, fitness stats, track)

- iter_snapshot=int

Specifies the iteration number for which snapshot information is to written to the
output file.

(Must be specified if type=snapshot; otherwise, not relevant.)

- iter_write_user=int

Specifies the iteration number for which the user’s routine write user file (in
particle class.cpp) is called for writing to the output file.

(Must be specified if type=user file; otherwise, not relevant.)

- index_user_file=int

Specifies an (optional) integer which can be used within the user’s routine write user file

(in particle class.cpp).
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2.2.3 Plotting blocks

When the PSO loop is completed, the output files specified in the output blocks get created,
each containing information as specified in the corresponding output block. These files can be
used by the user independently to plot, for example, the average value of a parameter or an
average fitness measure as a function of the PSO iteration number. For this purpose, the user
can use a plotting package of her choice.

Apart from displaying the plots of interest in the above manner, the user can also use
the built-in plotting capability of PSOFT, if python3 or gnuplot is installed on her computer.
That can be achieved by incorporating appropriate plotting blocks in the user’s input file (see
p. 16). In short, the file blocks (discussed in Sec. 2.2.2) produce output files, and the plotting
blocks use these output files to display the plot requested by the user. PSOFT does not do the
actual plotting; all it does is to create appropriate python or gnuplot script files and then call
python3 or gnuplot to show the plots.

Each plotting block starts with begin plot and ends with end plot. All plotting blocks
together need to be enclosed in an outer block starting with begin plots and ending with
end plots, as shown below.

begin_plots

begin_plots

....

....

end_plots

begin_plot

....

....

end_plot

....

....

end_plots

The type of each plotting block is given by the type=string statement. In the following, we
describe the syntax for different plotting block types.

1. begin_plot

type=xy_plot

filename=string

variables: x=string y_1=string y_2=string ...

plot_control: string1=string2 ...

end_plot

2. begin_plot

type=fitness_stats

filename=string

variables: x=string y_1=string y_2=string ...

plot_control: string1=string2 ...

end_plot

3. begin_plot

type=histogram

filename=string

variables: string1 string2 ...
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plot_control: string1=string2 ...

end_plot

4. begin_plot

type=xy_plot_user

filename=string

variables: x=int y_1=int y_2=int ...

plot_control: string1=string2 ...

end_plot

5. begin_plot

type=xy_plot_track

filename=string

variables: x=string y_1=string y_2=string ...

plot_control: string1=string2 ...

particles: int1 int2

end_plot

Let us first look at the type=string statement and then the syntax of the other statements of
a plotting block.

* type=xy_plot

Display graph of the specified variables versus PSO iteration number.

* type=fitness_stats

Display graph of the specified fitness-related variables versus PSO iteration number.

* type=histogram

Display histogram of specified quantity at a given PSO iteration number.

* type=xy_plot_user

Display graph of variables stored in a user-created file.

* type=xy_plot_track

Display graph of specified parameters for specified particles versus PSO iteration number.

We now describe the syntax of the other statements in the plotting block.

* filename=string

(required)

Specifies the name of the file which is supposed to provide the data required for this plot.
The file name must appear in one of the file blocks, i.e., each plotting block must have
a corresponding file block, and the correspondence between the two is established by a
common file name. Furthermore, the type of the plotting block and the type of the file
block must be consistent, i.e., they must satisfy the rules given in the following table.
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Plotting block File block

xy plot avg value or

best particle

histogram snapshot

fitness stats fitness stats

xy plot user user file

xy plot track track

* variables: ...

The syntax of this statement depends on the type of the plotting block, as explained
below.

- variables: x=iter y_1=string y_2=string ...

(required for type=xy plot and type=xy plot track)

string (in the assignment of y 1, y 2, etc.) is the name of one of the parameters
listed in the corresponding file block.

- variables: string

(required for type=histogram)

string is the name of one of the parameters listed in the corresponding file block.

- variables: x=iter y_1=fitness_int y_2=fitness_int ...

(required for type=fitness stats)

int indicates which fitness parameter (starting with 1) is to be plotted.

- variables: x=int y_1=int y_2=int ...

(required for type=xy plot user)

int indicates the column number in the output file created by the user.

* particles: int1 int2 ...

(required for type=xy plot track)

int1, int2, etc. specify the particles for which the plot is to be displayed.

* plot_control: string1=string2 ...

The plot control statement allows one or more assignments of the form string1=string2,
where string1 and string2 take different values, as listed below.

- xlog=yes/no

(Default: no)

Specifies if the x-axis should be logarithmic.

- ylog=yes/no

(Default: no)

Specifies if the y-axis should be logarithmic.
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- wait=yes/no

(Default: no)

Specifies whether the program should wait (and ask the user whether to continue)
after this particular plot has been dispayed.

- title=string

Specifies the title of the plot (to be displayed at the top of the plot window). If the
title is not specified, the program generates a default title.

- show_plotfile_file=yes/no

(Default: yes)

Specifies if the name of the python or gnuplot file created for this particular plot
should be displayed as part of the plot title. It is convenient if the user wishes to
edit the python or gnuplot file to change fonts, add some embellishments to the
plot, etc.

- xmin=real

Specifies the lower limit for the x-axis. If xmin is not specified, the program would
allow python or gnuplot to decide on a suitable lower limit, based on the data being
plotted.

- xmax=real

Specifies the upper limit for the x-axis. If xmax is not specified, the program would
allow python or gnuplot to decide on a suitable upper limit, based on the data being
plotted.

- n_bins=int

(Default: 10)

Number of bins to be used for plot type histogram.

That completes our discussion of the input file syntax. Several options and rules have
been described, and at this stage, it could be somewhat confusing. In the next chapter, we will
look at the files for solving the optimisation problems discussed in Chapter 1. The usage of the
various statements would then become clear.



Chapter 3

Files for Specific Examples

We have looked at some examples in Chapter 1 to understand how the PSO algorithm works.
We have also seen the syntax of the various files involved in PSOFT in Chapter 2. In this
chapter, we will go through the files used in solving a few specific optimisation problems.

As explained in Chapter 2, there are four files to be supplied by the user:

* pso parms.in

* pso control.in

* particle class.h

* particle class.cpp

The PSO algorithm paramters are given by pso parms.in as already discussed in Chapter 2,
and the user would generally not have to make any changes in this file. We will describe in the
following the three other files in the context of different examples.

3.1 Intersection of lines

The problem statement and related plots for this example have been described in Sec. 1.2.1
and not repeated here. The files related to this example (and others) can be found in the
/examples directory, with xy in the file names. For convenience, we will reproduce the files
here and include comments at appropriate places to explain the purpose of specific statements.
The reader is encouraged to relate the statements to the various details described in Sec. 1.2.1.

3.1.1 pso control xy.in

title: intersection of two lines

# Obtain the intersection of the lines,

# y1 = m1*x1 + c1, y2 = m2*x2 + c2, using PSO.

# number of particles

n_particles = 100

# names of particle parameters

27
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parameters: x y

# integer parameters related to fitness evaluation

fitness_int_parameters:

# real parameters related to fitness evaluation

fitness_real_parameters:

+ m1=-1.0e0

+ c1= 4.0e0

+ m2= 1.0e0

+ c2=-1.0e0

# format specification for integers and real numbers

# (in output files)

output_format: int_width=5 double_precision=6 double_width=13

plotting_program: gnuplot

begin_opt

begin_parms

x type=free min=-1.0 max=4.0

y type=free min=-1.0 max=10.0

end_parms

begin_algo_parms

itmax_pso = 100

end_algo_parms

begin_output

begin_file

type=best_particle

filename=best.dat file_format=cols

variables: ALL

control: interval=10

end_file

begin_file

type=avg_value

filename=avg.dat file_format=rows

variables: x y

control: interval=1

end_file

begin_file

type=track

filename=track.dat

variables: x y

control: interval=1

control: write_start=1 write_end=10

particles: 10 12 15

end_file

begin_file

type=gbest_final

filename=gbest_final.dat

end_file

begin_file
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type=snapshot

filename=snap1.dat file_format=cols

variables: x y

control: iter_snapshot=40

end_file

begin_file

type=fitness_stats

filename=err.dat file_format=cols

control: interval=1

end_file

begin_file

type=ranks

filename=rank1.dat file_format=rows

variables: x y

end_file

end_output

begin_plots

begin_plot

type=xy_plot

filename=best.dat

variables: x=iter y_1=y y_2=x

plot_control: xlog=no ylog=no wait=no

plot_control: title=best_particle_parms(1)

end_plot

begin_plot

type=xy_plot

filename=avg.dat

variables: x=iter y_1=x y_2=y

plot_control: xlog=no ylog=no wait=no

plot_control: title=avg(1)

end_plot

begin_plot

type=xy_plot_track

filename=track.dat

variables: x=iter y_1=x y_2=y

plot_control: xlog=no ylog=no wait=no

plot_control: title=track(1)

particles: 10 12

end_plot

begin_plot

type=histogram

filename=snap1.dat

variables: y

plot_control: xlog=no wait=no

plot_control: xmin=-2 xmax=5

plot_control: n_bins=35

plot_control: title=y(iter.eq.40)

end_plot

begin_plot

type=fitness_stats

filename=err.dat

variables: x=iter y_1=fitness_1

plot_control: xlog=no ylog=no wait=no show_plotfile_name=no

plot_control: title=error(1)

end_plot
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end_plots

end_opt

end_file

begin_opt

begin_parms

x type=free log=no min=0 max=4.0

y type=file log=no k_min=0.9 k_max=1.1 filename=gbest_final.dat

end_parms

begin_algo_parms

itmax_pso = 100

end_algo_parms

begin_output

begin_file

type=best_particle

filename=best1.dat

variables: ALL

control: interval=10

end_file

begin_file

type=avg_value

filename=avg1.dat

variables: x y

control: interval=1

end_file

begin_file

type=fitness_stats

filename=err1.dat

control: interval=1

end_file

end_output

begin_plots

# begin_plot

# type=xy_plot

# filename=best1.dat

# variables: x=iter y_1=x y_2=y

# plot_control: xlog=no ylog=no wait=no

# plot_control: title=best_particle_parms(2)

# end_plot

begin_plot

type=xy_plot

filename=avg1.dat

variables: x=iter y_1=x y_2=y

plot_control: xlog=no ylog=no wait=no

plot_control: title=avg(2)

end_plot

begin_plot

type=fitness_stats

filename=err1.dat

variables: x=iter y_1=fitness_1

plot_control: xlog=no ylog=no wait=no

plot_control: title=error(2)

end_plot

end_plots



Files for Specific Examples 31

end_opt

end_file

3.1.2 particle class xy.h

#ifndef PARTICLE_CLASS_H

#define PARTICLE_CLASS_H

#include <iostream>

#include <cstring>

#include <cstdlib>

#include <fstream>

#include <sstream>

#include <complex>

#include <iomanip>

#include <math.h>

// File pso1.h gets created by the preprocessor (psoprep), using

// the information from pso_control.in.

// It has definitions of nr_x, nr_y, nfr_m1, nfr_c1, nfr_m2, nfr_c2.

#include "pso1.h"

using namespace std;

class particle_class {

public:

// class variables:

double x,y;

double m1,c1,m2,c2;

public:

// function prototypes:

particle_class(

const int n_particles,

double **p_rparm,

int *f_iparm,

double *f_rparm,

int& n_gvalue,

int& n_fitness_print,

int& flag_fitness);

void get_fitness(

const int iter_pso,

const int flag_fitness_computation,

const int n_particles,

bool *flag_fit,

double **p_rparm,

int *f_iparm,

double *f_rparm,
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double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

int& flag_converged);

void write_user_file(

const int n_particles,

bool *flag_fit,

const int flag_fitness_computation,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

const int index_user_file,

std::ofstream& outf,

const int n_ranks,

int *n_rank_particles,

int **rank_index);

void user_init_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double *rparm_min,

double *rparm_max);

void user_limit_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_limit,

double **p_rparm,

double **p_vel,

double *rparm_min,

double *rparm_max);

};

#endif

3.1.3 particle class xy.cpp

#include "particle_class.h"

particle_class::particle_class(

const int n_particles,

double **p_rparm,

int *f_iparm,
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double *f_rparm,

int& n_gvalue,

int& n_fitness_print,

int& flag_fitness) {

// Use this part for "one-time" allocations, assignments, and computations.

flag_fitness = flag_minimise;

// n_fitness_print is the number of fitness measures we are interested in.

n_fitness_print = 2;

// number of user-defined "special" variables to be written to output file(s)

n_gvalue = 0;

// f_rparm: parameters used in fitness evaluation. These are NOT

// particle parameters. The indices nfr_m1, etc. are supplied by

// pso1.h.

m1 = f_rparm[nfr_m1];

c1 = f_rparm[nfr_c1];

m2 = f_rparm[nfr_m2];

c2 = f_rparm[nfr_c2];

return;

}

// -----------------------------------------------------------------------------

void particle_class::get_fitness(

const int iter_pso,

const int flag_fitness_computation,

const int n_particles,

bool *flag_fit,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

int& flag_converged) {

double k1,k2;

double err2,err_rms;

double err_stop=1.0e-10;

// find fitness value (fvalue) for each particle:

for (int i_part = 0; i_part < n_particles; i_part++) {

// get x and y from the array p_rparm passed by the calling routine:

x = p_rparm[i_part][nr_x];

y = p_rparm[i_part][nr_y];
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k1 = y-(m1*x+c1);

k2 = y-(m2*x+c2);

fvalue[i_part] = k1*k1 + k2*k2;

}

// check for convergence

err2 = 0.0;

for (int i_part = 0; i_part < n_particles; i_part++) {

err2 = err2 + fvalue[i_part];

}

err_rms = sqrt(err2/((double)n_particles));

// flag_converged should be set to 1 if convergence condition is met;

// else to 0.

if (err_rms < err_stop) {

flag_converged = 1;

} else {

flag_converged = 0;

}

// assign values to fitness measures:

fitness_print[0] = err_rms;

fitness_print[1] = err2;

return;

}

// -----------------------------------------------------------------------------

void particle_class::write_user_file(

const int n_particles,

bool *flag_fit,

const int flag_fitness_computation,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

const int index_user_file,

std::ofstream& outf,

const int n_ranks,

int *n_rank_particles,

int **rank_index) {

// not used in this example

return;

}

// -----------------------------------------------------------------------------
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void particle_class::user_init_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double *rparm_min,

double *rparm_max) {

// not used in this example

return;

}

// -----------------------------------------------------------------------------

void particle_class::user_limit_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double **p_vel,

double *rparm_min,

double *rparm_max) {

// not used in this example

return;

}

3.2 Design of RLC circuit

In this problem, the frequency response of a series RLC circuit is specified, and we want to
find R, L, C to match the same (see Sec. 1.2.2). The files related to this example can be found
in the /examples directory, with rlc1 in the file names. For convenience, we reproduce the
files here.

3.2.1 pso control rlc1.in

title: series RLC response

# Given the frequency response (magnitude of current phasor

# versus frequency), obtain R, L, C which match that response.

# number of particles

n_particles = 100

# names of particle parameters

parameters: r l c

# integer parameters related to fitness evaluation

fitness_int_parameters:
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# real parameters related to fitness evaluation

fitness_real_parameters:

# format specification for integers and real numbers

# (in output files)

output_format: int_width=5 double_precision=6 double_width=13

plotting_program: gnuplot

begin_opt

# Note: log=yes is selected because of the wide the parameter

# ranges specified.

begin_parms

r type=free log=yes min=0.1 max=1.0e3

l type=free log=yes min=0.01e-3 max=10.0e-3

c type=free log=yes min=1.0e-9 max=10.0e-6

end_parms

begin_algo_parms

itmax_pso = 100

end_algo_parms

begin_output

begin_file

# write best particle parameters once in every 10 iterations

type=best_particle

filename=best.dat

variables: r l c

control: interval=10

end_file

begin_file

# write average parameter values in each iteration

type=avg_value file_format=cols

filename=avg.dat

variables: r l c

control: interval=1

end_file

begin_file

# write fitness values in each iteration

type=fitness_stats

filename=err.dat

control: interval=1

end_file

begin_file

# write parameter values for all particles at iteration no. 1

type=snapshot

filename=snap1.dat

variables: r l c

control: iter_snapshot=1

end_file

begin_file

# write parameter values for all particles at iteration no. 50

type=snapshot

filename=snap2.dat

variables: r l c



Files for Specific Examples 37

control: iter_snapshot=50

end_file

begin_file

# index_user_file is used in particle_class.cpp as the particle index

# This file block will write information (as defined in particle_class.cpp)

# for particle 10 at iteration no. 2

type=user_file

filename=user1a.dat

control: index_user_file=10

control: iter_write_user=2

end_file

begin_file

# This file block will write information (as defined in particle_class.cpp)

# for particle 10 at iteration no. 50

type=user_file

filename=user1b.dat

control: index_user_file=10

control: iter_write_user=50

end_file

begin_file

# This file block will write information (as defined in particle_class.cpp)

# for particle 11 at iteration no. 2

type=user_file

filename=user2a.dat

control: index_user_file=11

control: iter_write_user=2

end_file

begin_file

# This file block will write information (as defined in particle_class.cpp)

# for particle 11 at iteration no. 50

type=user_file

filename=user2b.dat

control: index_user_file=11

control: iter_write_user=50

end_file

begin_file

# write rank of each particle and its parameter values

# at the end of the PSO loop

type=ranks

filename=rank1.dat

variables: r l c

end_file

end_output

begin_plots

begin_plot

type=xy_plot

filename=avg.dat

variables: x=iter y_1=r

plot_control: xlog=no ylog=yes wait=no

plot_control: title=avg(r)

end_plot

begin_plot

type=xy_plot

filename=avg.dat
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variables: x=iter y_1=l

plot_control: xlog=no ylog=yes wait=no

plot_control: title=avg(l)

end_plot

begin_plot

type=xy_plot

filename=avg.dat

variables: x=iter y_1=c

plot_control: xlog=no ylog=yes wait=no

plot_control: title=avg(c)

end_plot

begin_plot

type=xy_plot_user

filename=user1a.dat

variables: x=1 y_1=2 y_2=3

plot_control: xlog=yes ylog=no wait=no

plot_control: title=user1a.dat

end_plot

begin_plot

type=xy_plot_user

filename=user1b.dat

variables: x=1 y_1=2 y_2=3

plot_control: xlog=yes ylog=no wait=no

plot_control: title=user1b.dat

end_plot

begin_plot

type=xy_plot_user

filename=user2a.dat

variables: x=1 y_1=2 y_2=3

plot_control: xlog=yes ylog=no wait=no

plot_control: title=user2a.dat

end_plot

begin_plot

type=xy_plot_user

filename=user2b.dat

variables: x=1 y_1=2 y_2=3

plot_control: xlog=yes ylog=no wait=no

plot_control: title=user2b.dat

end_plot

begin_plot

type=histogram

filename=snap1.dat

variables: l

plot_control: xlog=yes wait=no

plot_control: xmin=0.01e-3 xmax=10.0e-3

plot_control: title=l(iter.eq.1)

end_plot

begin_plot

type=histogram

filename=snap2.dat

variables: l

plot_control: xlog=yes wait=no

plot_control: xmin=0.01e-3 xmax=10.0e-3

plot_control: title=l(iter.eq.50)

end_plot
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begin_plot

type=fitness_stats

filename=err.dat

variables: x=iter y_1=fitness_1

plot_control: xlog=no ylog=yes wait=no

plot_control: title=error

end_plot

end_plots

end_opt

3.2.2 particle class rlc1.h

#ifndef PARTICLE_CLASS_H

#define PARTICLE_CLASS_H

#include <iostream>

#include <cstring>

#include <cstdlib>

#include <fstream>

#include <sstream>

#include <complex>

#include <iomanip>

#include <math.h>

// File pso1.h gets created by the preprocessor (psoprep), using

// the information from pso_control.in.

// It has definitions of nr_r, nr_l, nr_c.

#include "pso1.h"

// util1.h is required since we will use some "utility" routines

// included there.

#include "util1.h"

using namespace std;

class particle_class {

public:

// class variables:

double r,l,c;

double err_rms;

double err_stop;

double twopi;

int n_cols;

int *col;

double **x_ref;

double *x;

int n_data;
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int col_freq,col_mag,col_phase;

public:

// function prototypes:

particle_class(

const int n_particles,

double **p_rparm,

int *f_iparm,

double *f_rparm,

int& n_gvalue,

int& n_fitness_print,

int& flag_fitness);

void get_fitness(

const int iter_pso,

const int flag_fitness_computation,

const int n_particles,

bool *flag_fit,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

int& flag_converged);

void write_user_file(

const int n_particles,

bool *flag_fit,

const int flag_fitness_computation,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

const int index_user_file,

std::ofstream& outf,

const int n_ranks,

int *n_rank_particles,

int **rank_index);

void user_init_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double *rparm_min,
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double *rparm_max);

void user_limit_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_limit,

double **p_rparm,

double **p_vel,

double *rparm_min,

double *rparm_max);

};

#endif

3.2.3 particle class rlc1.cpp

#include "particle_class.h"

particle_class::particle_class(

const int n_particles,

double **p_rparm,

int *f_iparm,

double *f_rparm,

int& n_gvalue,

int& n_fitness_print,

int& flag_fitness) {

// Use this part for "one-time" allocations, assignments, and computations.

const int M1=3;

double a0 = -1.0;

double pi;

int n_ttl;

// number of user-defined "special" variables to be written to output file(s)

n_gvalue = 0;

pi = acos(a0);

twopi = pi + pi;

flag_fitness = flag_minimise;

// n_fitness_print is the number of fitness measures we are interested in.

n_fitness_print = 1;

// The frequency response data, which serves as an input to the program,

// is assumed to have been stored in rlc_out_ref.dat. Read that file,

// and get the number of entries (n_data).

file_count_lines((char*)"rlc_out_ref.dat",n_data);

// M1 (3): no. of variables to be read from the frequency response file
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// (rlc_out_ref.dat). The varialbes are assumed to be stored in three columns:

// col.1: frequency

// col. 2: phase of current phasor

// col. 3: magnitude of current phasor

// allocate memory space:

x_ref = new double*[M1];

for (int i=0; i < M1; i++) {

x_ref[i] = new double[n_data];

}

x = new double[n_data];

n_cols = 3;

col = new int[n_cols];

// define indices for frequency, phase, magnitude.

col_freq = 0;

col_phase = 1;

col_mag = 2;

col[col_freq ] = 1;

col[col_phase] = 2;

col[col_mag ] = 3;

// read from the input file frequency, phase, magnitude of current phasor:

file_get_double_arrays((char*)"rlc_out_ref.dat",n_data,3,col,x_ref,n_ttl);

return;

}

// -----------------------------------------------------------------------------

void particle_class::get_fitness(

const int iter_pso,

const int flag_fitness_computation,

const int n_particles,

bool *flag_fit,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

int& flag_converged) {

double r,l,c,omg;

double err_rms;

double err2;

double err_rms_avg;

double err_stop=1.0e-6;
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int i_sys;

std::complex<double> zc,zl,zttl;

double zc1,zl1;

// find fitness value (fvalue) for each particle:

for (int i_part = 0; i_part < n_particles; i_part++) {

// get r,l,c from the array p_rparm passed by the calling routine:

r = p_rparm[i_part][nr_r];

c = p_rparm[i_part][nr_c];

l = p_rparm[i_part][nr_l];

for (int i=0; i < n_data; i++) {

// for each frequency value, calculate the impedances of capacitor

// and inductor.

omg = twopi*x_ref[col_freq][i];

zc1 = -1.0/(omg*c);

zl1 = omg*l;

zc = std::complex<double>(0.0e0,zc1);

zl = std::complex<double>(0.0e0,zl1);

// total impedance:

zttl = std::complex<double>(r,0.0e0) + zc + zl;

// magnitude of the current phasor (assuming the input voltage source

// to have magnitude = 1.0)

x[i] = 1.0e0/(abs(zttl));

}

// Compute the rms error, i.e., rms value of the difference between the

// reference |I| and the particle |I|, over the frequency range of interest:

rms_error_1(n_data,0,&(x[0]),&(x_ref[col_mag][0]),err_rms);

// assign the rms error as fitness value of the particle:

fvalue[i_part] = err_rms;

}

// Find the average rms error over all particles:

err2 = 0.0;

for (int i_part = 0; i_part < n_particles; i_part++) {

err2 = err2 + fvalue[i_part]*fvalue[i_part];

}

err_rms_avg = sqrt(err2/((double)n_particles));

// check for convergence

if (err_rms_avg < err_stop) {
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flag_converged = 1;

} else {

flag_converged = 0;

}

// assign value to fitness measure:

fitness_print[0] = err_rms_avg;

return;

}

// -----------------------------------------------------------------------------

void particle_class::write_user_file(

const int n_particles,

bool *flag_fit,

const int flag_fitness_computation,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

const int index_user_file,

std::ofstream& outf,

const int n_ranks,

int *n_rank_particles,

int **rank_index) {

int i_part;

double r,l,c,omg;

std::complex<double> zc,zl,zttl;

double zc1,zl1,mag_i;

// write information about a particle with index given

// by the variable index_user_file (this gets assigned

// in pso_control.in and passed by the main program).

// We will call the particle index i_part.

//

// We will write the frequency response (|I| versus frequency)

// for the particle, which can be used to observe how its

// fitness improves with PSO iterations, i.e., how the

// frequency response comes closer to the specified frequency

// response.

i_part = index_user_file;

r = p_rparm[i_part][nr_r];

c = p_rparm[i_part][nr_c];

l = p_rparm[i_part][nr_l];

outf << std::scientific;

outf << setprecision(6);

outf << setw(13);
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for (int i=0; i < n_data; i++) {

omg = twopi*x_ref[col_freq][i];

zc1 = -1.0/(omg*c);

zl1 = omg*l;

zc = std::complex<double>(0.0e0,zc1);

zl = std::complex<double>(0.0e0,zl1);

zttl = std::complex<double>(r,0.0e0) + zc + zl;

mag_i = 1.0e0/(abs(zttl));

// write |I| (ref and for i_part) vs f to output file:

outf << x_ref[col_freq][i] << " ";

outf << x_ref[col_mag ][i] << " ";

outf << mag_i << endl;

}

return;

}

// -----------------------------------------------------------------------------

void particle_class::user_init_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double *rparm_min,

double *rparm_max) {

// this routine is not used in this example

return;

}

// -----------------------------------------------------------------------------

void particle_class::user_limit_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double **p_vel,

double *rparm_min,

double *rparm_max) {

// this routine is not used in this example

return;

}
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3.3 CMOS buffer design

Driving a large capacitive load with a single CMOS inverter results in unacceptably large
delays [11]. To circumvent this problem, a cascade of inverters is employed in practice, with
the transistor sizes increasing progressively from the first stage to the last stage (see Fig. 3.1).
For a given number of stages N and a given value of the load capacitance CL, W/L ratios1

VDD

CL

Vout

Stage 1 Stage 2 Stage N

Vin

Mp
1

Mn
1

Mp
2

Mn
2

Mp
N

Mn
N

Figure 3.1: Cascade of inverters used in driving a large load capacitance [11].

of the transistors can be found analytically for minimum delay by making some simplifying
approximations [11]. This procedure gives a reasonable first-order design, but to get a more
accurate picture, circuit simulation must be used.

Our goal is to use PSO in designing the inverter cascade – using circuit simulation – for the
least possible delay between the input and the output voltages, with the following constraints:

(a) Since the n- and p-channel transistors have different transconductances, we will take the
width of the p-transistor to be twice that of the n-transistor (of the same stage). The
channel length is assumed to be 1 (i.e., the minimum feature size) for all transistors.

(b) W n
1 , the width of Mn

1 , is equal to 3 (i.e., three times the minimum feature size).

(c) The width for any transistor cannot exceed Wmax. Since we are assuming W p
k /W

n
k = 2, it

means that the upper limit for the n-channel transistor widths is Wmax/2.

We will consider an inverter cascade with N = 5 which can be simulated using the following
NGSPICE netlist:

mos buffer5x.cir

* Five-stage CMOS inverting buffer

* specifies the minimum feature size

.option scale=50n

* supply voltage

vdd vdd 0 DC 1

1Typically, W and L are expressed as multiples of the minimum feature size for the MOS technology being
used in implementing the circuit.
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* input voltage is a pulse going from 0 V to 1 V at

* 500 psec, and back to 0 V at 10 nsec

Vin in 0 DC 0 pulse 0 1 500p 10p 10p 10n 30n

* MOS transistor syntax: D G S B

* For the first stage, the widths are fixed. For the

* others, the widths will be supplied by the PSO program

* by substituting WN2,WP2,... with appropriate numbers.

MN1 out1 in 0 0 NMOS L=1 W=3

MP1 out1 in vdd vdd PMOS L=1 W=6

MN2 out2 out1 0 0 NMOS L=1 W=WN2

MP2 out2 out1 vdd vdd PMOS L=1 W=WP2

MN3 out3 out2 0 0 NMOS L=1 W=WN3

MP3 out3 out2 vdd vdd PMOS L=1 W=WP3

MN4 out4 out3 0 0 NMOS L=1 W=WN4

MP4 out4 out3 vdd vdd PMOS L=1 W=WP4

MN5 out5 out4 0 0 NMOS L=1 W=WN5

MP5 out5 out4 vdd vdd PMOS L=1 W=WP5

CL out5 0 20p

* 50nm BSIM4 models

....

....

* this part has not been listed; please see the

* file mos_buffer5x.cir in the PSOFT distribution

* for the transistor models.

* The following lines are required to call NGSPICE from the PSO

* program and create ASCII output files with input and output

* voltage at different time points.

.options noacct

.control

set filetype=ascii

run

write spice_buffer.txt v(in) v(out5)

.endc

.TRAN 10p 20n 0 10p

.end

The parameters we want to optimise are the widths of the transistors Mn
2 , Mn

3 , Mn
4 ,

Mn
5 in Fig. 3.1 which will be denoted by W n

2 , W n
3 , W n

4 , W n
5 , respectively. The widths of the

p-transistors are related to the widths of the n-transistors by W p
k /W

n
k = 2 and therefore not

treated as independent parameters. A particle in this case is an inverter cascade circuit with
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parameters W n
2 , W n

3 , W n
4 , W n

5 . To evaluate the particle fitness, we replace the strings WN2,
WP2, · · · , WP5 in the above netlist with the width values for the concerned particle, simulate
the circuit, find the rise and fall times (tr and tf , respectively) of the output voltage (Vout in
Fig. 3.1), and then compute the fitness as f = tr + tf , a smaller value of f implying a higher
fitness.

Figs. 3.2 (a) and 3.2 (b) show the results for Wmax = 400 and CL = 20 pF. For this case,
the minimum rise and fall times obtained by PSO were tr = 1.8 nsec and tf = 1.1 nsec.
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Figure 3.2: (a) Parameter values for the best particle versus PSO iteration number in the inverter
cascade example of Fig. 3.1 with Wn

max = 400 and CL = 20 pF. (b) Input and output voltage waveforms
for the best particle at the end of the PSO loop.

We can repeat this procedure for other values of W n
max and obtain tr and tf in each case.

Table 3.1 shows the parameter values for several values of W n
max, and Fig. 3.3 shows the variation

of tr and tf with respect to W n
max, as obtained by PSO. Let us now look at the implementation

W n
max W n

2 W n
3 W n

4 W n
5

150 11 28 66 150

200 12 31 79 200

250 12 33 89 250

300 12 34 97 300

350 13 37 108 350

400 13 38 115 400

Table 3.1: Widths of the n-transistors in the inverter cascade as obtained by PSO.

aspects.
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Figure 3.3: Rise and fall times versus Wn
max for the inverter cascade example of Fig. 3.1, as obtained

by PSO (CL = 20 pF).

3.3.1 pso control mos buffer.in

title: MOS buffer (inverter cascade)

# five-stage CMOS inverter cascade for driving a large

# capacitive load

# number of particles

n_particles = 50

# names of particle parameters

parameters: wn2 wn3 wn4 wn5

# integer parameters related to fitness evaluation

fitness_int_parameters:

# real parameters related to fitness evaluation

fitness_real_parameters:

# format specification for integers and real numbers

# (in output files)

output_format: int_width=5 double_precision=6 double_width=13

plotting_program: python3

begin_opt

begin_parms

wn2 type=free min=4 max=400 round_to_int=yes

wn3 type=free min=4 max=400 round_to_int=yes

wn4 type=free min=4 max=400 round_to_int=yes
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wn5 type=free min=4 max=400 round_to_int=yes

end_parms

begin_algo_parms

itmax_pso = 50

end_algo_parms

begin_output

begin_file

# write best particle parameters once in 10 iterations

type=best_particle

filename=best.dat file_format=cols

variables: ALL

control: interval=1

end_file

begin_file

# write average parameter values in each iteration

type=avg_value

filename=avg.dat file_format=rows

variables: ALL

control: interval=1

end_file

begin_file

# write fitness related values in each iteration

type=fitness_stats

filename=err.dat

control: interval=1

end_file

begin_file

# write rank of each particle and its parameter values

# at the end of the PSO loop

type=ranks

filename=rank.dat file_format=rows

variables: ALL

end_file

end_output

begin_plots

begin_plot

type=xy_plot

filename=avg.dat

variables: x=iter

+ y_1=wn2

+ y_2=wn3

+ y_3=wn4

+ y_4=wn5

plot_control: xlog=no ylog=yes wait=no

plot_control: title=avg

end_plot

begin_plot

type=xy_plot

filename=best.dat

variables: x=iter

+ y_1=wn2

+ y_2=wn3

+ y_3=wn4

+ y_4=wn5
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plot_control: xlog=no ylog=yes wait=no

plot_control: title=best

end_plot

begin_plot

type=fitness_stats

filename=err.dat

variables: x=iter y_1=fitness_1

plot_control: xlog=no ylog=no wait=no

plot_control: title=error

end_plot

end_plots

end_opt

3.3.2 particle class mos buffer.h

#ifndef PARTICLE_CLASS_H

#define PARTICLE_CLASS_H

// File pso1.h gets created by the preprocessor (psoprep), using

// the information from pso_control.in.

// It has definitions of nr_wn2, nr_wn3, nr_wn4,nr_wn5

#include <iostream>

#include <cstring>

#include <cstdlib>

#include <fstream>

#include <sstream>

#include <complex>

#include <iomanip>

#include <math.h>

#include "pso1.h"

// util1.h is required since we will use some "utility" routines

// included there.

#include "util1.h"

using namespace std;

class particle_class {

public:

// class variables:

int M_DATA;

double wn2,wn3,wn4,wn5;

char **string_old;

int *a;

int n_cols;

int *col;
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double **x;

int col_t,col_vin,col_vout;

int col_wn2,col_wp2,col_wn3,col_wp3,col_wn4,col_wp4,col_wn5,col_wp5;

double t_cross_rise,t_cross_fall;

double k_rise,t_start_rise,t_end_rise,x_initial_rise,x_final_rise;

double k_fall,t_start_fall,t_end_fall,x_initial_fall,x_final_fall;

public:

// function prototypes:

particle_class(

const int n_particles,

double **p_rparm,

int *f_iparm,

double *f_rparm,

int& n_gvalue,

int& n_fitness_print,

int& flag_fitness);

void get_fitness(

const int iter_pso,

const int flag_fitness_computation,

const int n_particles,

bool *flag_fit,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double *fitness_print,

int& flag_fitness,

int& flag_converged);

void write_user_file(

const int n_particles,

bool *flag_fit,

const int flag_fitness_computation,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double *fitness_print,

int& flag_fitness,

const int index_user_file,

std::ofstream& outf,

const int n_ranks,

int *n_rank_particles,

int **rank_index);

void user_init_parms(
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const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double *rparm_min,

double *rparm_max);

void user_limit_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_limit,

double **p_rparm,

double **p_vel,

double *rparm_min,

double *rparm_max);

};

#endif

3.3.3 particle class mos buffer.cpp

#include "particle_class.h"

particle_class::particle_class(

const int n_particles,

double **p_rparm,

int *f_iparm,

double *f_rparm,

int& n_gvalue,

int& n_fitness_print,

int& flag_fitness) {

// Use this part for "one-time" allocations, assignments, and computations.

const int M=8;

const int M1=3;

const int MCHR=20;

M_DATA=10000;

// flag_fitness should be set to 0 if high fvalue implies high fitness;

// else to 1.

flag_fitness = flag_minimise;

// number of user-defined "special" variables to be written to output file(s)

n_gvalue = 2;

// n_fitness_print is the number of fitness measures we are interested in.

n_fitness_print = 1;
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string_old = new char*[M];

a = new int[M];

for (int i=0; i < M; i++) {

string_old[i] = new char[MCHR];

}

strcpy(string_old[0],"WN2");

strcpy(string_old[1],"WP2");

strcpy(string_old[2],"WN3");

strcpy(string_old[3],"WP3");

strcpy(string_old[4],"WN4");

strcpy(string_old[5],"WP4");

strcpy(string_old[6],"WN5");

strcpy(string_old[7],"WP5");

// this order is the same as the strings above.

col_wn2 = 0;

col_wp2 = 1;

col_wn3 = 2;

col_wp3 = 3;

col_wn4 = 4;

col_wp4 = 5;

col_wn5 = 6;

col_wp5 = 7;

// we will save t, vin, vout in x (although vin is not

// really required)

x = new double*[M1];

for (int i=0; i < M1; i++) {

x[i] = new double[M_DATA];

}

n_cols = 3;

col = new int[n_cols];

col_t = 0;

col_vin = 1;

col_vout = 2;

// this assignment depends on the order of the variables

// in the spice output file.

col[col_t ] = 1;

col[col_vin ] = 2;

col[col_vout] = 3;

// k_fall = 0.5 -> 50 % point is used to find the fall time

// t_start_fall: starting point of the output voltage fall transient

// t_end_fall: ending point of the output voltage fall transient

// x_initial_fall: value of output voltage at the beginning of the fall transient

// x_final_fall: value of output voltage at the end of the fall transient
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k_fall = 0.5;

t_start_fall = 0.5e-9;

t_end_fall = 10.0e-9;

x_initial_fall = 1.0;

x_final_fall = 0.0;

// (see comments for the fall transient)

k_rise = 0.5;

t_start_rise = 10.0e-9;

t_end_rise = 20.0e-9;

x_initial_rise = 0.0;

x_final_rise = 1.0;

return;

}

// -----------------------------------------------------------------------------

void particle_class::get_fitness(

const int iter_pso,

const int flag_fitness_computation,

const int n_particles,

bool *flag_fit,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double *fitness_print,

int& flag_fitness,

int& flag_converged) {

int i_sys;

int n_ttl;

int flag_rise,flag_fall;

int n1;

double delt_rise,delt_fall;

double delta1;

// initialise fitness_print[0] and n1. We will use n1 to count the number

// of particles for which a rise and fall time could be found.

fitness_print[0] = 0.0;

n1 = 0;

// find fitness value (fvalue) for each particle:

for (int i_part = 0; i_part < n_particles; i_part++) {

// round to integer the parameter values (wn2,wn3,...) as required

// by the NGSPICE netlist

a[col_wn2] = round_1(p_rparm[i_part][nr_wn2]);

a[col_wn3] = round_1(p_rparm[i_part][nr_wn3]);

a[col_wn4] = round_1(p_rparm[i_part][nr_wn4]);
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a[col_wn5] = round_1(p_rparm[i_part][nr_wn5]);

// compute the p-transistor widths as twice the width of the

// n-transistor of the same stage:

a[col_wp2] = 2*a[col_wn2];

a[col_wp3] = 2*a[col_wn3];

a[col_wp4] = 2*a[col_wn4];

a[col_wp5] = 2*a[col_wn5];

// replace strings WN2,WP2,WN3,WP3,.. in the circuit file mos_buffer5x.cir

// with the above integers and write to a new circuit file,

// mos_buffer5y.cir.

file_replace_strings_with_ints(

(char*)"mos_buffer5x.cir",(char*)"mos_buffer5y.cir",8,string_old,a);

// Run NGSPICE on the new circuit file mos_buffer5y.cir:

i_sys = system("ngspice -b -o dum.txt mos_buffer5y.cir");

// get the time, input voltage, and output voltage data from

// the output file (spice_buffer.txt) created by NGSPICE:

file_spice_get_trns_1(

(char*)"spice_buffer.txt",n_cols,M_DATA,3,col,x,n_ttl);

// get fall time from the above data stored in array x[i][j]:

get_transition_time_1(

t_start_fall,t_end_fall,x_initial_fall,x_final_fall,k_fall,n_ttl,

&(x[0][0]),&(x[2][0]),flag_fall,t_cross_fall);

if (flag_fall == 1) {

// if fall time was successfully found, obtain the rise time:

delt_fall = t_cross_fall-t_start_fall;

get_transition_time_1(

t_start_rise,t_end_rise,x_initial_rise,x_final_rise,k_rise,n_ttl,

&(x[0][0]),&(x[2][0]),flag_rise,t_cross_rise);

if (flag_rise == 1) {

delt_rise = t_cross_rise-t_start_rise;

// define particle fitness value:

fvalue[i_part] = delt_rise + delt_fall;

// assign variables related to fitness stats:

n1++;

fitness_print[0] = fitness_print[0] + fvalue[i_part];

} else {

// set a large fitness value

delt_rise = 1.0;

fvalue[i_part] = 1.0;

}
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} else {

// set a large fitness value

delt_fall = 1.0;

fvalue[i_part] = 1.0;

}

// use gvalue to store the fall and rise times.

gvalue[i_part][0] = delt_fall;

gvalue[i_part][1] = delt_rise;

// write fall/rise time to console (helps in monitoring the progress

// of the PSO program)

if (flag_fall == 1) cout << "delt_fall = " << delt_fall << endl;

if (flag_rise == 1) cout << "delt_rise = " << delt_rise << endl;

cout << "i_part=" << i_part << ", fvalue = " << fvalue[i_part] << endl;

}

if (n1 == 0) {

// assign a large number; this is not likley to happen.

fitness_print[0] = 1.0;

} else {

// this would be the average value of (tr+tf)

fitness_print[0] = fitness_print[0]/((double)n1);

}

// convergence: make flag_converged = 0 -> no convergence criterion to be used

flag_converged = 0;

return;

}

// -----------------------------------------------------------------------------

void particle_class::write_user_file(

const int n_particles,

bool *flag_fit,

const int flag_fitness_computation,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

const int index_user_file,

std::ofstream& outf,

const int n_ranks,

int *n_rank_particles,

int **rank_index) {

// not used in this example

return;

}

// -----------------------------------------------------------------------------

void particle_class::user_init_parms(
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const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double *rparm_min,

double *rparm_max) {

// not used in this example

return;

}

// -----------------------------------------------------------------------------

void particle_class::user_limit_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double **p_vel,

double *rparm_min,

double *rparm_max) {

// not used in this example

return;

}

3.4 CMOS ring oscillator design

Stage 1

VDD

Stage NStage 2

M1

M2

Figure 3.4: An N -stage CMOS ring oscillator [11].

A CMOS ring oscillator consists of N identical inverters connected in a ring, as shown
in Fig. 3.4. Each inverter drives a rather complex load due to the gate capacitance – which
varies with time – of the next stage. Design of a ring oscillator involves a choice of N and the
widths W1 and W2 of transistors M1 and M2, respectively, for a specified oscillation frequency.
The device widths affect both the current carrying capability and the device capacitances and
thereby the oscillation frequency. An approximate analysis with some simplifying assumptions
is given in [11]. However, as in the case of the inverter cascade example of Sec. 3.3, circuit
simulation is required for higher accuracy.

Our goal is to obtain W1 and W2 for a given number of stages (N) and a given oscillation
frequency (f0), using circuit simulation. Each particle in this case is a ring oscillator with N
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stages, and the particle parameters are W1 and W2. In addition, we look for the lowest power
dissipation, i.e., the smallest value of the average current supplied by the power supply (VDD

in Fig. 3.4).
The following NGSPICE netlist is used to simulate a ring oscillator with N = 21 stages.

cmos ring osc1a.cir

* 21-stage CMOS ring oscillator

* specifies the minimum feature size

.option scale=50n

.ic v(out21)=0

* The following lines are required to call NGSPICE from the PSO

* program and create ASCII output files with input and output

* voltage at different time points.

.options noacct

.control

set filetype=ascii

run

write inv_out.txt v(out21) i(VDD)

.endc

.tran .005n 10n UIC

* supply voltage:

VDD VDD 0 DC 1

* individual inverters, each being called as a sub-circuit

X1 VDD out21 out1 INV

X2 VDD out1 out2 INV

X3 VDD out2 out3 INV

X4 VDD out3 out4 INV

X5 VDD out4 out5 INV

X6 VDD out5 out6 INV

X7 VDD out6 out7 INV

X8 VDD out7 out8 INV

X9 VDD out8 out9 INV

X10 VDD out9 out10 INV

X11 VDD out10 out11 INV

X12 VDD out11 out12 INV

X13 VDD out12 out13 INV

X14 VDD out13 out14 INV

X15 VDD out14 out15 INV

X16 VDD out15 out16 INV

X17 VDD out16 out17 INV

X18 VDD out17 out18 INV

X19 VDD out18 out19 INV

X20 VDD out19 out20 INV

X21 VDD out20 out21 INV

.subckt INV VDD in out
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M2 out in 0 0 NMOS L=1 W=W1

M3 out in VDD VDD PMOS L=1 W=W2

.ends

* 50nm BSIM4 models

....

....

* this part has not been listed; please see the

* file cmos_ring_osc1a.cir in the PSOFT distribution

* for the transistor models.

.end

To evaluate the particle fitness, we replace the strings W1, W2 in the above netlist with
the corresponding particle parameter values, simulate the circuit for a fixed time interval, and
obtain the oscillation frequency f0 from the output waveform of one of the inverters2. In
addition, we compute the average current supplied by the power supply (denoted by IDD) over
one cycle. Using f0 and IDD, we compute the particle fitness as

f = k1

∣∣f0 − f ref
0

∣∣+ k2 IDD, (3.1)

where k1 and k2 are constants (selected such that the two terms are comparable in magnitude),
and f ref

0 is the specified oscillation frequency. A smaller value of f indicates a higher fitness.
For each specified f ref

0 , both W1 and W2 were allowed to vary from 1 to 20. Fig. 3.5 shows
how W1 and W2 for the best particle vary with the PSO iteration number when f ref

0 = 500 MHz
was specified. The oscillation frequency for the best particle was f0 = 493 MHz in this case.
The output voltage waveform for the best particle is shown in Fig. 3.6.
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Figure 3.5: (a) Parameter values for the best particle versus PSO iteration number in the ring oscillator
example of Fig. 3.4 with f ref

0 = 500 MHz.

Table 3.2 shows the parameters and performance of the first few ranks for three values
of f ref

0 . This information could be of interest to the user for making a suitable choice among

2In a ring oscillator, all inverter output waveforms are identical except for a shift in time; therefore, we can
look at any one of them to obtain the oscillation frequency.
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Figure 3.6: Output voltage waveform obtained for the best particle at the end of the PSO loop (50
iterations) with f ref

0 = 500 MHz.

solutions which are close to each other, based on criteria other than those used in the fitness
computation.

The implementation details for the ring oscillator example are given next.

f ref
0 (MHz) Rank W1 W2 f0 (MHz) IDD (µA)

400
1 4 5 396.5 54.4
2 3 6 378.0 52.6

500

1 6 7 493.1 80.6
2 5 9 494.8 85.4
3 5 8 484.5 80.0
4 7 7 509.7 86.2

600

1 10 10 601.3 125.2
2 9 10 590.6 119.6
3 12 9 594.6 126.1
4 13 9 597.3 130.0

Table 3.2: Tansistor widths W1 and W2, oscillation frequency f0, and average supply current IDD for
different values of f ref

0 for the ring oscillator example, as obtained by PSO.
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3.4.1 pso control ring1.in

title: MOS ring oscillator

# The circuit consists of 21 identical CMOS inverters connected

# in a ring oscillator configuration. w1 and w2 are the normailised

# transistor widths for the n and p MOS transistors, respectively,

# in each inverter. Our goal is to obtain w1 and w2 using PSO for

# a specified frequency of oscillation, f_osc_ref.

# number of particles

n_particles = 20

# names of particle parameters

parameters: w1 w2

# integer parameters related to fitness evaluation

fitness_int_parameters:

# real parameters related to fitness evaluation

fitness_real_parameters:

+ f_osc_ref = 600.0e6

# format specification for integers and real numbers

# (in output files)

output_format: int_width=5 double_precision=6 double_width=13

plotting_program: python3

begin_opt

begin_parms

w1 type=free log=no min=1 max=20 round_to_int=yes

w2 type=free log=no min=1 max=20 round_to_int=yes

end_parms

begin_algo_parms

itmax_pso = 50

end_algo_parms

begin_output

begin_file

# write best particle parameters in each PSO iteration

type=best_particle

filename=best.dat file_format=cols

variables: ALL

control: interval=1

end_file

begin_file

# write additional (user-defined) values for the best particle

# in each PSO iteration

type=gvalues

filename=gval.dat file_format=cols

control: interval=1
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end_file

begin_file

# write average parameter values in each iteration

type=avg_value

filename=avg.dat file_format=cols

variables: ALL

control: interval=1

end_file

begin_file

# write fitness values in each iteration

type=fitness_stats

filename=err.dat

control: interval=1

end_file

begin_file

# write rank of each particle and its parameter values

# at the end of the PSO loop

type=ranks

filename=rank.dat

variables: ALL

end_file

end_output

begin_plots

begin_plot

type=xy_plot

filename=avg.dat

variables: x=iter

+ y_1=w1

+ y_2=w2

plot_control: xlog=no ylog=no wait=no

plot_control: title=avg

end_plot

begin_plot

type=xy_plot

filename=best.dat

variables: x=iter

+ y_1=w1

+ y_2=w2

plot_control: xlog=no ylog=no wait=no

plot_control: title=best

end_plot

begin_plot

type=fitness_stats

filename=err.dat

variables: x=iter y_1=fitness_1

plot_control: xlog=no ylog=no wait=no

plot_control: title=error

end_plot

end_plots

end_opt

3.4.2 particle class ring1.h

#ifndef PARTICLE_CLASS_H
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#define PARTICLE_CLASS_H

#include <iostream>

#include <cstring>

#include <cstdlib>

#include <fstream>

#include <sstream>

#include <complex>

#include <iomanip>

#include <math.h>

// File pso1.h gets created by the preprocessor (psoprep), using

// the information from pso_control.in.

// It has definitions of nr_w1, nr_w2.

#include "pso1.h"

// util1.h is required since we will use some "utility" routines

// included there.

#include "util1.h"

using namespace std;

class particle_class {

public:

// class variables:

int M_DATA,M_VCOIN;

double w1,w2;

char **string_old;

char **string_new;

int n_cols;

int *col;

double **x;

int col_t,col_vout,col_ivdd;

int index_W1,index_W2;

double f_osc_ref;

double f_large;

public:

// function prototypes:

particle_class(

const int n_particles,

double **p_rparm,

int *f_iparm,
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double *f_rparm,

int& n_gvalue,

int& n_fitness_print,

int& flag_fitness);

void get_fitness(

const int iter_pso,

const int flag_fitness_computation,

const int n_particles,

bool *flag_fit,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double *fitness_print,

int& flag_fitness,

int& flag_converged);

void write_user_file(

const int n_particles,

bool *flag_fit,

const int flag_fitness_computation,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double *fitness_print,

int& flag_fitness,

const int index_user_file,

std::ofstream& outf,

const int n_ranks,

int *n_rank_particles,

int **rank_index);

void user_init_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double *rparm_min,

double *rparm_max);

void user_limit_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_limit,

double **p_rparm,

double **p_vel,

double *rparm_min,
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double *rparm_max);

};

#endif

3.4.3 particle class ring1.cpp

#include "particle_class.h"

particle_class::particle_class(

const int n_particles,

double **p_rparm,

int *f_iparm,

double *f_rparm,

int& n_gvalue,

int& n_fitness_print,

int& flag_fitness) {

// Use this part for "one-time" allocations, assignments, and computations.

const int M=2;

const int M1=3;

const int MCHR=20;

// maximum no. of time points we expect in the NGSPICE output file:

M_DATA = 20000;

flag_fitness = flag_minimise;

// number of user-defined "special" variables to be written to output file(s).

// We will store the oscillation frequency and i(VDD) as gvalues.

n_gvalue = 2;

// n_fitness_print is the number of fitness measures we are interested in.

n_fitness_print = 1;

// string_old and string_new will be used in passing the particle

// parameter values w1 and w2 to NGSPICE.

string_old = new char*[M];

string_new = new char*[M];

for (int i=0; i < M; i++) {

string_old[i] = new char[MCHR];

string_new[i] = new char[MCHR];

}

strcpy(string_old[0],"W1");

strcpy(string_old[1],"W2");

// this order is the same as the strings above.

index_W1 = 0;
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index_W2 = 1;

// f_osc_ref is the reference oscillation frequency which we want

// to achieve.

// f_rparm: parameters used in fitness evaluation. These are NOT

// particle parameters. The index nfr_f_osc_ref is supplied by

// pso1.h.

f_osc_ref = f_rparm[nfr_f_osc_ref];

// We will use x[i][j] to store output data created by NGSPICE

// (time, output voltage, supply current)

x = new double*[M1];

for (int i=0; i < M1; i++) {

x[i] = new double[M_DATA];

}

n_cols = 3;

col = new int[n_cols];

// We will use x[i][0], x[i][1], x[i][2] to store the time value,

// output voltage, and supply current, respectively, for the ith

// data point in the NGSPICE output file.

col_t = 0;

col_vout = 1;

col_ivdd = 2;

// this assignment depends on the order of the variables

// in the spice output file.

col[col_t ] = 1;

col[col_vout] = 2;

col[col_ivdd] = 3;

f_large = 1000.0;

return;

}

// -----------------------------------------------------------------------------

void particle_class::get_fitness(

const int iter_pso,

const int flag_fitness_computation,

const int n_particles,

bool *flag_fit,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double *fitness_print,

int& flag_fitness,
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int& flag_converged) {

int i_sys;

int n_ttl;

int flag_osc;

double t_period,f_osc,sum,ivdd_avg,ivdd_avg_1;

int n_osc;

double k1,k2,k1a,k2a;

int i_dummy;

// n_osc is the number of particles (circuits) which show oscillations

// in the given simulation time interval and is used in computing the

// overall fitness of the group of particles (see later).

n_osc = 0;

fitness_print[0] = 0.0;

// k1a will multiply the error in frequency (of order 1e6),

// k2a will multiply the error in supply current (of order 1e-6).

// These scaling factors are chosen such that the oscillation

// frequency and supply current will get comparable weights in

// fitness evaluation.

k1a = 1.0e-6;

k2a = 1.0e6;

for (int i_part = 0; i_part < n_particles; i_part++) {

// convert the particle parameters w1 and w2 to strings:

int_to_char(round_1(p_rparm[i_part][nr_w1]),string_new[index_W1]);

int_to_char(round_1(p_rparm[i_part][nr_w2]),string_new[index_W2]);

// replace strings W1 and W2 in the circuit file cmos_ring_osc1a.cir

// with the above strings and write to a new circuit file,

// cmos_ring_osc1b.cir.

file_replace_strings(

(char*)"cmos_ring_osc1a.cir",(char*)"cmos_ring_osc1b.cir",2,

string_old,string_new);

// Run NGSPICE on the new circuit file cmos_inv_1b.cir:

i_sys = system("ngspice -b -o dum.txt cmos_ring_osc1b.cir");

// get the time, output voltage, and supply current data from

// the output file (inv_out.txt) created by NGSPICE:

file_spice_get_trns_1(

(char*)"inv_out.txt",n_cols,M_DATA,3,col,x,n_ttl);

// Get the oscillation period (if no oscillations are found

// in the simulated time interval, flag_osc will be set to 0).

get_osc_period_1(

x[0][1],
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x[0][n_ttl-2],

0.5,

n_ttl,

&(x[0][0]),

&(x[1][0]),

flag_osc,

t_period);

if (flag_osc == 1) {

// compute the frequency of oscillation from the period:

f_osc = 1.0/t_period;

// write to console; it helps to see the progress of the program.

cout << "i_part=" << i_part

<< ", frequency = " << f_osc << endl;

cout

<< "w1=" << round_1(p_rparm[i_part][nr_w1]) << ", "

<< "w2=" << round_1(p_rparm[i_part][nr_w2]) << endl;

// compute the average supply current (for the last one period):

get_average_1(

&(x[0][0]),

&(x[2][0]),

(x[0][n_ttl-2]-t_period),

x[0][n_ttl-2],

n_ttl,

ivdd_avg);

// NGSPICE convention gives a negative supply current; take

// magnitude:

ivdd_avg_1 = fabs(ivdd_avg);

n_osc++;

k1 = fabs(f_osc-f_osc_ref);

k2 = ivdd_avg_1;

// compute particle fitness value as a weighted average of

// the fabs(f_osc-f_osc_ref) and ivdd_avg_1.

fvalue[i_part] = k1a*k1 + k2a*k2;

cout << "k1=" << k1

<< ", k2=" << k2

<< ", k1a=" << k1a

<< ", k2a=" << k2a

<< ", k1*k1a=" << k1*k1a

<< ", k2*k2a=" << k2*k2a << endl;

// define special variables (to be used in writing to output

// files):

gvalue[i_part][0] = f_osc;

gvalue[i_part][1] = ivdd_avg_1;
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fitness_print[0] = fitness_print[0] + k1;

} else {

flag_fit[i_part] = false;

fvalue[i_part] = f_large;

gvalue[i_part][0] = 1.0;

gvalue[i_part][1] = 1.0;

}

}

if (n_osc == 0) {

fitness_print[0] = 10.0;

} else {

fitness_print[0] = fitness_print[0]/((double)n_osc);

}

// We will not check for convergence; that means the program will continue

// to execute until the last PSO iteration.

flag_converged = 0;

return;

}

// -----------------------------------------------------------------------------

void particle_class::write_user_file(

const int n_particles,

bool *flag_fit,

const int flag_fitness_computation,

double **p_rparm,

int *f_iparm,

double *f_rparm,

double *fvalue,

const int n_gvalue,

double **gvalue,

double* fitness_print,

int& flag_fitness,

const int index_user_file,

std::ofstream& outf,

const int n_ranks,

int *n_rank_particles,

int **rank_index) {

// not used in this example.

return;

}

// -----------------------------------------------------------------------------

void particle_class::user_init_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double *rparm_min,

double *rparm_max) {

// not used in this example.
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return;

}

// -----------------------------------------------------------------------------

void particle_class::user_limit_parms(

const int n_particles,

bool *flag_fit,

const int n_rparms,

int *flag_user_init,

double **p_rparm,

double **p_vel,

double *rparm_min,

double *rparm_max) {

// not used in this example.

return;

}
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