
SEQUEL Users’ Manual: Part 1

Mahesh B. Patil

Department of Electrical Engineering
Indian Institute of Technology Bombay

Mumbai-400076
e-mail: mbpatil@ee.iitb.ac.in

i

To the child
who brought the King

back to his senses

ii

Contents

1 Introduction 1
1.1 The Emperor’s New Clothes . 1
1.2 Weavers and their tricks . 3

2 Modified Nodal Analysis 7
2.1 Nodal Analysis . 7
2.2 Modified Nodal Analysis . 8

3 Newton-Raphson Method 11
3.1 Single equation . 11
3.2 Extension to set of equations . 13
3.3 Convergence criteria . 14
3.4 Graphical interpretation of the NR process . 18
3.5 Convergence issues . 18

3.5.1 Damping of the NR iterations . 23
3.5.2 Parameter stepping . 26
3.5.3 Limiting junction voltages . 28
3.5.4 Changing time step . 28

3.6 Nonlinear circuits . 29

4 Numerical Solution of ODEs: Explicit Methods 30
4.1 Forward Euler method . 30
4.2 Runge-Kutta method of order 4 . 33
4.3 System of ODEs . 35
4.4 Adaptive time step . 37
4.5 Stability . 45
4.6 What are those arrows in Simulink? . 53

5 Is y=
dx
dt

same as x=
∫

y dt ? 58

6 Numerical Solution of ODEs: Implicit Methods 75
6.1 Backward Euler, trapezoidal, and BDF2 methods 76
6.2 Stability . 79
6.3 Some practical issues . 83

6.3.1 Oscillatory circuits . 83
6.3.2 Ringing . 84

iii

6.4 TR-BDF2 method . 85
6.5 Systematic assembly of circuit equations . 85
6.6 Adaptive time steps using NR convergence . 88

7 Steady-State Waveform (SSW) Computation 91

8 Start-up Simulation 95

9 AC Simulation 97

10 Digital Circuits 102

11 SEQUEL library 106

iv

Chapter 1

Introduction

SEQUEL is a general-purpose circuit simulation package developed at IIT Bombay [1]. It can be
used for simulation of analog circuits, digital circuits, mixed-signal circuits, and power electronic
circuits. In this first part of the SEQUEL manual, we will look at numerical techniques which are
commonly used in circuit simulation: how the circuit equations are assembled, how nonlinear
equations are solved, how ODEs are solved, etc. This background will help in understanding what a
circuit simulator does “behind the scenes”, why it fails when it does, what is the remedy in that case,
etc. In short, it is intended to make the readers more aware about the technical aspects of circuit
simulation so that they can use it more effectively. In that sense, it is different than manuals of
commercial simulation programs which tell the user how to connect wires, how to set component
values, how to view graphs, but disclose only the minimum possible details, if any, about how things
are implemented. That is because the vendors need to guard all their secrets – however insignificant
they may be – to make sure that no other vendor benefits from their disclosure. One of the famous
fairy tales [2] by Hans Christian Andersen is relevant in this context. And what a lovely story.

1.1 The Emperor’s New Clothes

Many years ago there lived an emperor who loved beautiful new clothes so much that he spent all his
money on being finely dressed. His only interest was in going to the theater or in riding about in his
carriage where he could show off his new clothes. He had a different costume for every hour of the
day. Indeed, where it was said of other kings that they were at court, it could only be said of him that
he was in his dressing room!

One day two swindlers came to the emperor’s city. They said that they were weavers, claiming
that they knew how to make the finest cloth imaginable. Not only were the colors and the patterns
extraordinarily beautiful, but in addition, this material had the amazing property that it was to be
invisible to anyone who was incompetent or stupid.

“It would be wonderful to have clothes made from that cloth,” thought the emperor. “Then I
would know which of my men are unfit for their positions, and I’d also be able to tell clever people
from stupid ones.” So he immediately gave the two swindlers a great sum of money to weave their
cloth for him.

They set up their looms and pretended to go to work, although there was nothing at all on the
looms. They asked for the finest silk and the purest gold, all of which they hid away, continuing to
work on the empty looms, often late into the night.

1

2 SEQUEL Users’ Manual: Part 1

“I would really like to know how they are coming with the cloth!” thought the emperor, but he
was a bit uneasy when he recalled that anyone who was unfit for his position or stupid would not be
able to see the material. Of course, he himself had nothing to fear, but still he decided to send
someone else to see how the work was progressing.

“I’ll send my honest old minister to the weavers,” thought the emperor. He’s the best one to see
how the material is coming. He is very sensible, and no one is more worthy of his position than he.

So the good old minister went into the hall where the two swindlers sat working at their empty
looms. “Goodness!” thought the old minister, opening his eyes wide. “I cannot see a thing!” But he
did not say so.

The two swindlers invited him to step closer, asking him if it wasn’t a beautiful design and if
the colors weren’t magnificent. They pointed to the empty loom, and the poor old minister opened
his eyes wider and wider. He still could see nothing, for nothing was there. “Gracious” he thought.
“Is it possible that I am stupid? I have never thought so. Am I unfit for my position? No one must
know this. No, it will never do for me to say that I was unable to see the material.”

“You aren’t saying anything!” said one of the weavers.
“Oh, it is magnificent! The very best!” said the old minister, peering through his glasses. “This

pattern and these colors! Yes, I’ll tell the emperor that I am very satisfied with it!” (see Fig. 1.1)
“That makes us happy!” said the two weavers, and they called the colors and the unusual

pattern by name. The old minister listened closely so that he would be able say the same things when
he reported back to the emperor, and that is exactly what he did.

Figure 1.1: The weaver and the minister, the weaver displaying his fabric which the minister is trying hard to
appreciate [3].

The swindlers now asked for more money, more silk, and more gold, all of which they hid
away. Then they continued to weave away as before on the empty looms.

The emperor sent other officials as well to observe the weavers’ progress. They too were
startled when they saw nothing, and they too reported back to him how wonderful the material was,
advising him to have it made into clothes that he could wear in a grand procession. The entire city
was alive in praise of the cloth. “Magnifique! Nysseligt! Excellent!” they said, in all languages. The
emperor awarded the swindlers with medals of honor, bestowing on each of them the title Lord
Weaver.

Introduction 3

The swindlers stayed up the entire night before the procession was to take place, burning more
than sixteen candles. Everyone could see that they were in a great rush to finish the emperor’s new
clothes. They pretended to take the material from the looms. They cut in the air with large scissors.
They sewed with needles but without any thread. Finally they announced, “Behold! The clothes are
finished!”

The emperor came to them with his most distinguished cavaliers. The two swindlers raised
their arms as though they were holding something and said, “Just look at these trousers! Here is the
jacket! This is the cloak!” and so forth. “They are as light as spider webs! You might think that you
didn’t have a thing on, but that is the good thing about them.”

“Yes,” said the cavaliers, but they couldn’t see a thing, for nothing was there.
“Would his imperial majesty, if it please his grace, kindly remove his clothes.” said the

swindlers. “Then we will fit you with the new ones, here in front of the large mirror.”
The emperor took off all his clothes, and the swindlers pretended to dress him, piece by piece,

with the new ones that were to be fitted. They took hold of his waist and pretended to tie something
about him. It was the train. Then the emperor turned and looked into the mirror.

“Goodness, they suit you well! What a wonderful fit!” they all said. “What a pattern! What
colors! Such luxurious clothes!”

“The canopy to be carried above your majesty awaits outside,” said the grandmaster of
ceremonies.

“Yes, I am ready!” said the emperor. “Don’t they fit well?” He turned once again toward the
mirror, because it had to appear as though he were admiring himself in all his glory.

The chamberlains who were to carry the train held their hands just above the floor as if they
were picking up the train. As they walked they pretended to hold the train high, for they could not let
anyone notice that they could see nothing.

The emperor walked beneath the beautiful canopy in the procession, and all the people in the
street and in their windows said, “Goodness, the emperor’s new clothes are incomparable! What a
beautiful train on his jacket. What a perfect fit!” No one wanted it to be noticed that he could see
nothing, for then it would be said that he was unfit for his position or that he was stupid. None of the
emperor’s clothes had ever before received such praise.

“But he doesn’t have anything on!” said a small child.
“Good Lord, let us hear the voice of an innocent child!” said the father, and whispered to

another what the child had said.
“A small child said that he doesn’t have anything on!”
Finally everyone was saying, “He doesn’t have anything on!”
The emperor shuddered, for he knew that they were right, but he thought, “The procession

must go on!” He carried himself even more proudly, and the chamberlains walked along behind
carrying the train that wasn’t there.

1.2 Weavers and their tricks

Vendors of commercial simulators are somewhat like the weavers in our story. They need to glorify
their product so that the user remains interested (to the extent that he or she will pay for it). This
exercise leads to interesting consequences – mundane stuff appears exotic, limitations sound like
features, common sense gets packaged as patents, bug fixes get sold as updates, benchmarking

4 SEQUEL Users’ Manual: Part 1

becomes benchmarketing, people with PhDs start talking like salespersons, and so on. The weavers1

would want us to believe that there are layers and layers of secrets in their product while in reality
there are none.

The fact of the matter is that the science behind circuit simulation has not really changed all
that much after the SPICE program was written and made available in the public domain in 1973
(see [4]). The “machinery” for assembling and solving circuit equations has been around for
decades, and the Newton-Raphson method for handling nonlinear equations dates back to the 17th

century! This means that the core of all circuit simulation packages must be necessarily the same.
The difference may be in the bells and whistles, e.g., in the way a circuit schematic is entered or how
the output plots are shown to the user or which components are made available to the user. The
weavers may tell us anything, but there isn’t any new fabric in this business; what may be new is the
dress you can make with the same old fabric. That is what eventually matters to the user of course,
but we should not confuse a new dress with a new fabric. If we had enough time (and a bit of
programming skill), we could make the dress ourselves!

In the following, we list some of the most interesting – and sometimes entertaining –
statements made by weavers in the area of circuit simulation. We will also present alternative
interpretations of each statement. There are three players in the game.

(a) cleverVendor: the equivalent of the weaver in our story. He has certain goods, and his primary
goal is to sell them at as high a price as the market allows. If he has a grey item to sell, he may
describe it as grey or black or white, whichever is more convenient.

(b) averageUser: the equivalent of the average spectator watching the King’s procession. He has
too many day-to-day worries, and no time to question the weavers. He wants to get a simulator
which will do his job at a price he can afford, and get on with life.

(c) whistleBlower: the equivalent of the child who finally called a spade a spade. He is relatively
free and can afford to look at things critically. If he finds something interesting or odd, he feels
obliged to share it with everyone around.

Vendor statements/claims

* cleverVendor: Xxxxx accepts alphanumeric names as well as numbers to represent nodes.
There is no limit to the number of characters allowed in a node name.

averageUser: Wow! That means I can have a variable with a hundred characters now.

(Pauses, thinks for ten minutes). Ah, here is an example:

this variable represents the collector current of transistor Q1

Perhaps, I could have used Ic Q1 instead, but if I pay for a feature, I must use it.

whistleBlower: Hmm, the vendor has probably run out of ideas for improving his sales
performance.

* cleverVendor: In Xxxxxxx models, algebraic loops are algebraic constraints. Models with
algebraic loops define a system of differential algebraic equations. Xxxxxxx does not solve
DAEs directly. Xxxxxxxx solves the algebraic equations (the algebraic loop) numerically for
xa at each step of the ODE solver.

1We will use the terms “weavers” and “vendors of circuit simulation packages” interchangeably.

Introduction 5

· · ·
Use YyyyyyyyTM to model systems that span mechanical, electrical, hydraulic, and other
physical domains as physical networks.

averageUser: How considerate! If there is a problem with one of his products, the vendor
offers another.

whistleBlower: Are there better options? Maybe cheaper as well?

* cleverVendor: XXX is an analog electronic circuit simulator working with ideal and
piecewise-linear components. · · · · · · XXX perfectly fits the needs of all users, regardless of
their experience, interests, and expectations.

averageUser: Great! I must check this out.

whistleBlower: Piecewise-linear analog circuit simulator good enough for everyone? Really?
Can you simulate a common-emitter amplifier and give us the base-emitter voltage accurate up
to three decimal places? How about a Wilson current mirror or a CMOS amplifier or a
sample-and-hold circuit?

* cleverVendor: Computing a discrete state requires knowing the relationship between its value
at the current time step and its value at the previous time step. This is referred to this
relationship2 as the state’s update function. A discrete state depends not only on its value at the
previous time step but also on the values of a model’s inputs. Modeling a discrete state thus
entails modeling the state’s dependency on the systems’ inputs at the previous time step.
Xxxxxxxx block diagrams use specific types of blocks, called discrete blocks, to specify
update functions and chains of blocks connected to the inputs of discrete blocks to model the
dependency of a system’s discrete states on its inputs.

averageUser: ?! (dazed and breathless)

whistleBlower: ?! (dazed)

* cleverVendor: Whenever you start a simulation, enable display of port data types, or refresh
the port data type display, the Xxxxxxxx software performs a processing step called data type
propagation. This step involves determining the types of signals whose type is not otherwise
specified and checking the types of signals and input ports to ensure that they do not conflict.
If type conflicts arise, an error dialog is displayed that specifies the signal and port whose data
types conflict. The signal path that creates the type conflict is also highlighted.

averageUser: Sounds so complex! The product must be really quite good.

whistleBlower: Why burden the user with jargon? Can you not make it transparent to the user
with some clever programming? Also, if my problem has only real numbers, do I still need to
pay for all data types?

* cleverVendor: (In reply to a user’s query:) Unfortunately Linear Aanalysis Tool does not
currently support specification-based computation of periodic operating points, which is what
you are interested in. Your boost converter model is in steady-state in the sense that voltage

2This paragraph (and others) have been taken verbatim from the manual pages. It looks like the weavers have not
found enough time to proofread what they wrote!

6 SEQUEL Users’ Manual: Part 1

and current values stay at the same average value, but actual signal derivatives are not zeros
dues to switching in power semiconductors.

I want to offer two-fold response.

1. We know periodic operating point capability is needed, and are working on it.

2. In the mean time you can try the following: create a variant of the model using
average-value blocks, ...

averageUser: So considerate. The vendor understands the user’s requirements and is trying
his best to provide a solution.

whistleBlower: Wait a minute! Others have done this years ago (see [5] and references
therein). Why is it not implemented in your package? Is it because of legacy issues or
something else? Can we know?

There are many, many more of these, but we can stop here. In the rest of this manual, we will ignore
what the weavers tell us and focus on what actually happens inside a circuit simulator. It is much
simpler to understand that since there is no hidden agenda, no ulterior motive, no fudging, no beating
of drums, no tall claims, no desire to obfuscate and conquer; just a plain technical description of
things, where black is black, white is white, and grey is grey.

Chapter 2

Modified Nodal Analysis

To find the solution for an electrical circuit, the following constraints need to be satisfied
simultaneously: (a) Kirchoff’s current law (KCL) at each node, (b) Kirchoff’s voltage law (KVL) for
each loop, and (c) equation(s) describing the behaviour of each element involved in the circuit (e.g.,
resistor, capacitor, diode, transistor, switch, transformer). The most common approach employed to
solve this set of equations is Modified Nodal Analysis (MNA)1. As the name suggests, MNA is a
modified version of Nodal Analysis (NA) which is based on KCL equations written in terms of node
voltages (see [6],[7], for example). In the following, we will describe the NA approach with the help
of an example, see why it needs to be modified, and then look at the MNA approach. For now, we
will restrict our discussion to linear circuits operating under DC conditions. In later chapters, we will
see how the MNA approach can be used for circuits involving nonlinear components and time
derivatives.

2.1 Nodal Analysis

In nodal analysis, one of the circuit nodes is taken as the reference node (ground) and is assigned a
node voltage of 0 V. All other node voltages are defined with respect to the reference node. The
element currents are written in terms of the node voltages, and the sum of the element currents at
each node is equated to zero, as required by KCL. The resulting set of equations is then solved for
the unknowns – the node voltages. Other quantities of interest such as currents, branch voltages are
computed by post-processing the solution vector, i.e., the node voltages. Let us illustrate this process
with an example.

Consider the circuit shown in Fig. 2.1. We take one of the nodes (node A) as the reference
node. The other nodes (B, C, D) are assigned node voltages V1, V2, V3. We write the various element
currents in terms of the node voltages, e.g., I1 = G1(V1 − V2), I3 = G3(0 − V3), where G1 = 1/R1, etc.
Finally, we substitute the expressions for the currents in the KCL equations at nodes B, C, D, and get
the following set of equations.

KCL at B : −I0 + I1 = 0 ,
KCL at C : −I1 − I2 + I4 + I5 = 0 ,
KCL at D : −I3 − I4 − I5 = 0 .

(2.1)

1Some weavers try to pass off (at an exorbitant price) an ODE solver as a circuit simulator, but its limitations – which
the weavers have cleverly pushed under the rug – surface as soon as the program is put through some moderately difficult
tests.

7

8 SEQUEL Users’ Manual: Part 1

R1

R2

R3

R4 R5

C

D

I1

V1
V2

V3

I0

B

I2

I3

I4 I5

A
0

Figure 2.1: Nodal analysis example.

In terms of node voltages, we have

−I0 + G1(V1 − V2) = 0 ,
−G1(V1 − V2) + G2V2 + (G4 + G5)(V2 − V3) = 0 ,

G3V3 − (G4 + G5)(V2 − V3) = 0 .
(2.2)

The above equations can be written in a matrix form:


G1 −G1 0
−G1 G1 + G2 + G4 + G5 −G4 −G5

0 −G4 −G5 G3 + G4 + G5




V1

V2

V3

 =


I0

0
0

 . (2.3)

We now have a matrix description of the circuit equations: YV = IS . The matrix Y is called the
admittance matrix, V is the vector of node voltages which we want to obtain, and IS is the current
source vector, which contains ±Ik, Ik being the current of an independent current source connected at
node k. For larger circuits, the admittance matrix is typically sparse, with only 10 to 15% non-zero
entries. The sparse nature of the admittance matrix can be exploited to reduce the storage
requirement and the number of arithmetic operations (and therefore the CPU time) in solving the
linear system.

2.2 Modified Nodal Analysis

If there are voltage sources in the circuit, the NA approach needs to be modified. As an example,
consider the circuit of Fig. 2.2. We take A as the reference node and assign V1, V2, V3 to the

C
V2

R1 R2

R3

V0
Is

V1
B D

V3

I0

A
0

Figure 2.2: Modified Nodal analysis example.

remaining nodes. When we attempt to write KCL at node B or C, we encounter a problem – the

Modified Nodal Analysis 9

current through the voltage source cannot be written in terms of the node voltages V1 and V2, and the
nodal analysis approach therefore needs to be modified. In the MNA approach, we augment the
solution vector (consisting of node voltages) with currents through voltage sources, and the KCL
equations are written in terms of the node voltages as well as these additional variables, i.e., currents
through voltage sources2. For the circuit of Fig. 2.2, we get

KCL at B : G1V1 + Is = 0 ,
KCL at C : −Is + G2V2 + G3(V2 − V3) = 0 ,
KCL at D : −I0 + G3(V3 − V2) = 0 .

(2.4)

We now have four unknowns (V1, V2, V3, Is) but only three equations. The fourth equation
comes from the element equation for the voltage source, viz., V2 − V1 = V0. The equations can be
written in a matrix form:



G1 0 0 1
0 G2 + G3 −G3 −1
0 −G3 G3 0
−1 1 0 0





V1

V2

V3

Is


=



0
0
I0

V0


. (2.5)

We can already guess what a circuit simulator must be doing behind the scenes for a linear
circuit under DC conditions:

1. Read the “circuit file”, which is a description of the connections in the circuit (the topology)
and the specification of each element (the behaviour). For the circuit of Fig. 2.2, a SPICE-like
circuit description3 may look like

R1 A B 1k

R2 A C 0.5k

R3 C D 2k

VS C B 5

IS D 0 1m

where the first string of the statement (e.g., R1) gives the type of the element (R) and its name.
The next two strings (A and B) specify that it is connected between nodes A and B. The last
string in the statement says that its value is 1 kΩ.

2. Decide “what goes where” in the matrix equation: This step is called “parsing”, and as we can
imagine, it takes a significant programming effort. However, the basic idea is simple. We need
to figure out the following.

(a) How many variables (unknowns)?

(b) What does each row of the matrix correspond to? A KCL or the branch equation for one
of the voltage sources?

2The currents through independent voltage sources as well as dependent voltage sources (CCVS, VCVS) are added to
the solution vector.

3In the good old days, one had to write the circuit file using one’s favourite editor. In modern times, the user has the
luxury of entering the circuit schematic using a GUI which converts the schematic to the circuit file format internally,
often without the user’s knowledge.

10 SEQUEL Users’ Manual: Part 1

(c) Where are the non-zero entries in the MNA matrix? How is each entry computed in
terms of the circuit parameters?

3. Solve the matrix equation: This is the most crucial part of a circuit simulator since it generally
takes the largest chunk of the CPU time, particularly for large circuits. The reason is easy to
understand: The number of multiplications involved in solving Ax = b, where A is an N × N
matrix, goes as N3. By exploiting sparsity, the number of multiplications can be reduced, but
the dependence on N remains superlinear. Fortunately, efficient sparse matrix solvers are
available in the public domain, and one need not reinvent the wheel (or pay large sums to any
weaver for this purpose).

4. Calculate the quantities of interest by post-processing. Solving the MNA circuit equations
yields the node voltages and voltage source currents. These can be used to obtain other
quantities simply by post-processing, i.e., without solving any additional equations. For
example, the current through R3 in the circuit of Fig. 2.2 can be obtained as I3 = (V2 − V3)/R3,
and the power supplied by the voltage source as P = (V2 − V1) × Is.

Note that we have described the MNA approach for linear circuits in a DC situation only. We
will shortly see how it can be extended to nonlinear circuits in a DC situation. In a later chapter, we
will go one step further and see how elements involving time derivatives (e.g., capacitors and
inductors) can be incorporated within the MNA equations.

Chapter 3

Newton-Raphson Method

Nonlinear equations arise in a wide variety of electronic and power electronic circuits, and they need
to be solved using an iterative method. The Newton-Raphson (NR) method is most commonly used
because of its excellent convergence properties. To begin with, let us see where the NR method
comes from.

3.1 Single equation

Consider the equation f (x) = 0. Let x = r be the root1, i.e., f (r) = 0. Let us say that we have some
idea of the root in the form of an initial guess x(0). The goal of the NR method is to iteratively refine
this value so that f (x) = 0 is satisfied to a higher accuracy with every NR iteration. We denote the
successive values of x by x(0), x(1), x(2), · · ·

Consider x = x(i). Expanding f (x) around this value, we get

f (x(i) + ∆x(i)) = f (x(i)) + ∆x(i) d f
dx

∣∣∣∣∣
x(i)

+
(∆x(i))2

2!
d2 f
dx2

∣∣∣∣∣∣
x(i)

+ · · · (3.1)

We seek the value of ∆x(i) which will satisfy f (x(i) + ∆x(i)) = 0, assuming that the contribution
from second- and higher-order terms is small compared to the first term, i.e.,

f (x(i) + ∆x(i)) ≈ f (x(i)) + ∆x(i) d f
dx

∣∣∣∣∣
x(i)

= 0, or ∆x(i) = − f (x(i))
d f
dx

∣∣∣∣∣
x(i)

. (3.2)

If our assumption (that only the first term in ∆x(i) is significant) is indeed valid, our job is done:
we simply add ∆x(i) to x(i), and that gives us the solution. If not, we treat x(i) + ∆x(i) as the next
candidate for x (i.e., x(i+1) = x(i) + ∆x(i)), perform another NR iteration, and so on. Let us illustrate
this procedure with an example.

Consider f (x) given by

f (x) = a3x3 + a2x2 + a1x + a0, with a3=1, a2=−3.2, a1=8.7, a0=−14.3 . (3.3)

The equation f (x) = 0 has a real root at x = 2.2 (see Fig. 3.1).
The following C++ program performs NR iterations to obtain the root.

1For simplicity, we will assume that the equation has a single real root.

11

12 SEQUEL Users’ Manual: Part 1

0 1 2 3 4 5
−20

0

20

40

60

x

f(
x)

Figure 3.1: Plot of f (x) given by Eq. 3.3.

#include <iostream>

#include <iomanip>

#include <math.h>

using namespace std;

int main ()

{

double x,f,dfdx,delx,tolr,r;

double a3,a2,a1,a0;

double x2,x3;

a3 = 1.0; a2 = -3.2; a1 = 8.7; a0 = -14.3;

x = 4.0; // initial guess

tolr = 1.0e-8; // tolerance

r = 2.2; // actual solution

for (int i=0; i < 10; i++) {

x2 = x*x; x3 = x2*x; // powers of x

f = a3*x3 + a2*x2 + a1*x + a0; // function

dfdx = 3.0*a3*x2 + 2.0*a2*x + a1; // derivative

delx = -f/dfdx; // correction delta_x

cout << std::setw(2) << i << " ";

cout << std::scientific;

cout << x << " " << f << " " << delx << " " << (x-r) << endl;

if (fabs(f) < tolr) break; // tolerance met; exit loop

x = x + delx; // update x

}

return 0;

}

The output of the program is shown in Table 3.1. Note how quickly the NR process converges
to the root. After three iterations, we already have an accuracy of 0.44%. This rapid convergence is
the reason for the popularity of the NR method. Near convergence, the “errors” for iterations i and

Newton-Raphson method 13

i x(i) f (x(i)) ∆x(i) (x(i) − r) (x(i) − r)/r

0 4.000000 × 100 3.330000 × 101 −1.070740 × 100 1.800000 × 100 8.181818 × 10−1

1 2.929260 × 100 8.861467 × 100 −5.646248 × 10−1 7.292605 × 10−1 3.314820 × 10−1

2 2.364636 × 100 1.601388 × 100 −1.548606 × 10−1 1.646356 × 10−1 7.483436 × 10−2

3 2.209775 × 100 8.966910 × 10−2 −9.739489 × 10−3 9.774978 × 10−3 4.443172 × 10−3

4 2.200035 × 100 3.243738 × 10−4 −3.548854 × 10−5 3.548901 × 10−5 1.613137 × 10−5

5 2.200000 × 100 4.282173 × 10−9 −4.685091 × 10−10 4.685092 × 10−10 2.129587 × 10−10

Table 3.1: The NR process for finding the root of the f (x) = 0 where f (x) is given by Eq. 3.3.

(i + 1) are related by
ε(i+1) = k

[
ε(i)

]2
, (3.4)

where ε(i) =
∣∣∣x(i) − r

∣∣∣ is the deviation of x(i) from the root r. The factor k≈ g′′(r)/2, i.e.,
1
2

d2 f
dx2

∣∣∣∣∣∣
x=r

.

Eq. 3.4 explains why the error goes down so dramatically as the NR process converges. Because of
the second power in Eq. 3.4, the NR process is said to have quadratic convergence.

3.2 Extension to set of equations

The NR method can be generalised to a system of N equations in N variables given by

f1(x1, x2, . . , xN) = 0,
f2(x1, x2, . . , xN) = 0,

...
fN(x1, x2, . . , xN) = 0.

(3.5)

In this case, we define a solution vector,

x(i) =



x(i)
1

x(i)
2
..

x(i)
N


. (3.6)

To start the NR process, we start with an initial guess for the solution vector2, i.e., x(0)
1 , x(0)

2 , · · · , x(0)
N .

The correction vector in the ith iteration, ∆x(i) is computed as

∆x(i) = −
[
J(i)

]−1
f(i), (3.7)

2In practice, it is often difficult to come up with a good initial guess, and in the absence of a better alternative, x(i)
1 = 0,

x(i)
2 = 0, · · · may be used.

14 SEQUEL Users’ Manual: Part 1

where

f(i) =



f1(x(i))
f2(x(i))
..

fN(x(i))


, J(i) =



∂ f1

∂x1

∂ f1

∂x2
. .

∂ f1

∂xN

∂ f2

∂x1

∂ f2

∂x2
. .

∂ f2

∂xN
.

∂ fN

∂x1

∂ fN

∂x2
. .

∂ fN

∂xN



, (3.8)

and the functions and derivatives are evaluated at the current values, x(i)
1 , x(i)

2 , · · · , x(i)
N . The NR

procedure is otherwise similar to that for the one variable case (see Fig. 3.2).

x = x(0)

(initial guess)
iNR = 0

iNR = iNR + 1

iNR > Nmax
NR ?

Compute f

Convergence?

Compute J
∆x = J−1f

x← x + ∆x

no

no

Solution found
Stop

yes

yes

Report error
Stop

Figure 3.2: Flow chart for the Newton-Raphson procedure.

3.3 Convergence criteria

In the NR method, we need to set a “convergence criterion” to determine when to stop the NR
iterations. In the program of Sec. 3.1, for example, the variable tolr (tolerance) served this purpose.
The following convergence criteria are commonly used.

(a) Norm of f: In this case, we check if the function values are small. Typically, the 2-norm,
defined as

|| f ||2 =


N∑

i=1

f 2
i


1/2

, (3.9)

is computed, and the NR iterations are said to converge if ||f||2 < ε, a suitable tolerance value.
This is an absolute convergence criterion since our goal is precisely to solve the set of

Newton-Raphson method 15

equations to get fi = 0 (for each i) which means in practice that | fi| (or somewhat equivalently,
the 2-norm) should be made as small as possible.

(b) Norm of ∆x: Here, we check if each component of the correction vector is sufficiently small,
i.e., |∆xi| < εi, where εi may be 0.01 mV for all variables of type voltage, and 1 nA for all
variables of type current, for example. This is a relative criterion and is based on the fact that,
as the NR process converges, ∆xi become smaller and smaller, as seen in the one-variable
example earlier (see Table 3.1).

(c) SPICE convergence criterion: In SPICE, a tolerance is computed for each variable as follows:

τi = krel ×max
(
|x(k)

i |, |x(k+1)
i |

)
+ τabs, (3.10)

where krel (typically 0.001) and τabs are constants, and x(k)
i denotes the value of xi in the kth

iteration. The first term specifies a relative tolerance, specific to the variable xi, while the
second term is an absolute tolerance. If x is of type voltage, τabs may be 0.01 mV, for example.
Convergence is said to be attained if

|x(k+1)
i − x(k)

i | < τi. (3.11)

In a variety of electronic circuits, including oscillatory circuits, the tried and tested SPICE
convergence criterion is found to work well.

Why are there so many different convergence criteria? Isn’t there a simple “universal” convergence
criterion which we can use for all problems? To answer this question, let us take a closer look at
convergence of the NR process.

As we have seen earlier, the “error,” i.e., the difference between the numerical solution and the
actual solution, goes down dramatically with each iteration, as the NR process converges. If our
computer had infinite precision, the error can be reduced to arbitrarily small values simply by
performing additional NR iterations. In practice, computers have a finite precision. With
single-precision (32-bit) numbers, the smallest number that can be represented is about 1.2 × 10−38,
and the largest number is 3.4 × 10+38. With double-precision (64-bit) numbers, the smallest and
largest numbers are 5.0 × 10−324 and 1.8 × 10+308, respectively. Furthermore, because of the finite
number of bits used for the mantissa, only a finite number of real numbers can be represented, say,
r1, r2, r3, · · · Any number falling between rk and rk+1 is rounded off to rk or rk+1, leading to a
“round-off error” which is of the order of 10−8 for single-precision numbers and 10−16 for
double-precision numbers.

The round-off error, however small, is finite, and it limits the accuracy that we can achieve with
the NR method. If our convergence check is too stringent, convergence will not be attained, and the
NR process will get terminated with an error message (although the solution may already be
sufficiently accurate). If it is too loose, we end up with the wrong solution. Setting an appropriate
convergence criterion is therefore crucial in implementing the NR method, as illustrated in the
following example.

Consider the systems of equations,

f1(x1, x2) ≡ k × (x1 + x2 − 6
√

3) = 0,
f2(x1, x2) ≡ 10x2

1 − x2
2 + 45 = 0.

(3.12)

16 SEQUEL Users’ Manual: Part 1

We want to solve this system of equations with the initial guess x1 = 1, x2 = 1. With this initial guess,
the NR method converges to the solution3 x1 =

√
3, x2 = 5

√
3. The results of applying the NR

method to Eq. 3.12 using single- and double-precision numbers are shown in Fig. 3.3 and Table 3.2.
We can make the following observations from the results.

(a) For this system of equations, || f ||2 does not keep reducing indefinitely with each NR iteration;
it saturates at some point.

(b) For the same k, the NR method can achieve higher accuracy (smaller || f ||2) when double
precision is used.

(c) For the same precision (single or double), higher accuracy can be achieved for a smaller value
of k although the actual solution does not depend on k at all (see Eq. 3.12).

(d) Although the lowest achievable value of || f ||2 depends on k and on the precision used, the
solution is already accurate up to the seventh decimal place at the end of iteration no. 7 in all
four cases.

Clearly, an arbitrarily small 2-norm cannot be set as the convergence criterion. For example, with
double-precision numbers, a 2-norm of 10−12 will work (i.e., the NR process will exit after attaining
convergence) for k = 1, but not with k = 105. This means that selection of the convergence criterion
must be made differently for different problems! In reality, the situation is not so hopeless. For
example, if we are only interested in electronic circuits, the default set of convergence criteria in
SPICE (see [8], for example) would generally work well and may need to be tweaked only for a few
specific simulations.

Iteration Iteration

||f
|| 2

0 2 4 6 8 10 12 0 2 4 6 8 10 12

1010

105

100

10−5

10−10

10−15

(a) (b)

Single precision Double precision

k=1

k=105

k=1

k=105

Figure 3.3: || f ||2 versus NR iteration number for the system of equations given by Eq. 3.12: (a) single-precision
arithmetic, (b) double-precision arithmetic.

3The system of equations given by Eq. 3.12 actually has two real roots; but only the root x1 =
√

3, x2 = 5
√

3 is relevant
for our discussion, considering the initial guess we have used.

Newton-Raphson method 17

single precision

k = 1 k = 105

i x1 x2 x1 x2

0 0.10000000 × 101 0.10000000 × 101 0.10000000 × 101 0.10000000 × 101

1 −0.69160879 × 100 0.11083913 × 102 −0.69160879 × 100 0.11083913 × 102

2 0.80743456 × 101 0.23179598 × 101 0.80743456 × 101 0.23179598 × 101

3 0.39112959 × 101 0.64810090 × 101 0.39112959 × 101 0.64810090 × 101

4 0.22007749 × 101 0.81915302 × 101 0.22007749 × 101 0.81915302 × 101

5 0.17647886 × 101 0.86275158 × 101 0.17647886 × 101 0.86275158 × 101

6 0.17322344 × 101 0.86600704 × 101 0.17322344 × 101 0.86600704 × 101

7 0.17320508 × 101 0.86602545 × 101 0.17320508 × 101 0.86602545 × 101

8 0.17320508 × 101 0.86602545 × 101 0.17320508 × 101 0.86602545 × 101

9 0.17320508 × 101 0.86602545 × 101 0.17320508 × 101 0.86602545 × 101

10 0.17320508 × 101 0.86602545 × 101 0.17320508 × 101 0.86602545 × 101

double precision

k = 1 k = 105

0 0.10000000 × 101 0.10000000 × 101 0.10000000 × 101 0.10000000 × 101

1 −0.69160865 × 100 0.11083913 × 102 −0.69160865 × 100 0.11083913 × 102

2 0.80743398 × 101 0.23179650 × 101 0.80743398 × 101 0.23179650 × 101

3 0.39112931 × 101 0.64810118 × 101 0.39112931 × 101 0.64810118 × 101

4 0.22007739 × 101 0.81915309 × 101 0.22007739 × 101 0.81915309 × 101

5 0.17647886 × 101 0.86275163 × 101 0.17647886 × 101 0.86275163 × 101

6 0.17322344 × 101 0.86600705 × 101 0.17322344 × 101 0.86600705 × 101

7 0.17320508 × 101 0.86602540 × 101 0.17320508 × 101 0.86602540 × 101

8 0.17320508 × 101 0.86602540 × 101 0.17320508 × 101 0.86602540 × 101

9 0.17320508 × 101 0.86602540 × 101 0.17320508 × 101 0.86602540 × 101

10 0.17320508 × 101 0.86602540 × 101 0.17320508 × 101 0.86602540 × 101

Table 3.2: The NR process for solving the system of equations given by Eq. 3.12 using single- and double-
precision numbers.

18 SEQUEL Users’ Manual: Part 1

3.4 Graphical interpretation of the NR process

In the one-variable case, the NR process has a useful graphical interpretation. The correction ∆x(i) in
the ith NR iteration is given by

∆x(i) = − f (x(i))
d f
dx

∣∣∣∣∣
x(i)

. (3.13)

Since
d f
dx

∣∣∣∣∣
x(i)

is the slope of the f (x) curve at x = x(i), the magnitude of ∆x(i) is given by drawing a

tangent at the point (x(i), f (x(i))) and extending it to the x-axis, as shown in Fig. 3.4. x(i+1) = x(i) + ∆x(i)

is then obtained by simply going from x(i) in the negative x-direction if the sign of
d f
dx

∣∣∣∣∣
x(i)

is positive

(and vice versa) a distance of ∆x(i). This leads to the following interpretation of the NR process.

f (x)

|∆x(i)|

f (x(i))

(x(i), f (x(i)))

slope=
d f
dx

∣∣∣∣∣
x(i)

x(i)x(i+1) x

Figure 3.4: Graphical interpretation of the NR process.

1. Draw a tangent at (x(i), f (x(i))).

2. Extend the tangent to the x-axis.

3. The point of intersection of the tangent with the x-axis gives the next values of x, i.e., x(i+1).

Fig. 3.5 illustrates the NR process for Eq. 3.3. It is easy to see that, if f (x) is linear (i.e.,
f (x) = k1x + k2), the NR process will converge in exactly one iteration.

3.5 Convergence issues

We have seen that the NR method has the desirable property of rapid convergence. The big question
is whether it will always converge. Unfortunately, convergence of the NR method is guaranteed only

Newton-Raphson method 19

0 1 2 3 4 5

0

20

40

60

−20

(x(2), f (x(2)))

(x(1), f (x(1)))

(x(0), f (x(0)))

f(
x)

x

Figure 3.5: Graphical interpretation of NR process with f (x) given by Eq. 3.3 and x(0) = 4.0.

if the initial guess is sufficiently close to the solution (root). In the one-variable case, it can be shown
that, if

| f (x) f ′′(x)|
(f ′(x))2 < 1 (3.14)

for some interval (x1, x2) containing the root r, the NR method will converge for an initial guess x(0)

lying in that interval. If not, the NR process may not converge.
As an example, consider

f (x) = tan−1(x − a). (3.15)

For this function,

f1(x) ≡ f (x) f ′′(x)
(f ′(x))2 = −2(x − a) tan−1(x − a). (3.16)

Figs. 3.6 (a) and 3.6 (b) show plots of f (x) and f1(x), respectively, for a = 1.5. For | f1(x)| < 1, we
need 0.735 < x < 2.265. If the initial guess is within this range, the NR process for f (x) is
guaranteed to converge (see Fig. 3.7, for example); otherwise, it may not converge (see Fig. 3.8, for
example). An equally catastrophic situation, in which the NR process oscillates around the root, is
shown in Fig. 3.9.

Failure of the NR procedure is not a hypothetical calamity; it is a very real possibility in circuit
simulation. Fortunately, some clever ways have been devised to nudge the NR process toward
convergence as discussed in the following.

20 SEQUEL Users’ Manual: Part 1

(a) (b)

−2

−1

0

1

2

0 1 2 3−10 −5 0 5 10

0

−1

−2

x x

f(
x)

f 1
(x

)

Figure 3.6: (a) f (x) (Eq. 3.15) and (b) f1(x) (Eq. 3.16) versus x

−0.8

−0.4

0.4

0

0 0.5 1.0 1.5 2.0

f(
x)

x

x(0) x(1)x(2)

Figure 3.7: NR process for f (x) = tan−1(x − 1.5) with x(0) = 0.8.

Newton-Raphson method 21

−6 −4 −2 0 2 4 6 8 10

1

0

−1

x(2)

f(
x)

x

x(1) x(3)x(0)

Figure 3.8: NR process for f (x) = tan−1(x − 1.5) with x(0) = 0.

22 SEQUEL Users’ Manual: Part 1

f(

x)

x

x(0) x(1)

−2 −1 0 1 2 3 4 5

1.5

1

0.5

0

−0.5

−1

−1.5

Figure 3.9: NR process for f (x) = tan−1(x − 1.5) with x(0) = 2.89175.

Newton-Raphson method 23

3.5.1 Damping of the NR iterations

Consider the one variable case. As we have seen earlier, the NR method is related to the Taylor
series of a function around the current value x(i):

f (x(i) + ∆x(i)) = f (x(i)) + ∆x(i) d f
dx

∣∣∣∣∣
x(i)

+ higher-order terms. (3.17)

If the higher-order terms are small, the NR method is expected to work well. Convergence problems
can arise when they are not small. To be specific, let us look at the example of Fig. 3.8 in which the
NR process diverges. The slope at (x(i), f (x(i))) corresponds to the first term of the Taylor series, and
the curvature is due to the higher-order terms. We note that the slope does take us in the correct
direction4 (i.e., toward the root), but because of the curvature, we end up going too far in that
direction. The idea behind damping of the NR process is to play safe and go only part of the way.

In the standard NR process, the correction vector is computed as ∆x(i) = −
[
J(i)

]−1
f(i) and is

added to the current solution vector to obtain the next guess:

x(i+1) = x(i) + ∆x(i). (3.18)

We can dampen or slow down the NR process by adding only a fraction of the correction vector, i.e.,

x(i+1) = x(i) + k × ∆x(i), (0 < k < 1), (3.19)

where k is the “damping factor.”
Fig. 3.10 shows the effect of damping for the example shown Fig. 3.8 with the same initial

guess, viz., x(0) = 0. In each iteration, we draw a tangent at (x(i), f (x(i))) as before, but instead of
going all the way to the intercept with the x-axis (the dashed line), we go only a fraction of the way
to obtain the next iterate x(i+1). The NR process is now seen to converge to the solution.

If damping it so effective, should we always use it? Not really. Although damping improves
the chances of convergence, it slows down the NR process. Damping should therefore be used only
if the standard NR process fails to converge. Fig. 3.11 shows the effect of k for f (x) = tan−1(x) with
x(0) = 1.5. In this case, the standard NR method fails, and therefore damping is useful. When k is
small, the convergence is slower. An excellent strategy is to use damping only in the first few NR
iterations and then use the standard NR process (i.e., make k = 1) thereafter. In this way, we get
convergence and also retain the quadratic convergence property of the NR process when damping is
lifted. An example is shown in the same figure.

4In the one variable case, the direction is simply the positive or negative x-direction.

24 SEQUEL Users’ Manual: Part 1

f(
x)

x

1.5

1

0.5

0

−0.5

−1

−1.5
−1 0 1 2 3 4

Figure 3.10: Damped NR process for f (x) = tan−1(x − 1.5) with x(0) = 0, and k = 0.6.

Newton-Raphson method 25

8 12 160 204

k= 0.2
(first 3 iterations)

k= 0.8

k= 0.5

k= 0.2

No damping

Iteration Number

|f
|

10−14

10−10

10−6

10−2

102

Figure 3.11: | f | versus NR iteration number for different values of k for f (x) = tan−1(x) with x(0) = 1.5.

26 SEQUEL Users’ Manual: Part 1

3.5.2 Parameter stepping

Suppose we try to solve f (x) = 0 with an initial guess x(0), and find that the standard NR method fails
to converge. We can then construct another function h(x) = f (x) + g(x), where g(x) is a suitable
“auxiliary” function. To be specific, let us consider g(x) = kx. To begin with, k is made sufficiently
large (call it k(0)), h(x) then takes an approximately linear form h(0)(x)≈ k(0)x, and the NR method can
be used effectively to solve h(0)(x) = 0 without any convergence issue. Let us denote the solution
obtained for h(0)(x) = 0 by r(0). Next, we relax the parameter k in g(x) to a smaller value k(1) and solve
h(1)(x)≡ f (x) + k(1)x = 0, using r(0) as the initial guess. Once again, the NR process is likely to
converge if k(1) is sufficiently close to k(0). We repeat this process, making k progressively smaller.
Finally, when k is negligibly small, h(x) = f (x) + g(x)≈ f (x), and we have got the solution for our
original problem, f (x) = 0.

The above procedure in which the parameter k is changed from a large value to zero (or a
negligibly small value) in several steps may be called “parameter stepping.” Fig. 3.12 shows an
example.

 2

1

0

−1

−2

k(1)
k(2)

k(3)

k(4)

k(5)

h(
x)

x
−2 410−1 2 3

k(0)

Figure 3.12: NR process for solving f (x)≡ tan−1(x − a) = 0 with a = 1.5, and x(0) = 0 as the initial guess. An
auxiliary function g(i)(x) = k(i) x is used, and h(i)(x) = f (x) + g(i)(x) is solved with the NR method. x = 0 is used
as the initial guess for solving h(0) = 0. Thereafter, the solution r(i−1) for h(i−1) = 0 is used as the initial guess for
solving h(i) = 0. The values of k(i) for i = 0 to 5 are 5, 2, 1, 0.5, 0.2, 0, respectively. The roots are denoted by
crosses.

In electronic circuits, there are many situations in which no suitable initial guess is available.

Newton-Raphson method 27

Parameter stepping is useful in such cases. It can be carried out in different forms.

(a) gmin stepping: In this scheme, a conductance g (i.e., a resistance 1/g) is added from each
circuit node to ground5, as shown in Fig. 3.13. If g is large (i.e., the resistance is small), the
nonlinear devices are essentially bypassed, the circuit reduces to an approximately linear
circuit, and the NR method converges easily. Using the solution so obtained as the initial
guess, the same circuit with a lower value of g is then solved, and so on. Finally, when g is
equal to gmin (a very small value such as 10−12f, i.e., a resistance of 1012 Ω), we get the
solution for the original circuit since the added resistances are as good as open circuits.

VDD

VDD

(a)

(b)

Figure 3.13: Illustration of gmin stepping: (a) original circuit, (b) circuit with a resistor added from each node to
ground.

(b) Source stepping: In electronic circuits, there is a voltage supply (denoted typically by VCC in
BJT circuits and by VDD in FET circuits) which “drives” the circuit. If this source voltage is
made zero, all currents and voltages would become zero6. This suggests that, with VCC (or
VDD) equal to zero, the NR method should have no trouble in converging to the solution with
the simple initial guess of zero currents and voltages. Next, we increase VCC by a small
amount, say, 0.1 V. Since this situation is not substantially different, we once again expect the
NR process to converge easily. Continuing this procedure, we finally obtain the solution for
the actual source voltage, typically 5 V in BJT circuits. Since the parameter being stepped is a
source voltage, we can refer to this procedure as “source stepping.”

A variation of the above approach is “source ramping” in which the source voltage is ramped
(in time) from 0 V to its final value in a suitable time interval, taking the solution obtained at a
given time point as the initial guess for the next time point.

5or between each pair of nodes of the nonlinear devices
6There could be signal sources in the circuit (e.g., a BJT amplifier) which should also be made zero.

28 SEQUEL Users’ Manual: Part 1

3.5.3 Limiting junction voltages

Semiconductor devices generally have one or more p-n junctions. In the actual solution for the
circuit under consideration, the voltage across a junction is limited to about 0.8 V which corresponds
to a few Amps. However, during the NR process, some of the junction voltages can become larger
than the values expected in the solution, causing the current – which is proportional to eV/VT – to
blow up. For example, with V = 2 V and VT = 26 mV, eV/VT is of the order of 1033. When that
happens, the NR method comes to a grinding halt because of numerical overflow. It is important
therefore to limit the junction voltages in the NR process. The strategy used in SPICE for this
purpose is shown in Fig. 3.14. The junction voltages in iterations i and (i + 1) are denoted by Vold and
Vnew, respectively. The “critical voltage” Vcrit in the flow chart is a fixed voltage at which the
exponential factor eV/VT becomes impractically large.

No

Vnew = VT log
(
Vnew

VT

)

Vnew = Vcrit

Start with
Vnew, Vold, Vcrit

No

No

No

Vnew < Vcrit?
Yes

Yes
Accept

Accept

Vold < 0?
Yes

a = 1 +
∆V
VT

Yes
a ≤ 0?

Vnew = Vold + VT log(a)

∆V < 2VT ?

Figure 3.14: Flow chart for limiting junction voltages in SPICE. VT is the thermal voltage, and ∆V = V (i+1)
D −

VD(i).

3.5.4 Changing time step

In transient (or “dynamic”) simulation, the time axis is discretised (see Fig. 3.15), and the circuit
equations are solved at discrete time points t0, t1, t2, · · · , tn, tn+1, all the way up to the last time point
of interest tend. The solution at tn serves as the initial guess for the NR process at tn+1. If tn+1 is

Newton-Raphson method 29

sufficiently close to tn, we expect the NR process at tn+1 to converge easily. If we perform a fixed
number of NR iterations and find that the NR process has not converged, we can reduce the time step
∆t = tn+1 − tn, i.e., bring tn+1 closer to tn. In other words, we now look for xn+1 which is closer to xn,
and that improves the chances of convergence. We will visit this topic again in Chapter 6.

ttn−2 tn−1 tn tn+1

Figure 3.15: Discretisation of the time axis.

3.6 Nonlinear circuits

In combination with the Modified Nodal Analysis (MNA) approach for assembling the circuit
equations (see Chapter 2), the NR method can be used to obtain the solution – currents and
voltages – for a nonlinear circuit. Consider the circuit shown in Fig. 3.16. The diode current can be
written using the Shockley equation as

ID = Is

(
eVD/VT − 1

)
= Is

(
eV2/VT − 1

)
≡ ID(V2), (3.20)

where Is is the reverse saturation current of the diode (typically of the order of pA for low-power
diodes), and VT = kT/q is the thermal voltage (about 25 mV at room temperature). Using the MNA
approach, we can assemble the circuit equations as

KCL at B : G1(V1 − V2) + Is = 0 ,
KCL at C : G1(V2 − V1) + G2V2 + ID(V2) = 0 ,

Voltage source equation : V1 − V0 = 0 .
(3.21)

The above set of equations can be solved with the NR method, starting with a suitable initial guess
for the three variables, viz., V1, V2, and Is.

0
A

V2
CV1

B
R1

ID

VD

Is

V0 R2

Figure 3.16: A nonlinear circuit example.

In a similar manner, the NR scheme can be used for transient simulation. More about that later,
after we cover numerical solution of ODEs.

Chapter 4

Numerical Solution of ODEs: Explicit Methods

In transient (dynamic) simulation, we are interested in the behaviour of a circuit or a system in a time
interval from tstart to tend. To obtain the numerical solution, the interval of interest is divided into
sub-intervals (see Fig. 4.1), and the circuit equations are solved at each time point. If the circuit
elements do not involve time derivatives, transient simulation is no different than DC simulation. For
example, consider the circuit shown in Fig. 4.2. To obtain the solution for this circuit at a given time
point tk, all we need to do is to find Vs(tk), replace the AC source with a DC source Vs = Vs(tk), and
simulate the circuit using the MNA method discussed in Chapter 2.

t
tstart tend

tN−1 tNt0 t1 t2

Figure 4.1: Discretisation of the time interval from tstart to tend.

R1 R2

R3 R4Vs

Figure 4.2: A circuit with a time-dependent voltage source.

The situation is different when time derivatives are involved, e.g., in the form of capacitors or
inductors. Let us see how time derivatives can be handled.

4.1 Forward Euler method

We start with a single ODE,
dx
dt

= f (t, x), x(t0) = x0. (4.1)

We are interested in getting a numerical solution1, i.e., the discrete values x1, x2, · · · , corresponding
to t1, t2, etc. At t = t0, we start with x = x0 (the initial condition). From Eq. 4.1, we can compute the

1We will denote the exact solution by x(t); e.g., x(t1) means the exact solution at t1.

30

Numerical Solution of ODEs: Explicit Methods 31

slope of x(t) at t0 which is simply f (t0, x0). In the Forward Euler (FE) scheme, we make the
approximation that this slope applies to the entire interval (t0, t1), i.e., from the current time point to
the next time point. With this assumption, x(t1) is given by x1 = x0 + (t1 − t0) × f (t0, x0), as shown in
Fig. 4.3. Similarly, from x1, we can get x2, and so on. In general, we have

xn+1 = xn + ∆tn f (tn, xn), (4.2)

where ∆tn = tn+1 − tn.

x0

x1

x2

x3

t0 t1 t2 t3 t

x

slope= f (t0, x0)

slope= f (t1, x1)

slope= f (t2, x2)

Figure 4.3: Illustration of the Forward Euler method.

Let us apply the FE method to the ODE,

dx
dt

= a (sinωt − x) , x(0) = 0, (4.3)

which has the analytical (exact) solution,

x(t) =
aω

a2 + ω2

(
e−at − cosωt

)
+

a2

a2 + ω2 sinωt. (4.4)

The following C program can be used to obtain the numerical solution of Eq. 4.3 with the FE method.

#include<stdio.h>

#include<math.h>

int main()

{

double t,t_start,t_end,h,x,x0,f;

double a,w;

FILE *fp;

x0=0.0; t_start=0.0; t_end=5.0; h=0.05;

a=1.0; w=5.0;

fp=fopen("fe1.dat","w");

t=t_start; x=x0;

fprintf(fp,"%13.6e %13.6e\n",t,x);

32 SEQUEL Users’ Manual: Part 1

while (t <= t_end) {

f = a*(sin(w*t)-x);

x = x + h*f;

t = t + h;

fprintf(fp,"%13.6e %13.6e\n",t,x);

}

fclose(fp);

}

Fig. 4.4 shows the numerical solution2 along with the analytical (exact) solution given by
Eq. 4.4. We notice some difference between the two, but it can be made smaller3 by using a smaller
step size h. In general, the accuracy of a numerical method for solving ODEs is described by the
“order” of the method which in turn depends on the “Local Truncation Error” (LTE) for that method.
The LTE is a measure of the “local” error (i.e., error made in a single time step) and is defined as (see
[9]),

LTE = x(tn+1) − un+1, (4.5)

where x(tn+1) is the exact solution at tn+1, and un+1 is the solution obtained by the numerical method,
starting with the exact solution x(tn) at t = tn. If our numerical method were perfect, un+1 would be
the same as x(tn+1), and the LTE would be zero.

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

x

FE
exact

Figure 4.4: Analytical solution (red curve) and numerical solution obtained with the FE method (blue curve)
for the ODE given by Eq. 4.3.

Let us look at the LTE of the FE method for the test equation4,

dx
dt

= −λx, x(0) = 1, λ > 0, (4.6)

with the exact solution
x = e−λt. (4.7)

2The numerical solution appears to be continuous; however, in reality, it consists of discrete points which are generally
connected with line segments as a “guide to the eye.”

3Readers new to numerical analysis should try this out by running the program with a smaller value of h, e.g., h = 0.02.
In these matters, there is no substitute for hands-on experience.

4Eq. 4.6 is commonly used to discuss various aspects of numerical methods for solving ODEs.

Numerical Solution of ODEs: Explicit Methods 33

To compute the LTE, we take a specific tn, say, tn = t0 = 0, and compute xn+1 (i.e., x1) by performing
one step of the FE method, starting with x0 = 1. The exact solution at t = tn+1 = h is x(h) = e−λh. The
LTE is the difference between x1 and x(h).

Fig. 4.5 shows the LTE (magnitude) as a function of time step h. As h is reduced by a factor of
10 (from 10−1 to 10−2, for example), the LTE goes down by two orders of magnitude. In other words,
the LTE varies as h2, and therefore the FE method is said to be of order 1. In general, if the
LTE ∼ hk+1 for a numerical method, then it is said to be of order k.

10−4 10−3 10−2 10−1 100

100

10−4

10−8

10−12

10−16

FE

RK4

h

LT
E

Figure 4.5: LTE versus step size h for the FE and RK4 methods in solving the ODE given by Eq. 4.6.

4.2 Runge-Kutta method of order 4

The Runge-Kutta method of order 4 is given by5

f0 = f (tn, xn),

f1 = f (tn +
h
2
, xn +

h
2

f0),

f2 = f (tn +
h
2
, xn +

h
2

f1),

f3 = f (tn + h, xn + h f2),

xn+1 = xn + h
(
1
6

f0 +
1
3

f1 +
1
3

f2 +
1
6

f3

)
.

(4.8)

The order of the RK4 method can be made out from Fig. 4.5: if h is reduced by one order of
magnitude, the LTE goes down by five orders of magnitude (2.5 divisions, with each division
corresponding to two decades), and therefore the order is four.

Since the RK4 method is of a higher order, we expect it to be more accurate than the FE
method. Let us check that by comparing the numerical solutions obtained with the two methods for
the ODE given by Eq. 4.3. The following program can be used for the RK4 method.

5There are other Runge-Kutta methods of order 4 (see [10]); the method described here is called the “classic” form
and is commonly used.

34 SEQUEL Users’ Manual: Part 1

#include<stdio.h>

#include<math.h>

int main()

{

double t,t_start,t_end,h,x,x0;

double f0,f1,f2,f3;

double a,w;

FILE *fp;

x0=0.0; t_start=0.0; t_end=5.0; h=0.05;

a=1.0; w=5.0;

fp=fopen("rk4.dat","w");

t=t_start; x=x0;

fprintf(fp,"%13.6e %13.6e\n",t,x);

while (t <= t_end) {

f0 = a*(sin(w*t)-x);

f1 = a*(sin(w*(t+0.5*h))-(x+0.5*h*f0));

f2 = a*(sin(w*(t+0.5*h))-(x+0.5*h*f1));

f3 = a*(sin(w*(t+h))-(x+h*f2));

x = x + (h/6.0)*(f0+f1+f1+f2+f2+f3);

t = t + h;

fprintf(fp,"%13.6e %13.6e\n",t,x);

}

fclose(fp);

}

Fig. 4.6 shows the numerical solutions obtained with the FE and RK4 methods using a step
size of h = 0.05. Clearly, the RK4 method is more accurate.

0 0.5 1 1.5 2 2.5 3
−0.2

−0.1

0

0.1

0.2

0.3

t

x

Figure 4.6: Numerical solution of Eq. 4.3 obtained with the FE and RK4 methods (crosses and squares, respec-
tively) with a step size of h = 0.05. The exact solution is also shown (red curve).

Both FE and RK4 are explicit methods in the sense that xn+1 can be computed simply by
evaluating quantities based on the past values of x (see Eqs. 4.2 and 4.8). The RK4 method is more
complicated as it involves computation of the function values f0, f1, f2, f3, but the entire computation

Numerical Solution of ODEs: Explicit Methods 35

can be completed in a step-by-step manner. For example, the computation of f2 requires only xn and
f1, which are already available. The simplicity of the computation is reflected in the programs we
have seen.

4.3 System of ODEs

The above methods (and other explicit methods) can be easily extended to a set of ODEs of the form

dx1

dt
= f1(t, x1, x2, · · · , xN),

dx2

dt
= f2(t, x1, x2, · · · , xN),

...

dxN

dt
= fN(t, x1, x2, · · · , xN),

(4.9)

with the initial conditions at t = t0 specified as x1(t0) = x(0)
1 , x2(t0) = x(0)

2 , etc. With vector notation, we
can write the above set of equations as

dx
dt

= f(t, x), x(t0) = x(0). (4.10)

The FE method for this set of ODEs can be written as

x(n+1) = x(n) + hf(tn, x(n)), (4.11)

and the RK4 method as

f0 = f(tn, x(n)),

f1 = f(tn +
h
2
, x(n) +

h
2

f0),

f2 = f(tn +
h
2
, x(n) +

h
2

f1),

f3 = f(tn + h, x(n) + h f2),

x(n+1) = x(n) + h
(
1
6

f0 +
1
3

f1 +
1
3

f2 +
1
6

f3

)
,

(4.12)

where x(n) denotes the solution vector at time tn. As in the single-equation case, the evaluations can
be performed in a step-by-step manner, enabling a straightforward implementation.

The simplicity of explicit methods makes them very attractive. Furthermore, the
implementation remains easy even if the functions fi are nonlinear. Let us illustrate this point with an
example. Consider the system of ODEs given by

dx1

dt
= a1 (sinωt − x1)3 − a2 (x1 − x2) ,

dx2

dt
= a3 (x1 − x2) ,

(4.13)

36 SEQUEL Users’ Manual: Part 1

with the initial condition, x1(0) = 0, x2(0) = 0. If we use the FE method to solve the equations, we get

x(n+1)
1 = x(n)

1 + h
[
a1

(
sinωtn − x(n)

1

)3 − a2

(
x(n)

1 − x(n)
2

)]
,

x(n+1)
2 = x(n)

2 + h
[
a3

(
x(n)

1 − x(n)
2

)]
.

(4.14)

The following program, which is a straightforward extension of our earlier FE program, can be
used to implement the above equations.

#include<stdio.h>

#include<math.h>

int main()

{

double t,t_start,t_end,h;

double x1,x2,f1,f2,b1;

double w,a1,a2,a3,f_hz,pi;

FILE *fp;

f_hz = 5.0e3; // frequency = 5 kHz

pi = acos(-1.0);

w = 2.0*pi*f_hz;

a1 = 5.0e3;

a2 = 5.0e3;

a3 = 5.0e3;

t_start=0.0;

t_end=5.0e-3;

h=0.001e-3; // time step = 0.001 msec

x1=0.0;

x2=0.0;

fp=fopen("fe3.dat","w");

t=t_start;

fprintf(fp,"%13.6e %13.6e %13.6e\n",t,x1,x2);

while (t <= t_end) {

b1 = sin(w*t)-x1;

f1 = a1*b1*b1*b1 - a2*(x1-x2);

f2 = a3*(x1-x2);

x1 = x1 + h*f1;

x2 = x2 + h*f2;

t = t + h;

fprintf(fp,"%13.6e %13.6e %13.6e\n",t,x1,x2);

}

fclose(fp);

}

As simple as that! There is no need to rush to the weavers for every single problem. The
numerical solution is shown in Fig. 4.7.

Numerical Solution of ODEs: Explicit Methods 37

0.20 0.4 0.6 0.8 1.0 1.2 1.4 1.6
−0.1

0

0.1

t (msec)

x1

x2

Figure 4.7: Numerical solution of Eq. 4.13 obtained with the FE method with a step size of h = 1 µ sec.

4.4 Adaptive time step

We have so far considered the time step h to be constant. When the solution has regions of fast and
slow variations, it is much more efficient to use adaptive (variable) time steps. When the solution
varies rapidly, small time steps are required to capture the transients accurately; at other times, larger
time steps can be used. In this way, the total number of time points – and thereby the simulation
time – can be made much smaller than using a small, uniform time step.

In order to implement an adaptive time step scheme, we need a mechanism to judge the
accuracy of the numerical solution. Ideally, we would like to use the difference between the
analytical solution and the numerical solution, i.e., |x(tn) − xn|. However, since the analytical solution
is not available, we need some other means of checking the accuracy. A commonly used method is to
estimate the local truncation error by computing xn+1 with two numerical methods: one method of
order p and the other of order p + 1. Let LTE(p) and LTE(p+1) denote the local truncation errors in
going from tn to tn+1 for the two methods, and let xn+1 and x̃n+1 be the corresponding numerical
solutions. As we have seen, LTE(p) and LTE(p+1) are O(hp+1) and O(hp+2), respectively. If we
assume6 xn to be equal to the exact solution x(tn), we have

LTE(p) = x(tn+1) − xn+1, (4.15)
LTE(p+1) = x(tn+1) − x̃n+1. (4.16)

Subtracting Eq. 4.16 from Eq. 4.15, we get

LTE(p) − LTE(p+1) = x̃n+1 − xn+1 . (4.17)

Since LTE(p+1) is expected to be much smaller than LTE(p), we can ignore it and obtain

LTE(p) ≈ x̃n+1 − xn+1 . (4.18)

Having obtained an estimate for the LTE (denoted by LTEest) resulting from a time step of
hn = tn+1 − tn, we can now check if the solution should be accepted or not. If LTEest is larger than the
specified tolerance, we reject the current step and try a smaller step. If LTEest is smaller than the
tolerance, we accept the solution obtained at tn+1 (i.e., xn+1). In this case, there is a possibility that

6In reality, xn and x(tn) would not be the same, but Eq. 4.17 remains valid (see [9]).

38 SEQUEL Users’ Manual: Part 1

our current time step hn is too conservative, and we explore whether the next time step (i.e.,
hn+1 = tn+2 − tn+1) can be made larger.

Fig. 4.8 shows a flow chart for implementing adaptive time steps based on the above ideas. The
tolerance τ specifies the maximum value of the LTE per time step (i.e., LTE/h) that is acceptable.
The method of order p is used for actually advancing the solution, and the method of order p + 1 is
used only to compute LTEest using Eq. 4.18. Since LTE/h is O(hp), we can write

LTE(p)

hn
=
|x̃n+1 − xn+1|

hn
= Khp

n . (4.19)

Next, we compute the time step (≡ δ × hn) which would result in an LTE per time step equal to τ,
using

τ = K(δhn)p. (4.20)

Compute LTEest

h = hmin ? Write error
message. Stop.

If h > hmax, h← hmax

If h < hmin, h← hmin

t = t0, x = x0, h = hmax
(initialize)

If δ < δmin, δ← δmin
If δ > δmax, δ← δmax

t = t + h
Compute xn+1
Output xn+1

Stop

LTEest/h < τ ?

Compute δ

yes

no

yes

no

h← δ × h

t > tend ?

yes

no

Figure 4.8: Flow chart for adaptive time step selection based on computation of local truncation error.

Numerical Solution of ODEs: Explicit Methods 39

From Eqs. 4.19 and 4.20, we obtain δ as7

δ =

(
τhn

|x̃n+1 − xn+1|
)1/p

. (4.21)

If the current LTE per time step (in going from tn to tn+1) is larger than τ (i.e., δ < 1), we reject the
current time step and try a new time step hn ← δ × hn. If it is smaller than τ, we accept the current
solution (xn+1). In this case, δ is larger than one, and the next time step is taken to be hn+1 = δ × hn.

Since drastic changes in the time step are not suitable from the stability perspective (see [9]),
the value of δ is generally restricted to δmin ≤ δ ≤ δmax, as shown in the flow chart. Minimum and
maximum limits are also imposed on the step size (hmin and hmax in the flow chart).

Different pairs of methods – of orders p and p + 1 – are available in the literature for
implementing the above scheme. In the commonly used Runge-Kutta-Fehlberg (RKF45) pair, which
consists of an order-4 method and an order-5 method, the LTE is estimated from [11]

xn+1 = xn + hn

(
25

216
f0 +

1408
2565

f2 +
2197
4104

f3 − 1
5

f4

)
,

x̃n+1 = xn + hn

(
16

135
f0 +

6656
12825

f2 +
28561
56430

f3 − 9
50

f4 +
2

55
f5

)
,

(4.22)

where
f0 = f (tn, xn),

f1 =

(
tn +

hn

4
, xn +

1
4

f0

)
,

f2 =

(
tn +

3hn

8
, xn +

3
32

f0 +
9
32

f1

)
,

f3 =

(
tn +

12hn

13
, xn +

1932
2197

f0 − 7200
2197

f1 +
7296
2197

f2

)
,

f4 =

(
tn + hn, xn +

439
216

f0 − 8 f1 +
3680
513

f2 − 845
4104

f3

)
,

f5 =

(
tn +

hn

2
, xn − 8

27
f0 + 2 f1 − 3544

2565
f2 +

1859
4104

f3 − 11
40

f4

)
.

(4.23)

Note that the order-4 part of this method – the computation of xn+1 in Eq. 4.22 – is different from the
classic RK4 method we have seen earlier (Eq. 4.8). The order-4 and order-5 methods in the RKF45
scheme are designed such that, with little extra computation (over the order-4 method), we get the
order-5 result (x̃n+1 in Eq. 4.22).

Let us illustrate the effectiveness of the RKF45 method with an example. Consider the RC
circuit shown in Fig. 4.9. The behaviour of this circuit is described by the ODE,

dvc

dt
=

1
τ

(vs − vc), (4.24)

7Typically, δ is made a little smaller than that given by Eq. 4.21, see [11]. Also, note that controlling the LTE (rather

than LTE/h) is also possible, and in that case Eq. 4.21 gets replaced by δ =

(
τ

|x̃n+1 − xn+1|
)1/(p+1)

.

40 SEQUEL Users’ Manual: Part 1

where τ= RC, and vs is a known function of time. In particular, we will consider vs(t) to be a pulse
going from 0 V to 1 V at t1 = 0.5 sec with a rise time of 0.05 sec and from 1 V back to 0 V at t2 = 2 sec
with a fall time of 0.05 sec. Fig. 4.10 shows the solution of Eq. 4.24 obtained with the RKF45
method with a tolerance τ= 10−4. As we expect, the time steps are small when the solution is
changing rapidly (i.e., near the pulse edges) and large when it is changing slowly.

The tolerance τ needs to be chosen carefully. If it is large, it may not give us a sufficiently
accurate solution. For example, with τ= 10−2, the solution differs significantly from that obtained
with τ= 10−4, as shown in Fig. 4.11. On the other hand, reducing τ beyond 10−4 does not change the
solution any more8 (see Fig. 4.12), but it does add more time points. Fig. 4.13 shows the total
number of time points (Ntotal) used by the RKF45 method in covering the time interval from tstart to
tend (0 to 10 sec) as a function of τ. With a tighter tolerance (smaller τ), the number of time points to
be simulated goes up and so does the simulation time. For this specific problem, we would not even
notice the difference in the computation time, but for larger problems (with a large number of
variables or a large number of time points or both), the difference could be substantial.

Sometimes, there is an “aesthetics” issue. What has aesthetics got to do with science, we may
ask. Consider the same RC circuit of Fig. 4.9 with a sinusoidal voltage source Vm sinωt. Fig. 4.14
shows the results obtained with τ= 10−5 and τ= 10−6. In the former case, the solution is accurate,
i.e., the numerical solution agrees closely with the analytical solution. However, it appears
discontinuous because of the small number of time points. In the latter case, the RKF45 method
forces a larger number of time points (smaller time steps) in order to meet the tolerance requirement,
and the solution now appears continuous, more in tune with what we want to see.

vcvs

R

C

Figure 4.9: RC circuit example.

Explicit methods such as RK4 (with a fixed time step) and RKF45 (with variable/auto time
steps) are commonly used to solve several engineering problems of interest. They are attractive since
the implementation is so simple and straightforward, notwithstanding the aura of mystery created
around them by some weavers. An induction motor control example and the results obtained with
the RKF45 method are shown in Fig. 4.15.

8We are being somewhat lax about terminology here – When we say that the solution does not change, what we mean
is, “I cannot make out the difference, if any” which is often good enough in practice. Looking through the microscope for
a change in the fifth decimal place is generally not called for in engineering problems.

Numerical Solution of ODEs: Explicit Methods 41

vs

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

t (sec)

vc

Figure 4.10: Numerical solution obtained for the RC circuit of Fig. 4.9 using the RKF45 method with τ= 10−4.
The other parameters are R = 1 Ω, C = 1 F, δmin = 0.2, δmax = 2, hmin = 10−5, hmax = 0.5.

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0
vs

vc

t (sec)

Figure 4.11: Numerical solutions obtained for the RC circuit of Fig. 4.9 using the RKF45 method with two
values of τ: 10−2 (squares) and 10−4 (crosses). The other parameters are the same as in Fig. 4.10.

42 SEQUEL Users’ Manual: Part 1

vs

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

t (sec)

vc

Figure 4.12: Numerical solutions obtained for the RC circuit of Fig. 4.9 using the RKF45 method with two
values of τ: 10−4 (crosses) and 10−6 (blue graph). The other parameters are the same as in Fig. 4.10.

10−5 10−4 10−3 10−2 10−1
20

40

60

80

100

120

Tolerance (τ)

N
to

ta
l

Figure 4.13: Total number of time points Ntotal used by the RKF45 method in computing the numerical solution
for the RC circuit of Fig. 4.9 as a function of tolerance τ.

Numerical Solution of ODEs: Explicit Methods 43

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3
−0.2

−0.1

0

0.1

0.2

0.3

t

x
x

(a)

(b)

τ= 10−5

τ= 10−6

Figure 4.14: Numerical solutions obtained for the RC circuit of Fig. 4.9 with vs = sinωt where ω= 2π. Light
blue curve: analytical solution, Crosses: numerical solution obtained with the RKF45 method. (a) τ= 10−5,
(b) τ= 10−6. The other parameters are the same as in Fig. 4.10.

44 SEQUEL Users’ Manual: Part 1

Figure 4.15: Simulation of V/ f control of an induction motor using the RKF45 method. Circuit file:
x vbyf1.sqproj

Numerical Solution of ODEs: Explicit Methods 45

4.5 Stability

Apart from being sufficiently accurate, a numerical method for solving ODEs must also be stable,
i.e., its “global error” |x(tn) − xn| must remain bounded9. Broadly, we can talk of two types of
stability.

(a) Stability for small h: Based on our discussion of local truncation error, we would expect that
the accuracy of the numerical solution would generally get better if we use smaller step sizes.
However, this is not true for all numerical methods. We can have a method which is accurate
to a specified order in the local sense but is unstable in the global sense (i.e., the numerical
solution “blows up” as time increases) even if the time steps are small (see [7] for an example).
Such methods are of course of no use in circuit simulation, and we will not discuss them here.

(b) Stability for large h: All commonly used numerical methods for solving ODEs (including the
FE and RK4 methods we have seen before) can be expected to work well when the step size h
is sufficiently small. When h is increased, we expect the solution to be less accurate, but quite
apart from that, the solution may also become unstable, and that is a serious concern. In the
following, we will illustrate this point with an example.

Consider the RC circuit shown in Fig. 4.16 (a) which can be described by the ODEs

dV1

dt
=

1
R1C1

(Vs − V1) − 1
R2C1

(V1 − V2),

dV2

dt
=

1
R2C2

(V1 − V2).
(4.25)

With a sinusoidal input, Vs = Vm sinωt, we can use phasors (see Fig. 4.16 (b)) to estimate V1(t) in
steady state. In particular, let R1 = 1 kΩ, R2 = 2 kΩ, C1 = 540 nF, C2 = 1 mF. With these component
values, and with a frequency of 50 Hz, we have Z1 =− j5.9 kΩ, Z2 =− j3.2 Ω. Since Z1 is relatively
large, we can replace it with an open circuit. Similarly, since Z2 is small, we can replace it with a
short circuit. The approximate solution for V1 is then simply

V1 ≈ Vs
R2

R1 + R2
. (4.26)

Vs

R1 R2R1 R2
V2

V1

Z1 Z2

V2
V1

C1 C2Vs

(a) (b)

Figure 4.16: RC circuit with two time constants: (a) time-domain circuit, (b) frequency-domain circuit.

9We remind ourselves that x(tn) and xn are the exact and numerical solutions, respectively, at t = tn.

46 SEQUEL Users’ Manual: Part 1

The numerical solution obtained with the RK4 method with a time step of h = 1 msec is shown
in Fig. 4.17 (the light blue curve). Its amplitude and phase are in agreement with Eq. 4.26.

Do we expect any changes if C1 is changed from 540 nF to 535 nF? Nothing, really. This
change is not going to significantly affect the value of Z1, and we do not expect the solution to
change noticeably. However, as seen in Fig. 4.17, the numerical solution (obtained with the same
RK4 method and with the same step size) is dramatically different. It starts off being similar, but then
takes off toward infinity.

Why does the value of C1 make such a dramatic difference? The answer has to do with
stability of the RK4 method. Table 4.1 gives the condition for stability of a few explicit RK methods

when applied to the ODE
dx
dt

=− x
τ

. We see that the RK4 method is unstable when the step size
exceeds about 2.8 τ (2.785 τ to be more precise). If there are several time constants governing the set
of ODEs being solved, this limit still holds with τ replaced by the smallest time constant.

Method Maximum step size

RK-1 (same as FE) 2 τ

RK-2 2 τ

RK-3 2.5 τ

RK-4 2.8 τ

Table 4.1: Maximum step size allowed for stability of explicit Runge-Kutta methods when used for solving
dx
dt

=− x
τ

.

Let us see the implications of the above limit in the context of our RC example described by
Eq. 4.25. Fig. 4.18 shows the variation of the time constants with C1. The time constant marked τ2 is
the smaller of the two, and it is 0.356645 msec and 0.359978 msec for C1 = 535 nF and 540 nF,
respectively. For each of these, the maximum time step hmax to guarantee stability of the RK4
method can be obtained as 2.785 τ2. For C1 = 540 nF, hmax is 1.0025 msec. The actual time step used
for the numerical solution (1 msec) is smaller than this value, and the solution is stable. For
C1 = 535 nF, hmax is 0.9933 msec; the actual time step (1 msec) is now larger, leading to instability.

We can handle the instability problem by reducing the RK4 time step. However, we generally
do not have a good idea of the time constants in a given circuit, and we would then need to carry out
a cumbersome trial-and-error process of choosing a time step, checking if it works, reducing it if it
does not, and so on. In these situations, the adaptive (auto) time step methods – such as the RKF45
method discussed in Sec. 4.4 – can be used to advantage. When a given time step leads to instability,
the LTE also goes up, and the adaptive step method automatically reduces the time step suitably
without any intervention from the user. This is indeed an attractive choice. Let us illustrate it with an
example, again the RC circuit of Fig. 4.16 but with different component values, viz., R1 = 1 kΩ,
R2 = 1 kΩ, C1 = 1 µF, f = 1 kHz. As C2 is varied, the time constants change (see Fig. 4.19). When the
RKF45 method is used to solve the ODEs (Eq. 4.25), the time step is automatically adjusted to meet
the specified tolerance requirement, and a stable solution (not shown) is obtained. As C2 is made
smaller, the smaller of the two time constants becomes smaller, and the step sizes employed by the
RKF45 algorithms also become smaller (see Fig. 4.20) as we would expect.

Numerical Solution of ODEs: Explicit Methods 47

0 20 40 60 80 100 120 140 160 180 200

8

6

4

2

0

C1 = 535 nF
C1 = 540 nF

Time (msec)

V
1

Figure 4.17: Numerical solution obtained with the RK4 method for the circuit of Fig. 4.16 for two values of C1.
The other parameters are R1 = 1 kΩ, R2 = 2 kΩ, C2 = 1 mF, Vs = Vm sinωt, with Vm = 1 V, f = 50 Hz. The time
step is h = 1 msec.

10−7 10−6 10−5

101

100

10−1

10−2

10−3

10−4

10−5

τ1

τ2

C1 (F)

Figure 4.18: Time constants for the circuit of Fig. 4.16 (in seconds) as a function of C1 with R1 = 1 kΩ,
R2 = 2 kΩ, C2 = 1 mF.

48 SEQUEL Users’ Manual: Part 1

Sounds good, but there is a flip side. Take for example C2 = 10−10 F. The impedance Z2 is then
(with f = 1 kHz) − j64 MΩ and is an open circuit for all practical purposes. The circuit reduces to a
series combination of R1 and C1, and the solution is independent of C2 (as long as it is small
enough). We now have an unfortunate situation in which C2 has no effect on the solution, yet it
forces small time steps because of stability considerations.

The above situation is an example of “stiff” circuits in which the time constants are vastly
different. We are often not interested in tracking the solution of a stiff circuit on the scale of the
smallest time constant, but because of the stability constraints imposed by the numerical method, we
are forced to use small time steps. This is a drawback of explicit methods since, like the RK4
method, they are conditionally stable.

Fig. 4.21 shows a Simulink implementation of the same equations (Eq. 4.25). The “model” (in
Simulink lingo10) was simulated with the ode45 algorithm. The time step variation for different
values of C2 is shown in Fig. 4.22, and its impact on the number of time points and the CPU time is
shown in Table 4.2. Surprise, surprise, the rich cousin ode45 – proprietary and what not – gets the
same treatment as the poor cousin – our humble, free, open, publicly available RKF45! Sometimes,
the world does seem to be flat.

C2 (F) TCPU Ntotal

10−6 0.35 52

10−7 0.36 92

10−8 0.36 305

10−9 0.39 3017

10−10 0.65 30133

10−11 3.03 301307

10−12 26.23 3013054

Table 4.2: CPU time in seconds (TCPU) and total number of time points (Ntotal) required to solve the model
shown in Fig. 4.21 with Simulink using the ode45 method for various values of C2. Note that the CPU time
should be treated as representative here; it would depend on the computer configuration being used.

10All over the world, the term “model” is commonly used to mean a representation of a component such as an electronic
device, a machine, a heat sink, etc. Putting together several components makes up a circuit or a system. It is not clear why
Simulink vendors have chosen to use “model” to mean a circuit or a system. Just to be different or is there some esoteric
justification? We will never know since weavers do not share their secrets!

Numerical Solution of ODEs: Explicit Methods 49

10−1

10−3

10−5

10−7

10−9

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5

τ1

τ2

C2 (F)

Figure 4.19: Time constants for the circuit of Fig. 4.16 (in seconds) as a function of C2 with R1 = 1 kΩ,
R2 = 1 kΩ, C1 = 1 µF.

50 SEQUEL Users’ Manual: Part 1

1.0 1.5 2.0 2.5 3.0

10−7

10−8

10−6

10−5

10−4

10−3

Ti
m

e
st

ep
h

(s
ec

)

Time (sec)

C2 = 10−6 F

10−11 F

10−10 F

10−8 F

10−7 F

10−9 F

Figure 4.20: Time step (h) used by the RKF45 method versus elapsed time (t) in solving the set of ODEs
for the circuit of Fig. 4.16 (Eq. 4.25) for different values of C2. The other circuit parameters are R1 = 1 kΩ,
R2 = 1 kΩ, C1 = 1 µF, f = 1 kHz. The following algorithmic parameters were used: τ= 10−3, δmin = 0.2, δmax = 2,
hmin = 10−5, hmax = 0.5.

Numerical Solution of ODEs: Explicit Methods 51

Vc2

1
s

Vc1

1
s

Sine Wave

Scope1

Scope

Gain2

-K-

Gain1

-K-

Gain

-K-

Figure 4.21: Simulink implementation of the circuit of Fig. 4.16. (Gain1= 1/R1C1, Gain2= 1/R2C1,
Gain= 1/R2C2.)

52 SEQUEL Users’ Manual: Part 1

0.5 1 1.5 2 2.5

x 10-3

-12

-10

-8

-6

-4

-2

0

Time (sec)

Lo
g(

dt
)

c2=1uF
c2=100nF
c2=10nF
c2=1nF
c2=100pF
c2=10pF
c2=1pF

Figure 4.22: Time step ∆t used by Simulink versus time with the ode45 algorithm for the problem shown in
Fig. 4.21 for various values of C2. The other component values are R1 = 1 kΩ, R2 = 1 kΩ, C1 = 1 µF (same as
those mentioned in Fig. 4.20).

Numerical Solution of ODEs: Explicit Methods 53

4.6 What are those arrows in Simulink?

Consider the ODE,
dy
dt

= k1x1(t) + k2x2(t), (4.27)

where x1 = A1 sinω1t and x2 = A2 sinω2t are known functions of time. The Simulink implementation
of Eq. 4.27 is shown in Fig. 4.23.

x1

x2

x3

x4

x5 x6

(y)

Figure 4.23: Implementation of Eq. 4.27 in Matlab/Simulink.

Simulink also gives the order in which the various blocks are executed11, as marked in red in
the figure. What does this order mean? Let us try to understand this point by writing the Forward
Euler equation corresponding to Eq. 4.27:

yn+1 = yn + ∆t
(
k1xn

1 + k2xn
2
)
, (4.28)

where ∆t = tn+1 − tn is the time step. A program like Simulink would internally execute the following
steps12 in solving the ODE with the FE method:

1. Start with n = 0 (i.e., t = t0, the starting time for the simulation).

Compute x0
1 and x0

2 (i.e., x1 at t = t0 and x2 at t = t0).

Use yn = y(0), the initial value for y.

2. Compute y(1) using Eq. 4.28.

3. Make n← n + 1 and repeat until t = tfinal, the ending time for the simulation.

It is now easy to understand why we require a certain order of execution (denoted by the red labels in
Fig. 4.23). The variables for tn+1 are updated as follows.

1. yn+1 = yn + ∆t × xn
5 (element marked 0:0)

2. xn+1
1 = A1 sinω1tn+1 (element marked 0:2)

3. xn+1
3 = k1 xn+1

1 (element marked 0:3)

11Note that the block “1/s” is in integrator. If x and y are the input and output, respectively, of the integrator, we have

y =

∫
x dt which is the same as

dy
dt

= x.
12Because of the extreme secrecy observed by all weavers, we don’t really know what exactly goes on internally in the

program; what we have described here should therefore be treated as a likely scenario.

54 SEQUEL Users’ Manual: Part 1

4. xn+1
2 = A2 sinω2tn+1 (element marked 0:4)

5. xn+1
4 = k2 xn+1

2 (element marked 0:5)

6. xn+1
5 = xn+1

3 + xn+1
4 (element marked 0:6)

When we complete this sequence of computations, we have performed one step of the simulation.
We then proceed to the next step, and so on until tfinal is reached. Clearly, the order in which the
above steps are executed is important13. For example, we could not have carried out step 3 before
step 2 since step 3 depends on the updated value of x1.

How can a program like Simulink figure out the correct order for processing the elements? The
answer lies in the arrows in the block diagram. With arrows, the input and output nodes of the
element can be distinguished. With that information, the program can order the elements such that
the input values are updated before the output values for each element. It is for this reason that a
Simulink block diagram has arrows connecting the different blocks.

Next, we consider a system of two ODEs given by

dx8

dt
= x5 + x2 x4 , (4.29)

dx5

dt
= x1 + x2 , (4.30)

where x1, x2, x4 are known functions of time, viz., x1 = A1 sinω1t, x2 = A2 sinω2t, and
x4 = k0 = constant. The Simulink implementation of the above equations is shown in Fig. 4.24. In this
case, the Forward Euler integration formulas are given by

xn+1
8 = xn

8 + ∆t × (
xn

5 + xn
2 xn

4
)
, (4.31)

xn+1
5 = xn

5 + ∆t × (
xn

1 + xn
2
)
. (4.32)

The ordering shown in Fig. 4.24 (in red) corresponds to the following operations:

1. xn+1
8 = xn

8 + ∆t × xn
7 (element marked 0:0)

2. xn+1
4 = k0 (element marked 0:2)

3. xn+1
5 = xn

5 + ∆t × xn
3 (element marked 0:3)

4. xn+1
2 = A2 sinω2tn+1 (element marked 0:4)

5. xn+1
6 = xn+1

2 xn+1
4 (element marked 0:5)

6. xn+1
1 = A1 sinω1tn+1 (element marked 0:6)

7. xn+1
3 = xn+1

1 + xn+1
2 (element marked 0:7)

8. xn+1
7 = xn+1

5 + xn+1
6 (element marked 0:8)

13As we shall see later, the question of ordering the elements does not arise when an implicit method is used to solve
the ODEs.

Numerical Solution of ODEs: Explicit Methods 55

x1 x3 x5 x7 x8

x4

x2
x6

Figure 4.24: Implementation of Eqs. 4.29 and 4.30 in Matlab/Simulink.

It is easy to see that execution of the above sequence of steps is equivalent to updating x8 and
x5 using the FE formulas14 given by Eqs. 4.31 and 4.32. An important point to note is the simplicity
of the process. Each of the above steps is straightforward – almost trivial – to execute. In fact, even a
nonlinear operation (such as x6 = x2 × x4 in the block marked 0:5) requires no special consideration;
it is just another evaluation. In this respect, more complicated explicit methods such as the
fourth-order Runge-Kutta method, the ode45 method in Simulink, etc. are no different. They all
involve evaluation of a left-hand side using known numbers on the right-hand side.

Algebraic Loops

x3
x2

x4

x1 k1

k2

Figure 4.25: Block diagram showing an algebraic loop.

Consider the feedback loop shown in Fig. 4.25. We can write the following equation for this
system:

x3 = k1 x2 = k1 (x1 − x4) = k1 (x1 − k2 x3) , (4.33)

giving

x3 =
k1

1 + k1k2
x1 . (4.34)

14Note that the ordering is not unique; we can find other ways of ordering the blocks as well. All we want is one
ordering that will work.

56 SEQUEL Users’ Manual: Part 1

This result is valid at all times, and we can obtain x3(tn) in terms of x1(tn) simply by evaluating
the above formula. Let us see if we can arrive at the same result by writing out the equations for the
respective blocks, as we did earlier. We get the following equations.

xn+1
2 = xn+1

1 − xn+1
4 , (4.35)

xn+1
4 = k2 xn+1

3 , (4.36)
xn+1

3 = k1 xn+1
2 . (4.37)

As before, we wish to evaluate these formulas one at a time, but this leads to a conflict.
Eqs. 4.35 to 4.37 are supposed to be valid simultaneously. For example, the value of xn+1

3 in
Eqs. 4.36 and 4.37 is supposed to be the same. However, since Eq. 4.37 is evaluated after Eq. 4.36,
the two values are clearly different. This type of conflict occurs when there is an “algebraic loop” in
the system, i.e., there is a loop in which the variables are related through purely algebraic
equations15, not involving time derivatives16.

In Simulink, algebraic loops are allowed to some extent, and they are treated differently than
the rest of the equations by iterating through the equations related to the algebraic loop(s). In the
above example, if we evaluate the equations in the order 1→ 2→ 3→ 1→ 2→ 3→ · · · , the
values of xn+1

1 , xn+1
2 , xn+1

3 may finally converge to the correct solution, i.e., values which
simultaneously satisfy the three equations (Eqs. 4.35 to 4.37).

Will such an iterative procedure always converge? That will depend on the algebraic equation
involved and of course on the method used for iterating through the equations. In several practical
applications (e.g., electronic circuits), there are many algebraic loops in the system, and some of the
equations could be highly non-linear. In such cases, Simulink may slow down considerably (since
the algebraic loops require special treatment) or worse, it may fail to find a solution.

To circumvent the problems associated with algebraic loops, Simulink users are advised by the
vendor to do the following.

(a) Avoid algebraic loops as far as possible. For example, instead of the system shown in

Fig. 4.25, we could use a single block, x3 = k x1 with k =
k1

1 + k1k2
pre-computed.

(b) Insert a delay element to “break” an algebraic loop. For example, we can replace the block
diagram of Fig. 4.25 with that of Fig. 4.26 in which a “delay” element is added in the loop.
How does this help?

The system equations can now be written as

xn+1
4 = xn

3a ,

xn+1
2 = xn+1

1 + xn+1
4 ,

xn+1
3 = k1 xn+1

2 ,

xn+1
3a = k2 xn+1

3 .

We can see that the variables have now got “decoupled,” allowing a sequential evaluation of
the formulas, not requiring any iterative procedure. If the delay is small compared to the time

15Simulink manual uses the term “Direct feedthrough” which sounds a little more exotic.
16If there is an algebraic loop in the system, the elements (blocks) in the system cannot be ordered since there is a cyclic

dependence. A simulator like Simulink would first try to order the elements. If the ordering algorithm fails, the simulator
knows that there is an algebraic loop somewhere.

Numerical Solution of ODEs: Explicit Methods 57

constants in the overall system, this approach – however crude it may sound – gives acceptable
accuracy although it does change the original problem to some extent.

k2

x1 x2 x3

x4

k1

∆ x3a

Figure 4.26: Block diagram showing breaking of an algebraic loop with a delay block.

The vendor acknowledges that the above two solutions cannot be pushed too far. There are
cases when these ad hoc, quick-and-dirty fixes will not help. The vendor suggests a way out – buy
another expensive package (from the same vendor) which will handle algebraic loops with the
respect they deserve, i.e., by employing a robust iterative procedure such as the Newton-Raphson
method for solving non-linear equations. Before taking this offer, the reader would do well to look
around and check if there are alternative products which will do the same job for a lower price or in a
better manner or both.

Acknowledgments

The author would like to acknowledge the contribution of Aneena Felix and Sai Suresh
Veesam in generating the Simulink results reported in this chapter. This work was performed as part
of the project “Simulation Centre for Power Electronics and Power Systems” under the National
Mission on Power Electronics Technology (NaMPET), Phase 2, sponsored by the Department of
Electronics and Information Technology, Govt. of India.

Chapter 5

Is y=
dx
dt

same as x=
∫

y dt ?

Mathematically, y =
dx
dt

is the same as x =

∫
y dt (assuming that the constant of integration is suitably

assigned). However, the numerical solutions obtained from the two equations give different results in
Matlab/Simulink. It is the purpose of this chapter to observe this difference, understand its origin,
and look at the implications for simulation of filters1.

Sine Wave
Scope

Integrator

1
s

Derivative

du/dt

Figure 5.1: Simulink implementation of a differentiator followed by an integrator, with an input x = sin t.

Consider the Simulink schematic shown in Fig. 5.1. We expect the output waveform y(t) to be
identical to the input waveform x(t) (assuming that we have set the initial condition y(0) = 0).
However, numerical results show some difference between the two, as shown in Figs. 5.2 and 5.3.
The discrepancy is larger when a larger time step is used. Why does this happen?

The answer has to do with the fact that the integrator and differentiator elements are
implemented in Simulink in drastically different ways. The integrator is implemented in a consistent
manner, using well-known numerical integration (NI) methods such as the Runge-Kutta method and
its variants. Let us consider the Forward Euler (FE) method, the simplest of NI schemes, to illustrate
the implementation of an integrator. For the block diagram shown in Fig. 5.4 (a). the FE method
gives

y =

∫
x dt → dy

dt
= x→ yi+1 = yi + h xi , (5.1)

where xi and yi represent the numerical solution at ti, and h = ti+1 − ti is the time step. Eq. 5.1 has to
be solved together with the equation for the sinusoidal source, viz.,

xi = sinωti . (5.2)

1This chapter is mainly about a subtle implementation issue; it can be skipped without loss of continuity.

58

Is y=
dx
dt

same as x=
∫

y dt ? 59

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi 9pi/2
-1.5

-1

-0.5

0

0.5

1

1.5

Time

input
output

Figure 5.2: Simulink results for the block diagram of Fig. 5.1 with a time step of 0.2 seconds, using the ode4
algorithm.

60 SEQUEL Users’ Manual: Part 1

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi 9pi/2
-1.5

-1

-0.5

0

0.5

1

1.5

Time

input
output

Figure 5.3: Simulink results for the block diagram of Fig. 5.1 with a time step of 0.5 seconds, using the ode4
algorithm.

(a) (b)

∫
d

dt
x

sinωt

y
x

sinωt

y

Figure 5.4: (a) An integrator with a sinusoidal input, (b) A differentiator with a sinusoidal input.

Is y=
dx
dt

same as x=
∫

y dt ? 61

input output
Sine Wave ScopeIntegrator

1
s

Gain

-1

Constant

-1

Figure 5.5: Simulink schematic diagram for obtaining cos t from sin t using an integrator.

That is straightforward – We evaluate xi from Eq. 5.2, substitute it in Eq. 5.1 to obtain yi+1, and
repeat this procedure to obtain yi+2, yi+3, etc. For other methods used by Simulink (such as
Runge-Kutta 4), the idea remains the same although the computation is more complex.

Now consider the block diagram shown in Fig. 5.4 (b). Using the FE method, we would obtain,
dx
dt

= y→ xi+1 = xi + h yi . (5.3)

Using the above equation, we can obtain xi+1. However, xi+1 must also satisfy

xi+1 = sinωti+1 . (5.4)

Clearly, there is a conflict between these two computations, and the FE approach (and other methods
such as RK4) cannot be used. Simulink therefore uses an estimate of the derivative whenever the

derivative block (denoted by
du
dt

in the Simulink library) is present in the user’s schematic. The
derivative is estimated using past values xi, xi−1, etc. For example, a simple backward difference
approximation is given by2

dx
dt

∣∣∣∣∣
ti

=
xi − xi−1

ti − ti−1
. (5.5)

This method introduces a lag between the numerically computed
dx
dt

and the expected value of
dx
dt

, which becomes more pronounced when the time step is large. We have seen a manifestation of
this phenomenon in Figs. 5.2 and 5.3.

To see this effect more clearly, let us generate y = cos t by employing an integrator and a
differentiator, as shown in Figs. 5.5 and 5.6. Figs. 5.7, 5.8, 5.9, 5.10 show the results obtained with
Simulink. The error introduced by the differentiator can be clearly seen by comparing the plots, in
particular by looking at the zero-crossing time of the output waveform. When an integrator is used,
the results are not sensitive to the time step; when a differentiator is used, the results show a
significant dependence on the time step.

The difference between implementation of an integrator and a differentiator has other
consequences. We will illustrate this point with respect to a first-order filter. For a low-pass filter
(LPF), we have

y(s) =
1

1 + (s/ω0)
→ y(t) +

1
ω0

dy
dt

= x(t) , (5.6)

2Whether Simulink uses a first-order backward difference formula is not clear; something similar is probably being
used.

62 SEQUEL Users’ Manual: Part 1

 output
Sine Wave ScopeDerivative

du/dtinput

Figure 5.6: Simulink schematic diagram for obtaining cos t from sin t using a differentiator.

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi 9pi/2
-1.5

-1

-0.5

0

0.5

1

1.5

Time

output

Figure 5.7: Simulink output for the schematic of Fig. 5.5, using the ode4 method with a time step of 0.2
seconds.

Is y=
dx
dt

same as x=
∫

y dt ? 63

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi 9pi/2
-1.5

-1

-0.5

0

0.5

1

1.5

Time

output

Figure 5.8: Simulink output for the schematic of Fig. 5.5, using the ode4 method with a time step of 0.5
seconds.

64 SEQUEL Users’ Manual: Part 1

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi 9pi/2
-1.5

-1

-0.5

0

0.5

1

1.5

Time

output

Figure 5.9: Simulink output for the schematic of Fig. 5.6, using the ode4 method with a time step of 0.2
seconds.

Is y=
dx
dt

same as x=
∫

y dt ? 65

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi 9pi/2
-1.5

-1

-0.5

0

0.5

1

1.5

Time

output

Figure 5.10: Simulink output for the schematic of Fig. 5.6, using the ode4 method with a time step of 0.5
seconds.

66 SEQUEL Users’ Manual: Part 1

outputinput

Sine Wave
Scope

Integrator

1
s

Gain

-K-

Figure 5.11: Simulink block diagram of LPF (see text).

outputinput

Sine Wave
Scope

Integrator

1
s

Gain1

-K-

Gain

-K-

Derivative

du/dt

Figure 5.12: Simulink block diagram of HPF (see text).

i.e.,
dy
dt

= ω0x(t) − ω0y(t) , (5.7)

which can be handled with standard explicit NI methods (e.g., ode4, ode45, ode23 in Simulink).
For a high-pass filter (HPF), we have

y(s) =
(s/ω0)

1 + (s/ω0)
→ y(t) +

1
ω0

dy
dt

=
1
ω0

dx
dt
, (5.8)

The term
dx
dt

needs to be computed approximately (see Eq. 5.5), and that gives rise to
numerical errors over and above (and generally much larger than) the errors due to the NI method
itself (such as ode4 and ode45).

As an example, let us consider first-order low-pass and high-pass filters (Eqs. 5.6, 5.8) with
f0 = 1 Hz. If the signal frequency is equal to f0 (i.e., ω=ω0), the phase difference between the output
y(t) and the input x(t) is expected to be −45◦ and +45◦ for the integrator and differentiator,
respectively. This phase difference corresponds to ±T/8 on the time axis, i.e., the zero-crossing
points of the input and output are expected to differ by ±T/8.

Figs. 5.11 and 5.12 show the block diagrams of the LPF (Eq. 5.6) and HPF (Eq. 5.8) as
implemented in Simulink. Figs. 5.13, 5.14, 5.15 show the Simulink results for the LPF, as obtained
with the ode4 method with a time step of 0.02, 0.05, and 0.1 second, respectively. Note that the
phase difference continues to be −45◦ even when a relatively large time step is used3. On the other

3The waveforms appear segmented when a large time step is used. As we have seen in Chapter 4, this is a matter of
appearance rather than accuracy of the numerical solution.

Is y=
dx
dt

same as x=
∫

y dt ? 67

hand, for the HPF case, the phase difference between the input and output starts deviating from 45◦

as the time step is made larger (see Figs. 5.16, 5.17, 5.18). Table 5.1 summarises the LPF and HPF
results.

Time Step (sec) 0.02 0.05 0.1
Phase Diff in LPF (˚) -45 -45 -45
Phase Diff in HPF (˚) 42.5 38.7 33.0

 Table 5.1: Phase difference obtained with the Simulink ode4 method for different time steps (see text).

Simulink also provides a “transfer function” block which can be used directly as a high-pass
filter. Using this block, we can implement

H(s) =
s

1 + s
, (5.9)

which is a HPF with ω0 = 1 rad/s (see Eq. 5.8). When this block is used, the output waveform shows4

the expected phase shift of +45◦ for all three time steps, viz., 0.02, 0.05, and 0.1 s, and the
discrepancy we observed in Table 5.1 is removed. What is the secret?

The secret (likely) is that a transfer function with s, s2, etc. in the numerator can also be
written using long division and partial fractions. An expression of the form

H(s) =
N(s)
D(s)

=
a0 + a1s + · · · + aM sM

b0 + b1s + · · · + bN sN (5.10)

with M ≤ N can be reduced to5

H(s) = A0 +
A1

s − z1
+

A2

s − z2
+ · · · + AN

s − zN
. (5.11)

With this change, y(s) = H(s) x(s) becomes

y(s) = y0(s) + y1(s) + · · · + yN(s) , (5.12)

where y0(s) = A0 x(s) , y1(s) =
A1

s − z1
x(s), etc. In the time domain, we get

y0(t) = A0x(t),
dy1

dt
= A1x + z1y1, · · · , y(t) =

N∑

0

yi(t). (5.13)

Note that the second equation involving
dy1

dt
can be handled using standard explicit methods

(ode4 etc). In effect, the computation of
dx
dt

,
d2x
dt2 , etc. has been bypassed, and the derivative

approximation (Eq. 5.5) is not required any more.

4The simulation results are not given here.
5We will assume that the roots of D(s) (i.e., z1, z2 · · ·) are real; however, the method can be extended to handle complex

roots of D(s) as well.

68 SEQUEL Users’ Manual: Part 1

3 3.125 3.25 3.375 3.5 3.625 3.75 3.875 4 4.125 4.25 4.375 4.5 4.625 4.75 4.875
-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

Time

LPF

Input
Output

Figure 5.13: Simulink output for the low-pass filter (see text) obtained with the ode4 method with a time step
of 0.02 seconds.

Is y=
dx
dt

same as x=
∫

y dt ? 69

3 3.125 3.25 3.375 3.5 3.625 3.75 3.875 4 4.125 4.25 4.375 4.5 4.625 4.75 4.875
-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

Time

LPF

Input
Output

Figure 5.14: Simulink output for the low-pass filter (see text) obtained with the ode4 method with a time step
of 0.05 seconds.

70 SEQUEL Users’ Manual: Part 1

3 3.125 3.25 3.375 3.5 3.625 3.75 3.875 4 4.125 4.25 4.375 4.5 4.625 4.75 4.875 5
-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

Time

LPF

Input
Output

Figure 5.15: Simulink output for the low-pass filter (see text) obtained with the ode4 method with a time step
of 0.1 seconds.

Is y=
dx
dt

same as x=
∫

y dt ? 71

3 3.25 3.5 3.75 4 4.25 4.5 4.75 5
-1.5

-1

-0.5

0

0.5

1

1.5

Time

HPF

input
output

Figure 5.16: Simulink output for the high-pass filter (see text) obtained with the ode4 method with a time step
of 0.02 seconds.

72 SEQUEL Users’ Manual: Part 1

3 3.25 3.5 3.75 4 4.25 4.5 4.75 5
-1.5

-1

-0.5

0

0.5

1

1.5

Time

HPF

input
output

Figure 5.17: Simulink output for the high-pass filter (see text) obtained with the ode4 method with a time step
of 0.05 seconds.

Is y=
dx
dt

same as x=
∫

y dt ? 73

3 3.25 3.5 3.75 4 4.25 4.5 4.75 5
-1.5

-1

-0.5

0

0.5

1

1.5

Time

HPF

input
output

Figure 5.18: Simulink output for the high-pass filter (see text) obtained with the ode4 method with a time step
of 0.1 seconds.

74 SEQUEL Users’ Manual: Part 1

Acknowledgments

The author would like to acknowledge the contribution of Aneena Felix in generating the
Simulink results reported in this chapter. This work was performed as part of the project “Simulation
Centre for Power Electronics and Power Systems” under the National Mission on Power Electronics
Technology (NaMPET), Phase 2, sponsored by the Department of Electronics and Information
Technology, Govt. of India.

Chapter 6

Numerical Solution of ODEs: Implicit Methods

We have discussed a few explicit methods (in particular, the Forward Euler (FE), Runge-Kutta order
4 (RK4), and Runge-Kutta-Fehlberg (RKF45) methods) for solving the ODE

dx
dt

= f (t, x), x(t0) = x0. (6.1)

We have also seen how the RKF45 method – a combination of an RK4 method and an RK5
method – can be used to control the time step in order to maintain a given accuracy (tolerance).
There are several other explicit methods available in the literature (see [10], for example). We can
summarise the salient features of explicit methods as follows.

(a) Explicit methods are easy to implement since they only involve evaluation of quantities rather
than solution of equations. The computational effort per time point is therefore relatively small.

(b) Explicit methods can be extended to a system of ODEs in a straightforward manner. If there
are N ODEs, the computational effort would increase by a factor of N as compared to solving
a single ODE (assuming all ODEs to be of similar complexity).

(c) Explicit methods are conditionally stable – if the time step is not sufficiently small (of the
same order as the smallest time constant), the numerical solution can “blow up” (i.e., become
unbounded).

(d) In some problems, it may be difficult to know the various time constants involved. In such
cases, the “auto” (automatic or adaptive) time step methods such as RKF45 are convenient.
These methods can adjust the time step automatically to ensure a certain accuracy (in terms of
the local truncation error estimate) and in the process keep the numerical solution from
blowing up.

(e) Explicit methods are not suitable for stiff problems in which there are vastly different time
constants involved. This is because the stability constraints imposed by an explicit method
force small time steps even when the transients on the scale of the smaller time constants have
vanished.

(f) When the system or circuit of interest involves nonlinear algebraic equations, it may not be
possible to describe it with a set of ODEs. In such cases, explicit methods cannot be used.

Given the above limitations, it is clear that an alternative must be found for explicit methods. Some
of the implicit1 methods provide that alternative.

1The meaning of the term “implicit” will soon become clear.

75

76 SEQUEL Users’ Manual: Part 1

6.1 Backward Euler, trapezoidal, and BDF2 methods

Let us look at the most commonly used implicit methods, viz., the backward Euler and trapezoidal
methods. Systematic approaches are available to derive these methods [7]; here, we will present a
simplistic intuitive picture. Suppose the solution x(t) of Eq. 6.1 is given by the curve shown in
Fig. 6.1. We are interested in obtaining a numerical solution at discrete time points t1, t2, · · · .

tn tn+1

x

x(tn+1)

x(tn)

h

t

Figure 6.1: An intuitive view of the FE, BE, TRZ methods.

Consider the slope of the line joining the points (tn, x(tn)) and (tn+1, x(tn+1)), i.e.,

m =
x(tn+1) − x(tn)

h
. The forward Euler (FE) method (Eq. 4.2) results if we approximate the slope as

x(tn+1) − x(tn)
h

≈ xn+1 − xn

h
≈ dx

dt

∣∣∣∣∣
(tn,xn)

= f (tn, xn), (6.2)

where xn and xn+1 are the numerical solutions at tn and tn+1, respectively.
The backward Euler (BE) method results if the slope m is equated to the slope at (tn+1, xn+1),

i.e.,
dx
dt

∣∣∣∣∣
(tn+1,xn+1)

rather than
dx
dt

∣∣∣∣∣
(tn,xn)

. In that case, we get

x(tn+1) − x(tn)
h

≈ xn+1 − xn

h
≈ dx

dt

∣∣∣∣∣
(tn+1,xn+1)

= f (tn+1, xn+1), (6.3)

leading to
xn+1 = xn + h f (tn+1, xn+1). (6.4)

In case of the trapezoidal (TRZ) method, the slope m is equated to the average of the two
slopes (at (tn, xn) and (tn+1, xn+1)), i.e.,

x(tn+1) − x(tn)
h

≈ xn+1 − xn

h
≈ 1

2

(
dx
dt

∣∣∣∣∣
(tn,xn)

+
dx
dt

∣∣∣∣∣
(tn+1,xn+1)

)
=

1
2

(f (tn, xn) + f (tn+1, xn+1)) , (6.5)

leading to

xn+1 = xn +
h
2

(f (tn, xn) + f (tn+1, xn+1)) . (6.6)

Note that we have shown the time steps to be uniform in Fig. 6.1, but the above equations can also be
used for non-uniform time steps by replacing h with hn ≡ tn+1 − tn.

Numerical Solution of ODEs: Implicit Methods 77

The BE and TRZ methods are implicit in nature since xn+1 is involved in the right-hand sides of
Eqs. 6.4 and 6.6. In other words, xn+1 cannot be simply evaluated in terms of known quantities2;
instead, it needs to be obtained by solving Eq. 6.4 or 6.6. As an example, consider

dx
dt
≡ f (t, x) = cos x, x(0) = 0. (6.7)

The FE and BE methods give the discretised equations,

FE : xn+1 = xn + h cos (xn),

BE : xn+1 = xn + h cos (xn+1).
(6.8)

There is a fundamental difference between the two equations in terms of computational effort. If we
use the FE method, xn+1 can be obtained by simply evaluating the right-hand side. With the BE
method, the task is far more complex because the presence of xn+1 on the RHS has made the equation
nonlinear, thus requiring an iterative solution process. If we use the NR method, for example, then
each iteration will involve evaluation of the function, its derivative, and the correction. Clearly, the
work involved per time point is much more when the BE method is used. The following C program
shows the implementation of the FE and BE methods for solving Eq. 6.7. The results are shown in
Fig. 6.2.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

int main()

{

double t,x,f,t_start,t_end,h;

double x_old;

double f_nr,dfdx_nr,delx_nr;

int i_nr,nmax_nr=10;

FILE *fp;

t_start = 0.0;

t_end = 8.0;

h = 0.05;

// Forward Euler:

fp=fopen("fe.dat","w");

t=t_start;

x = 0.0; // initial condition

fprintf(fp,"%13.6e %13.6e\n",t,x);

while (t <= t_end) {

f = cos(x);

x = x + h*f;

t = t + h;

fprintf(fp,"%13.6e %13.6e\n",t,x);

2except in some special cases such as (a) f (tn+1, xn+1) is linear in xn+1, (b) f (tn+1, xn+1) does not involve xn+1 at all, e.g.,
f (t, x) = cosωt.

78 SEQUEL Users’ Manual: Part 1

}

fclose(fp);

// Backward Euler:

fp=fopen("be.dat","w");

t=t_start;

x = 0.0; // initial condition

x_old = x;

fprintf(fp,"%13.6e %13.6e\n",t,x);

while (t <= t_end) {

// Newton-Raphson loop

for (i_nr=0; i_nr < (nmax_nr+1); i_nr++) {

if (i_nr == nmax_nr) {

printf("N-R did not converge.\n");

exit(0);

}

f_nr = x - h*cos(x) - x_old;

if (fabs(f_nr) < 1.0e-8) break;

dfdx_nr = 1.0 + h*sin(x);

delx_nr = -f_nr/dfdx_nr;

x = x + delx_nr;

}

t = t + h;

fprintf(fp,"%13.6e %13.6e\n",t,x);

x_old = x;

}

fclose(fp);

}

FE
BE

0

0.4

0.8

1.2

1.6

0 4 6 82

x

t
Figure 6.2: Numerical solutions of Eq. 6.7 obtained with the FE and BE using a step size of h = 0.05.

The BE and TRZ methods can be extended to solve a set of ODEs (see Eqs. 4.9, 4.10):

BE: x(n+1) = x(n) + h f(tn+1, x(n+1)),

TRZ: x(n+1) = x(n) +
h
2

(
f(tn, x(n)) + f(tn+1, x(n+1))

)
,

(6.9)

Numerical Solution of ODEs: Implicit Methods 79

where x(n) stands for the numerical solution at tn, and so on. As an illustration, let us consider the set
of two ODEs seen earlier (Eq. 4.13) and reproduced here:

dx1

dt
= a1 (sinωt − x1)3 − a2 (x1 − x2) ,

dx2

dt
= a3 (x1 − x2) ,

(6.10)

with the initial condition, x1(0) = 0, x2(0) = 0. The BE equations are given by

x(n+1)
1 = x(n)

1 + h
[
a1

(
sinωtn+1 − x(n+1)

1

)3 − a2

(
x(n+1)

1 − x(n+1)
2

)]
,

x(n+1)
2 = x(n)

2 + h
[
a3

(
x(n+1)

1 − x(n+1)
2

)]
.

(6.11)

We now have a set of nonlinear equations which must be solved at each time point. The NR method
is commonly used for this purpose, and it entails computation of the Jacobian matrix and the
function vector, and solution of the Jacobian equation (of the form Ax = b) in each iteration of the
NR loop. As N (the number of ODEs) increases, the computational cost of solving the Jacobian
equation increases superlinearly3. On the other hand, with an explicit method, we do not require to
solve a system of equations, and the computational effort can be expected to grow linearly with N
(see the FE equations given by Eq. 4.14, for example). With respect to computational effort, explicit
methods are therefore clearly superior to implicit methods if the number of time points to be
simulated is the same in both cases. That is a big if, as we will soon discover.

Another implicit method commonly used in circuit simulation is the Backward Differentiation
Formula of order 2 (BDF2), also known as Gear’s method of order 2. It is given by

3
2

xn+1 − 2 xn +
1
2

xn−1 = h f (tn+1, xn+1). (6.12)

Note that the BDF2 method involves xn−1 (in addition to xn+1 and xn), i.e., the numerical solution at
tn−1. In deriving Eq. 6.12, the time step is assumed to be uniform, i.e., tn+1 − tn = tn − tn−1 = h;
however, it is possible to extend the BDF2 formula to the case of non-uniform time steps (see [6]).
With the BDF2 method (methods involving multiple steps in general), starting is an issue since at the
very beginning (t = t0), the solution is available only at one time point, x(t0). In practice, a single-step
method such as the BE method is used to first go from t0 to t1. The BDF2 method can now be used to
compute x2 from x0 and x1, x3 from x1 and x2, and so on.

6.2 Stability

As we have seen in Sec. 4.5, the explicit methods we have discussed, viz., FE and RK4, are
conditionally stable. This puts an upper limit hmax on the step size while solving the test equation,

dx
dt

= − t
τ
, x(0) = 1. (6.13)

For the FE method, hmax is 2 τ, and for the RK4 method, it is 2.8 τ. Other explicit methods are also
conditionally stable.

3It is O(N3) for a dense matrix.

80 SEQUEL Users’ Manual: Part 1

The FE method is a member of the Adams-Bashforth (AB) family of explicit linear multi-step
methods (see [7], for example). The regions of stability of the AB methods with respect to Eq. 6.13
are shown in Fig. 6.3 (a). For the AB1 (FE) method, we require h/τ < 2, as we have already seen. As
the order increases, the AB methods become more accurate, but the region of stability shrinks.

The BE and TRZ methods belong to the Adams-Moulton (AM) family of implicit linear
multi-step methods. The BE method is of order 1 while the TRZ method is of order 2. The stability
properties of the AM methods with respect to Eq. 6.13 are shown in Fig. 6.3 (b). The BE and TRZ
methods are unconditionally stable while higher-order AM methods have finite regions of stability
which shrink as the order increases4.

h/τ
0 0.5 1 1.5 2 2.5−0.5 −1 0 1 2 3 4 5 6 7

h/τ

AB1
(FE)

AB3

AB4

AB5

AB6
(a) (b)

AB2
AM2 (TRZ)

AM1 (BE)

AM4

AM5

AM6

AM3

Figure 6.3: Regions of stability for Adams-Bashforth and Adams-Moulton methods of various orders with

respect to the test equation
dx
dt

=−t/τ.

The unconditional stability of the BE and TRZ methods allows us to break free from the
stability constraints which arise in stiff circuits (see Sec. 4.5). This is a huge benefit; it means that, if
we use the BE or TRZ method, the only restriction on the time step comes from accuracy of the
numerical solution and not from stability. For example, let us re-visit the stiff circuit of Fig. 6.4 (a)
which we have seen earlier. We recall that, for this circuit, the RKF45 method was forced to use very
small time steps (of the order of nanoseconds, see Fig. 4.20) because of stability considerations. The
BE method is not constrained by stability issues, and therefore a much larger time step
(h = 0.02 msec) can be used to obtain the numerical solution, as shown in Fig. 6.4 (b).

As another example, consider the half-wave rectifier circuit of Fig. 6.5. The diode is
represented with the Ron/Roff model, with a turn-on voltage equal to 0 V and Roff = 1 MΩ. The
following ODE describes the circuit behaviour.

dVo

dt
=

1
C

[
Vs − Vo

RD
− Vo

R

]
, (6.14)

where RD is the diode resistance (Ron if Vs > Vo; Roff otherwise). Fig. 6.5 shows the numerical
solution of Eq. 6.14 obtained with the RKF45 method. The charging and discharging intervals can be
clearly identified – charging takes place when the diode current is non-zero; otherwise, the capacitor
discharges through the load resistor. When the diode conducts, the circuit time constant is

4The BDF2 formula given by Eq. 6.12 is also unconditionally stable, see [7].

Numerical Solution of ODEs: Implicit Methods 81

R1 R2

−1

0

1

0 1 2 3 4 5 6

(b)

t (msec)

(a)

Vs

V1
V2

V1

C1 C2Vs
1 µF 1 pF

1 kΩ 1 kΩ

Figure 6.4: (a) A stiff circuit with two time constants (see Fig. 4.19), (b) Numerical solution obtained with the
BE method. Vs = Vm sinωt, with Vm = 1 V, f = 1 kHz. The time step is h = 0.02 msec.

τ1 = (Ron ‖ R) C (approximately RonC); otherwise it is τ2 = R C. The RKF45 method – like other
conditionally stable methods – requires that the time step be of the order of the circuit time constant.
Since τ1 � τ2, the time step used by the RKF45 algorithm is much smaller in the charging phase
compared to the discharging phase, as seen in the figure. If we use a smaller value of Ron, τ1

becomes smaller, and smaller time steps get forced.
On the other hand, the BE or TRZ method would not be constrained by stability considerations

at all, and for these methods, a much larger time step can be selected as long as it gives sufficient
accuracy. For the half-wave rectifier example, 20 µsec is suitable, irrespective of the value of Ron.

82 SEQUEL Users’ Manual: Part 1

0

−15

15

0

1

i D
(A

m
p
)
CR

D

Vs

Vi Vo

30 40 50 6020
10−8

10−7

10−6

10−5

10−4

10−3

Vi

Vo

t (msec)

∆
t
(s
ec
)

Ron =10mΩ

Ron =1mΩ

Ron =0.1mΩ

Figure 6.5: RKF45 results for a half-wave rectifier. (a) Vi(t) and Vo(t) in Volts, (b) diode current versus time,
(c) time step used by the RKF45 method versus time. Vs = Vm sinωt, with Vm = 1 V, f = 50 Hz, R = 500 Ω,
C = 600 µF. The Ron/Roff model is used for the diode, and the turn-on voltage is taken as 0 V. Roff is kept
constant at 1 MΩ.

Numerical Solution of ODEs: Implicit Methods 83

6.3 Some practical issues

We have already covered the most important aspects of numerical methods for solving ODEs:
(a) comparison of explicit and implicit methods with respect to computation time, (b) accuracy
(order) of a method, (c) constraints imposed on the time step by stability considerations of a method.
In addition, we need to understand some specific situations which arise in circuit simulation.

6.3.1 Oscillatory circuits

0 10 20 30 40
−1

0

1

L C

iL

vC

BE
BDF2
TRZ
exact

t (sec)

Figure 6.6: vC(t) obtained for an LC circuit with Backward Euler, Trapezoidal, and second-order Gear (BDF2)
methods. L = 1 H, C = 1 F, and h (time step)=0.2 sec in all cases. The exact solution is also shown for compari-
son.

Consider an LC circuit without any resistance (see Fig. 6.6) and with the initial conditions,
vC(0) = 1 V, iL(0) = 0 A. The circuit equations can be described by the following set of ODEs.

dvC

dt
= − 1

C
iL ,

diL

dt
=

1
L

vC ,

(6.15)

with the analytic solution given by

vC = cos(ωt) ,
iL = sin(ωt) ,

(6.16)

with ω= 1/
√

LC. We will consider L = 1 H, C = 1 F which gives the frequency of oscillation
f0 = 1/2πHz, i.e., a period T = 2π sec. Fig. 6.6 shows the numerical results obtained with the BE,
TRZ, and BDF2 methods along with the analytic (exact) solution. The TRZ method maintains the
amplitude of vC(t) constant whereas the BE and BDF2 methods lead to an artificial reduction
(damping) of the amplitude with time. Clearly, the BE and BDF2 methods are not suitable for purely
oscillatory circuits or for circuits with small amount of natural damping5. In such cases, the TRZ
method should be used.

5Some of the passive filters fall in this category.

84 SEQUEL Users’ Manual: Part 1

Although the TRZ method does not result in an amplitude error, it does give a phase error, i.e.,
the phase of vC(t) differs from the expected phase as time increases, as seen in the figure6. The phase
error can be reduced by selecting a smaller time step.

6.3.2 Ringing

R3R1 R2

0

1

0 10 20 30 40 50

V3

C3

V1 V2

Vs C1 C2

(a)

t (sec)

V
1

(V
ol

ts
)

(b)

exact
BE
TRZ

Figure 6.7: (a) RC circuit example, (b) Simulation results for V1, with R1 = R2 = R3 = 1 Ω, C1 = C2 = C3 = 1 F,
VC(0) = 0 V for all capacitors, and a step input going from 0 V to 1 V applied at t = 0.

Consider the RC circuit shown in Fig. 6.7. The time constants for this circuit are 0.31, 0.64,
and 5.05 seconds, the smallest being τmin = 0.31 sec. Fig. 6.7 shows the BE and TRZ results with a
relatively large time step. Sine the time step (5 sec) is much larger than τmin, neither of the two
methods can track closely the expected solution. However, there is a substantial difference in the
nature of the deviation of the numerical solution from the exact solution – With the TRZ method, the
numerical solution overshoots the exact solution, hovers around it in an oscillatory manner, and
finally returns to the expected value when the transients have vanished. This phenomenon, which is

6To observe the phase error, expand the plot (zoom in), and look at the exact and TRZ results; you will see the phase
error growing with time.

Numerical Solution of ODEs: Implicit Methods 85

specifically associated with the TRZ method, is called “ringing.” The BE result, in contrast, follows
the exact solution without overshooting.

Is ringing relevant in practice? Are we ever going to use a time step which is much larger than
τmin? Yes, the situation does arise in practice, and we should therefore be watchful. For example, in a
typical power electronic circuit, there is frequent switching activity. Whenever a switch closes, we
can expect transients. Since the switch resistance is small, τmin is also small, typically much smaller
than the time scale on which we want to resolve the transient. In other words, in such cases, the time
step would be often much larger than τmin, and we can expect ringing to occur if the TRZ method is
used. If there is a good reason for using the TRZ method for the specific simulation of interest, the
time step should be suitably reduced in order to avoid ringing.

6.4 TR-BDF2 method

TRZ
(1 − γ) h

tn

γh

tn+γ ttn+1

h

BDF2

Figure 6.8: Division of the time interval h in the TR-BDF2 method.

The TR-BDF2 method is a combination of TRZ and BDF2 methods. In this method [12], the
time interval h from tn to tn+1 is divided into two intervals (see Fig. 6.8). The TRZ method is used to
go from xn to xn+γ (i.e., the numerical solution at tn+γ ≡ tn + γh). In the second step, the BDF2 method
is used (using the three points, tn, tn+γ, and tn+1) to compute xn+1. The constant γ is selected such that7

2
γ

=
2 − γ
1 − γ , (6.17)

or γ = 2 − √2 ≈ 0.59.
The TR-BDF2 method has the following advantages.

(a) It does not exhibit ringing [12].

(b) Although BDF2 is a two-step method (see Eq. 6.12), TR-BDF2 is a single-step method since
the solution at tn+γ is an intermediate result in going from tn to tn+1. Therefore, no special
procedure for starting is required.

(c) The TR-BDF2 method can be used for auto (adaptive) time stepping by estimating the LTE
and comparing it with a user-specified tolerance [12].

6.5 Systematic assembly of circuit equations

A circuit simulator like SPICE must be able to handle any general circuit topology, and it should get
the solution in an efficient manner. In this section, we will see how a general circuit involving time
derivatives (e.g., in the form of capacitors and inductors) is treated in a circuit simulator.

7For this choice, the TRZ and BDF2 Jacobian matrices are identical which means that the same LU factorisation can
be used in the TRZ and BDF2 steps (see [12]).

86 SEQUEL Users’ Manual: Part 1

R1 R2

Vs(t)

iC iLis

V3
V2

C

V1

L

Figure 6.9: Circuit to illustrate equation assembly.

Consider the circuit in Fig. 6.9. The following equations describe the circuit behaviour, taking
into account the relationship to be satisfied for each element in the circuit.

C
dvC

dt
= G1(Vs − V2) − iL , (6.18)

L
diL

dt
= V3 , (6.19)

iL = G2(V2 − V3) , (6.20)

where G1 = 1/R1. G2 = 1/R2. Note that the above system of equation is a “mixed” system – Eq. 6.20
is an algebraic equation whereas Eqs. 6.18 and 6.19 are ODEs. Such a set of equations is called
“Differential-algebraic equations” (DAEs). In some cases, it may be possible to manipulate the
equations to eliminate the algebraic equations and reduce the original set to an equivalent set of
ODEs. However, that is not possible in general, especially when nonlinear terms are involved.

How did we come up Eqs. 6.18-6.20? We knew that the equations for the capacitor current and
inductor voltage must be included somewhere. We looked at the circuit and found that there is a
KCL which involves the capacitor current. Similarly, there is a node voltage which is the same as the
inductor voltage. We then invoked the circuit topology and wrote the equations such that they
describe the circuit completely. In other words, we used our intuition about circuits. Unfortunately,
this is not a systematic approach and is therefore of no particular use in writing a general-purpose
circuit simulator. Instead of an ad hoc approach, we can use a systematic approach we have already
seen before – the MNA approach – and write the circuit equations as

is + G1(V1 − V2) = 0 , (6.21)
G1(V2 − V1) + G2(V2 − V3) + iC = 0 , (6.22)

G2(V3 − V2) + iL = 0 , (6.23)
V1 = Vs(t) , (6.24)

where the first three are KCL equations, and the last equation is the element equation for the voltage
source. Our interest is in obtaining the solution of the above equations for tn+1 from that available for
tn. Let us write the above equations specifically for t = tn+1:

in+1
s + G1(Vn+1

1 − Vn+1
2) = 0 , (6.25)

G1(Vn+1
2 − Vn+1

1) + G2(Vn+1
2 − Vn+1

3) + in+1
C = 0 , (6.26)

G2(Vn+1
3 − Vn+1

2) + in+1
L = 0 , (6.27)

Vn+1
1 = Vs(tn+1) . (6.28)

Numerical Solution of ODEs: Implicit Methods 87

Next, we select a method for discretisation of the time derivatives. As we have seen earlier, stability
constraints restrict the choice to the BE, TRZ, and BDF2 methods8, all of them implicit in nature.
Suppose we choose the BE method. The capacitor and inductor currents (in+1

C , in+1
L) are then obtained

as
dV2

dt
=

1
C

iC →
Vn+1

2 − Vn
2

h
=

in+1
C

C
→ in+1

C =
C
h

(Vn+1
2 − Vn

2) , (6.29)

diL

dt
=

1
L

V3 →
in+1
L − in

L

h
=

Vn+1
3

L
→ in+1

L = in
L +

h
L

(Vn+1
3) , (6.30)

where h = tn+1 − tn is the time step. Substituting for in+1
C and in+1

L in Eqs. 6.26 and 6.27, we get

G1Vn+1
1 −G1Vn+1

2 + in+1
s = 0 , (6.31)

−G1Vn+1
1 +

(
G1 + G2 +

C
h

)
Vn+1

2 −G2Vn+1
3 =

C
h

Vn
2 , (6.32)

−G2Vn+1
2 +

(
G2 +

h
L

)
Vn+1

3 = −in
L , (6.33)

Vn+1
1 = Vs(tn+1) , (6.34)

a linear system of four equations in four variables (Vn+1
1 , Vn+1

2 , Vn+1
3 , in+1

s). It is now a simple matter9

of solving this Ax = b type problem to obtain the numerical solution at tn+1.

Vs(t)

V1
V2

iC
vC

D R

is

iD

C

Figure 6.10: A nonlinear circuit.

What if there are nonlinear elements in the circuit? Let us consider the circuit shown in
Fig. 6.10. The diode is described by

ID = Is

(
eVD/VT − 1

)
. (6.35)

We can write the MNA equations for this circuit as

is + iC = 0, (6.36)

− iC − iD + GV2 = 0 → − iC − Is

(
e−V2/VT − 1

)
+ GV2 = 0, (6.37)

V1 = Vs(t), (6.38)

8Implicit Runge-Kutta methods are also unconditionally stable, but they are suitable only when the circuit equations
can be written as a set of ODEs.

9Solving Ax = b is conceptually simple but can take a significant amount of computation time when the system is
large.

88 SEQUEL Users’ Manual: Part 1

with G = 1/R. At t = tn+1, the equations are

in+1
s + in+1

C = 0, (6.39)

−in+1
C − Is

(
e−Vn+1

2 /VT − 1
)

+ GVn+1
2 = 0, (6.40)

Vn+1
1 = Vs(tn+1) . (6.41)

The next step is to obtain in+1
C using the BE approximation for the capacitor equation:

dvC

dt
=

1
C

iC →
vn+1

C − vn
C

h
=

in+1
C

C
→ in+1

C =
C
h

[
(Vn+1

1 − Vn+1
2) − (Vn

1 − Vn
2)

]
, (6.42)

Finally, substituting for in+1
C in Eqs. 6.39 and 6.40, we get

in+1
s +

C
h

Vn+1
1 − C

h
Vn+1

2 − C
h

(Vn
1 − Vn

2) = 0, (6.43)

−C
h

Vn+1
1 +

C
h

Vn+1
2 − Is

(
e−Vn+1

2 /VT − 1
)

+ GVn+1
2 +

C
h

(Vn
1 − Vn

2) = 0, (6.44)

Vn+1
1 − Vs(tn+1) = 0. (6.45)

We now have a nonlinear set of three equations in three variables (Vn+1
1 , Vn+1

2 , in+1
s). Generally, circuit

simulators would use the NR method to solve these equations because of the attractive convergence
properties of the NR method seen earlier. Note that the NR loop needs to be executed in each time
step, i.e., the Jacobian equation J∆x =−f must be solved several times in each time step until the NR
process converges. Obviously, this is an expensive computation10, but it simply cannot be helped.
Some tricks may be employed to make the NR process more efficient, e.g., J−1 from the previous NR
iteration can be used if J has not changed significantly.

The benefits of the above approach (we will refer to it as the “DAE approach”) outweigh the
computational complexity:

(a) Since unconditionally stable methods (BE, TRZ, BDF2) are used, stiff circuits can be handled
without very small time steps.

(b) “Algebraic loops” (see Chapter 4) do not pose any special problem since the set of
differential-algebraic equations is solved directly, without any approximations.

Clearly, for any serious circuit simulation work, we should use a circuit simulator based on the DAE
approach, no matter what weavers of other packages tell us about their products.

6.6 Adaptive time steps using NR convergence

As we have seen in Chapter 3, the initial guess plays an important role in deciding whether the NR
process will converge for a given nonlinear problem. This feature can be used to control the time
step in transient simulation. The solution obtained at tn serves as the initial guess for solving the
circuit equations at tn+1. If h ≡ tn+1 − tn is sufficiently small, we expect the initial guess to work well,

10Some weavers get around the nonlinearities by approximating nonlinear functions with piecewise linear functions,
thus avoiding an NR loop in each time step. Such simulators can give a significant speed advantage, but they can handle
only a small subset of circuits of general interest.

Numerical Solution of ODEs: Implicit Methods 89

i.e., we expect the NR process to converge. If h is large, the NR process may not converge, or may
take a larger number of iterations to converge. By monitoring the NR convergence process, it is
possible control the time step.

The flow chart for auto (adaptive) time steps is shown in Fig. 6.11. The basic idea is to allow
only a certain maximum number Nmax

NR of NR iterations at each time point. If the NR process does not
converge, it means that the time step being taken is too large, and it needs to be reduced (by a factor
kdown). However, if the NR process consistently converges in less than Nmax

NR iterations, it means that a
small time step is not necessary any longer, and we then increase it (by a factor kup). In this manner,
the step size is made small when required but is allowed to become larger when convergence is
easier. In practice, this means that small time steps are forced when the solution is varying rapidly,
and large time steps are used when the solution is varying gradually.

Fig. 6.12 [7] shows the application of the above procedure to an oscillator circuit. The output
voltage V4 controls the switch – when V4 is high, the switch turns on; otherwise, it is off. Note that,
when V4 changes from low to high (or high to low), small time steps get forced. As V4 settles down,
the time steps become progressively larger, capped finally by hmax.

t > tend?

flag= T ?

flag= T

compute J,∆x
x← x + ∆x

t= t0, h= h0

x= xold = x0

h= hmin?

iNR = 0

convergence?

no

yes

Report error
and stop

t ← t + h
xold ← x

stop

h← kup × h
h← min(h, hmax)

flag= F
h← kdown × h
h← max(h, hmin)

no

no

yes

yes

iNR ← iNR + 1

iNR > Nmax
NR ?

no

no

yes

yes

Figure 6.11: Flow chart for automatic time step adjustment using convergence of the NR process.

90 SEQUEL Users’ Manual: Part 1

 2 3 4 5 6

 100

 120

 0

 20

 40

 60

 80

 1

 2

 3

 4

 5

 0

R2

V2

V4

V1

10 V

V2

C0C

R1 V3 V4

R0

time (msec)

h (µsec)

Figure 6.12: Example of automatic time step adjustment using convergence of the NR process.
Parameter values are R1 = R2 = 1 kΩ, R0 = 100 Ω, C = 1 µF, C0 = 0.1 µF, VIL = 1 V, VIH = 4 V, VOL = 0 V,
VOH = 5 V, hmin = 10−9 sec, hmax = 10−4 sec, kup = 1.1, kdown = 0.8, Nmax

NR = 10.

Chapter 7

Steady-State Waveform (SSW) Computation

Consider the boost converter circuit shown in Fig. 7.1 (a), with a clock frequency of 25 kHz (i.e., a
period of 40 µs) and a duty cycle of 0.8. We are interested in the source current as a function of time.

0 20 40 60 800 5 10 15 20
0

10

20

30

40

50

i s
(A

m
p)

t (msec)

10

15

20

25

i s
(A

m
p)

t (µsec)

1Ω 100 µH

(a)

(b) (c)

50Ω 100 µF50 V

is

Figure 7.1: (a) Boost converter, (b) Source current obtained with transient simulation, (c) Steady-state source
current.

Fig. 7.1 (b) shows the source current is(t) obtained by transient simulation with a time step of
0.1 µsec, starting with zero initial conditions. The circuit goes through a relatively long transient and
finally reaches the periodic steady state at about 10 msec. Our interest is in the steady-state behaviour
of the circuit1, i.e., just one period in the steady state comprising a time interval of T = 40 µsec (see

1This is also true about several other converter circuits.

91

92 SEQUEL Users’ Manual: Part 1

Fig. 7.1 (c)). To get to that one cycle in the steady state, we have ended up simulating
10 msec/40 µsec or 250 cycles! Things get worse when the circuit time constants are larger.

Apart from being inefficient in such cases, transient simulation presents another practical
difficulty because the time taken to reach the steady state is generally not known in advance. In that
situation, we would end up following a trial-and-error approach – simulate the circuit for a certain
time, check if the steady state has been reached; if not, increase the simulation time, and check again.
That is cumbersome. Clearly, it is desirable to have some means of computing the steady-state
waveform (SSW) directly rather than going through a long transient.

0 5 10 15 20
−1.0

−0.5

0.0

0.5

1.0

1.5

VC

1 kΩ

1 kΩ

50µF

Vm=5V

Von =0.7V

f =50Hz

V
C
(V

ol
ts
)

t (msec)

(a)

(b)

Figure 7.2: (a) Circuit to illustrate the SSW problem, (b) VC versus time for different initial values.

The SSW problem has been addressed relatively early in the history of circuit simulation (see
[13],[14])2. The basic idea behind SSW computation is illustrated in Fig. 7.2 with an example. In
this circuit, the capacitor voltage VC is the only state variable. If VC(t0) is known, then the behaviour
of the circuit for t > t0 can be uniquely determined3. Fig. 7.2 (b) shows the results obtained with

2It is also possible to use a frequency-domain approach to compute the SSW solution (see [15], for example); we will
describe only the time-domain approach here.

3In most cases of practical interest, the circuit response cannot be computed analytically, and we have to then employ
transient simulation.

SSW Computation 93

various values of VC(t0) (where t0 = 0) by performing transient simulation for one period of the
source voltage, i.e., T = 20 msec. For example, consider VC(0) = 0 V. In this case, we get
VC(T) = 0.34 V. This solution cannot be the periodic steady-state solution since VC(T) , VC(0). We
can try other values of VC(0) and check if the condition of periodicity is satisfied. As seen in the
figure, VC(0) = 1 V or −1 V also does not work. The correct value of VC(0) turns out to be 0.786 V
(the blue curve).

If there is only one state variable xs, we may be able to use a trial-and-error approach to find
xs(0) such that xs(T) = xs(0), but it is surely not a satisfactory approach. If the number of state
variables increases, it would quickly become unmanageable.

Aprille and Trick [13] presented a systematic Newton-Raphson approach to compute the initial
values of the state variables such that the condition xs(T) = xs(0) is satisfied4. Fig. 7.3 shows the
basic idea. For simplicity, the figure is drawn for the case of one state variable; however, the same
procedure applies if the system has several state variables.

t1 t2
compute ∆x(i)

s (0)

xs

0 T
t

loop

N-R

outer

yes

(a) (b)

while tk ≤ T

compute solution at tk

(may involve

N-R loop here)

end of loop

i = 0

xs(0) = x(i)
s (0)

x(i)
s (T)

?
= x(i)

s (0)

no

i← i+ 1

stop

x(i+1)
s (0)← x(i)

s (0) + ∆x(i)
s (0)

∆x(i)
s (0)

desired
solution

solution obtained
with incorrect x(i)

s (0)

Figure 7.3: (a) Illustration of Newton-Raphson approach for SSW computation, (b) flow chart.

The SSW “outer loop” (see the flow chart in Fig. 7.3 (b)) is a Newton-Raphson loop for
computing the state variable value at t = 0, i.e., xs(0). The integer i denotes the outer loop index. The
value of xs(0) in the ith outer loop iteration is denoted by x(i)

s (0). At the beginning of each outer loop,
the state variable value is set to x(i)

s (0), and the system response is computed for one period. This
computation involves several time points, as shown in Fig. 7.3 (a). Furthermore, at each time point,
there may be an inner NR loop if the system is nonlinear.

4We have used xs to denote the vector of the state variables.

94 SEQUEL Users’ Manual: Part 1

We then check if xs(T) is equal to the starting value xs(0) (within a tolerance). If it is, our job is
done; we have found the periodic steady-state solution. If not, the NR correction for xs(0) and the
next iterate x(i+1)

s (0) are computed (in the outer NR loop), and the process is repeated. The Jacobian
matrix for the outer NR loop is computed along with the response of the system with some extra
computation, as explained in [13].

As we have seen earlier, convergence of the NR process depends on the initial guess, and that
is true for the SSW NR loop (the outer NR loop in the flow chart of Fig. 7.3) as well. In our
experience, convergence is generally not an issue for power electronic converter circuits – the SSW
NR loop would converge starting with the zero initial condition, i.e., zero capacitor voltages and zero
inductor currents. However, for some circuits, it may be required to perform transient simulation for
a few cycles and then use the solution obtained as the initial guess for the SSW computation.

Chapter 8

Start-up Simulation

One question we have not yet answered is: With what initial condition do we start when we perform
transient simulation of a circuit? There are three options.

(a) Start with zero voltages and currents.

(b) Use a previously saved solution (DC or transient) as the starting point.

(c) Use the “start-up” solution obtained with some specified values of the state variables
(capacitor voltages, inductor currents, etc.) as the starting point.

The first option is frequently used although it is somewhat artificial in the sense that it does not
correspond to a valid solution for the circuit being simulated. The second option corresponds to a
valid solution since it has been obtained by simulating the same circuit previously. It is the third
option we want to discuss in this chapter, viz., the start-up solution.

R1 R2 R1 R2

Vs(t) Vs(t)

is

(a) (b)

V3
V2

C

V1

L

is iL

VC

V3
V2

V1

iL(0)VC(0)

iC

Figure 8.1: (a) An RLC circuit, (b) Same circuit under the start-up condition.

Let us illustrate the idea of a start-up solution with an example, the circuit shown in
Fig. 8.1 (a). Suppose we are interested in performing transient simulation of the circuit from t = 0 to
some known final time tend. Suppose the initial values of the state variables, VC(0) and iL(0), are
known. Corresponding to these initial values, there is a “start-up” solution (consisting of the node
voltages and currents) which satisfies the circuit equations. It is this start-up solution that we want to
obtain first, and then use it as a starting point for transient simulation.

With the conditions, VC = VC(0) and iL = iL(0), the circuit can be replaced by that shown in
Fig. 8.1 (b). Since the voltage across the capacitor is known, we replace it with a DC voltage source.
Similarly, since the current through the inductor is known, we replace it with a DC current source.
We can now use the MNA approach to assemble the circuit equations as

G1(V1 − V2) + is = 0, (8.1)

95

96 SEQUEL Users’ Manual: Part 1

G1(V2 − V1) + G2(V2 − V3) + iC = 0, (8.2)

G2(V3 − V2) = −iL(0), (8.3)

V1 = Vs(0), (8.4)

V2 = VC(0), (8.5)

where G1 = 1/R1, G2 = 1/R2. Note that we have introduced the capacitor current as an additional
system variable as required by the MNA formulation (since the capacitor has been replaced with a
voltage source). By solving the above equations, we obtain the start-up solution1. If there are
nonlinear elements in the circuit, the procedure remains the same except that the equations would
need to be solved iteratively, using the Newton-Raphson method, for example.

It is not always possible to know in advance the initial values of the state variables except in
simple cases. The situation may arise in closed-loop control of an induction motor, for example. We
may be interested in how the speed varies in response to a step input in the reference speed from ω1

to ω2. However, we may not have the steady-state solution for ω1 to begin with. What can we do in
that case?

0 t1

x

x1

x2

tt

x

0

x2

x1

(a) (b)

Figure 8.2: Two ways to simulate step response: (a) using start-up option, (b) using transient simulation with
zero initial conditions.

Consider a circuit (or a general system) with a step input going from x1 to x2 at t = 0, as shown
in Fig. 8.2 (a). If we know the values of the state variables at t = 0, we can use start-up simulation,
obtain the complete solution at t = 0, and use it as a starting point for transient simulation. If not, we
have no option but to first generate the solution for x = x1 by performing transient simulation from
t = 0 to t = t1 (see Fig. 8.2 (b)) and then use it as the starting point for the step change. The time t1

should be chosen to ensure that the circuit settles down to its steady-state solution before the step
appears.

1Note that the start-up solution is different from the DC solution which is obtained by replacing capacitors with open
circuits and inductors with short circuits.

Chapter 9

AC Simulation

We have seen so far how a circuit simulator handles DC and transient (time-domain) simulation. In
this Chapter, we discuss how the response of a circuit in the sinusoidal steady state can be computed.
Examples include1 filters, power systems, amplifiers, etc.

K

1 + s/ω0

K s

1 + s/ω1

1

1 + s/ω2

(a) (b)

X Y X
X1

Y

Figure 9.1: Filter examples.

Consider the low-pass filter shown in Fig. 9.1 (a). The variables X and Y are phasors2

corresponding to the time-domain variables x(t) and y(t). Take the case where x(t) = A sin(ωt + φ),
which corresponds to the phasor X = A∠φ= A (cos φ + j sin φ). The following equations can be
written for this situation:

X = A (cos φ + j sin φ), (9.1)
K

1 + jω/ω0
X − Y = 0. (9.2)

For a given frequency ω and known parameters (A, φ, K, ω0), the above equations can be written as

A11X1 + A12X2 = B1, (9.3)

A21X1 + A22X2 = B2, (9.4)

a linear system with two equations in two variables X1 ≡X and X2 ≡Y. This Ax = b problem is no
different than the one we have seen in DC circuits with linear elements (see Eq. 2.3, for example)
except that the numbers are complex. Techniques such as Gaussian elimination and LU
decomposition can be used to solve the above linear equations if suitable modifications are made to
handle complex numbers.

As another example, consider the filter shown in Fig. 9.1 (b), with X = A∠φ. The equations can
now be written as

X = A (cos φ + j sin φ), (9.5)

1We will only consider circuits which can be represented with linear elements such as resistors, capacitors, inductors,
independent sources, linear dependent sources, scalar multiplier, summer, etc.

2We will follow the commonly used convention of representing phasors (complex numbers) by bold letters.

97

98 SEQUEL Users’ Manual: Part 1

jωK
1 + jω/ω1

X − X1 = 0, (9.6)

1
1 + jω/ω2

X1 − Y = 0, (9.7)

once again a linear system. The above approach can be extended to any AC simulation problem
which can be described by a “block diagram” containing several elements (transfer functions, sum,
difference, scalar multiplication, etc.) interconnected in some manner. For each element, we write an
equation(s) in terms of the variables associated with that element. When all elements are treated, we
get a linear system whose solution yields the desired phasors.

The “frequency response” of a system refers to how a phasor(s) of interest changes with
frequency. It can be computed by solving the system equations for several frequency values, one
frequency at a time. Fig. 9.2 shows an example3. The gain in the figure refers to |Y(jω)/X(jω)| and
the phase to ∠Y − ∠X. If X = 1∠0, the gain is the same as Y, and the phase is the same as ∠Y.

What about circuits? Let us consider the RLC circuit shown in Fig. 9.3 in the sinusoidal steady
state. In the frequency domain, each component is represented by a phasor equation, e.g., V = R I for
a resistor, V = jωL I for an inductor, I = jωC V for a capacitor, V = Vm∠φ for an independent AC
voltage source. Note that these are all linear equations. In addition, the voltage and current phasors
in the circuit must satisfy the KCL and KVL constraints. It is easy to see that the AC circuit problem
is similar to the DC circuit problem with linear components, and we can use the same systematic
approach that we used in the DC case, viz., the MNA approach. For the circuit of Fig. 9.3, the MNA
equations can be written as

G(V1 − V2) + Is = 0, (9.8)

G(V2 − V1) + jωCV2 +
V2

jωL
= 0, (9.9)

V1 = Vs, (9.10)

where G = 1/R. Solving the above linear system yields V1, V2, and Is. Subsequently, other variables
of interest such as current through an element, voltage across an element, or average power absorbed
by an element can be computed by post-processing.

When there are nonlinear elements in the circuit – as in the common-emitter (CE) amplifier
shown in Fig. 9.4 (a) – we need to first linearise the semiconductor device behaviour using Taylor
series, and represent it with an equivalent small-signal model. The meaning of “small” depends on
the device; for a BJT, it means that the AC base-emitter voltage is small compared to the thermal
voltage VT = kT/q which is about 26 mV at room temperature. Under this condition, the amplifier
can be represented by the small-signal equivalent circuit4 shown in Fig. 9.4 (b). Finally, the
small-signal equivalent circuit is converted to the frequency domain (see Fig. 9.4 (c)), and the
corresponding MNA equations are assembled and solved.

We see that the AC simulation problem and solution method are substantially different when
nonlinear elements are present in the circuit:

3Note that, although the gain and phase appear to be continuous functions of frequency in Fig. 9.2, the graphs actually
contain a finite number of points joined with straight line segments.

4Circuit simulators may not use the small-signal model of Fig. 9.4 (b) in that precise form. Instead, the current and
charge derivatives (such as dIC/dVBE , dQC/dVBE) – the first term in the corresponding Taylor expansion – may be com-
puted and used in AC analysis.

AC Simulation 99

10

s2 + 2s+ 10

4

s

0.1 1 10 100
−40

0

40

80

120

10−4

10−2

100

P
h
as
e
(d
eg
)

G
ai
n

ω (rad/s)

X Y

Figure 9.2: A closed-loop system and its frequency response.

v1 v2

Vs C

R
V1 V2

Vs jωL

R

vs(t) Vs

(a) (b)

Is

L
−j

ωC

Figure 9.3: RLC circuit: (a) time domain, (b) frequency domain.

100 SEQUEL Users’ Manual: Part 1

Vsvs(t)

vs(t)

Vs

B C

E

Vc
Vo

Ve

−j

ωCE
RE

R1 R2 RC RL

−j

ωCC

RL

R1

R2

RC

CC

CB

RE CE

VCC

V T
oV T

c

V T
e

B C

E

CB
vc

vo

ve

CERE

CC

R1 RC RL

(b)

(c)

(a)

R2

BJT

rπ

rπ

ro

roCπ

gmVbe

gmvbe

Cµ

−j

ωCµ

−j

ωCπ

−j

ωCB

Figure 9.4: Common-emitter amplifier: (a) large-signal circuit, (b) small-signal equivalent circuit in time do-
main, (c) small-signal equivalent circuit in frequency domain.

AC Simulation 101

(a) In a linear circuit such as the RLC circuit of Fig. 9.3, the time-domain voltages and currents
are purely sinusoidal, and each of them has the form K sin(ωt + φ).

In a nonlinear circuit such as the amplifier of Fig. 9.4, a DC bias is required for the circuit to
work satisfactorily. Each voltage and current would generally have a DC component and an
AC component. The total voltage or current would be of the form XT = XDC + Xm sin(ωt + φ).

(b) For a linear circuit, AC analysis can be performed directly, i.e., without any other
preprocessing.

For a nonlinear circuit, the AC circuit parameters depend on the DC solution of the circuit. For
the CE amplifier, for example, the parameter gm depends on the DC collector current
(gm = IC/VT). DC analysis must be performed first, followed by computation of the AC circuit
parameters, and then by assembly and solution of the MNA equations.

(c) In a linear circuit, there is no particular restriction on the amplitude of the AC input voltage.

In a nonlinear circuit such as the CE amplifier, the AC equivalent circuit is derived by
assuming the small-signal approximation to be valid. If the AC input voltage is large, the
small-signal approximation may get violated, and the AC simulation results would not make
sense.

That said, we recall that the AC equivalent circuit is linear, and therefore an increase in the AC
input simply causes the voltage and current phasors to increase proportionately. As a result, as
far as relative numbers or ratios are concerned (such as the magnitude of a current or voltage
phasor with respect to the input magnitude), the results remain valid even if a large input
voltage is applied.

Chapter 10

Digital Circuits

A digital circuit consists of digital (logical) elements such as gates, flip-flops, counters, adders, etc.
Simulation techniques used for analog and digital circuits are fundamentally different due to the
following factors.

(a) In an analog circuit, the variables are real-valued. In a digital circuit, the variables take only
two values: 0 or 1, 0 referring to a low voltage, and 1 to a high voltage.

(b) An analog circuit element (e.g., resistor, capacitor, BJT, voltage source, transformer) is
described by an equation involving real numbers and possibly time derivatives. A digital
circuit element (e.g., logic gates, flip-flops) is described by how the output(s) should change
(to 0 or 1) when certain conditions are met with respect to the current and past values of its
input and output variables.

To simulate an analog circuit, we assemble the circuit equations using the MNA approach and
solve them at each time point1 (see Chapter 6). The solution process at a given time point involves a
single matrix inversion (or equivalent) step for linear circuits, and several matrix inversion steps (one
for each Newton-Raphson iteration) for nonlinear circuits. The outcome is a vector of real numbers
representing the node voltages and voltage source currents.

On the other hand, for a digital circuit, we are not interested in the real (analog) value of a
voltage; we are only interested in knowing whether it is high (1) or low (0) at a given time. The
questions that arise are: (i) Which variables are expected to change? (ii) What is the change (from 0
to 1 or from 1 to 0)? (iii) At what time will the change take place?

Let us see how these questions are tackled in “event-driven” simulation [16] which is the most
effective technique for transient analysis of digital circuits. To illustrate the event-driven simulation
approach, let us consider an inverter which has a delay of δ= 0.5 nsec. Suppose its input has changed
from 0 to 1 at t = t0. This change (“event”) triggers (“drives”) a transition from 1 to 0 at the output.
However, the output transition is delayed by δ and is therefore to be scheduled at t0 + δ. At that time,
we “process” the scheduled change, i.e., we change the output from 1 to 0. The change in the
inverter output is a new event which may drive yet another change in the circuit, and so on. We keep
repeating this process of scheduling and processing changes (events) until the end of the simulation
interval tend is reached.

Fig. 10.1 shown a digital circuit with some given inputs X1, X2, X3. Let us see how it can be
handled using the event-driven simulation approach. We begin at t = t0, assuming that the variables
have already been suitably initialised. Subsequently, we proceed as follows.

1We will only consider transient simulation of analog circuits here, not DC or AC.

102

Digital Circuits 103

X1

X2

X3

X4

X5

X6

t2 t3 t4 t5 t6 t8t7 t9 t11t10 t12t1t0

t

X4

X5

X6

δ1

δ2
X3

X1

X2 δ3
1

2

3

Figure 10.1: A digital circuit and associated waveforms.

(1) We scan the inputs and find that the first event is X3 going from 0 to 1 at t1. We ask: Will this
event cause any change? To answer this question, we identify all elements in the circuit for
which X3 serves as an input – in this case, gate 2. We visit gate 2, look at its inputs, and find
that its other input (X2) is still 0. We conclude that its output will continue to be 1, and
therefore no change is required to be scheduled.

(2) The next event is X1 going from 1 to 0 at t2. Following the process described above, we
conclude that this event does not require any change to be scheduled.

(3) The next event is at t3 when X2 goes from 0 to 1. We visit the gates for which X2 serves as an
input. For gate 1, we find that its other input is 0, so its output will continue to be 1, and no
change is required. For gate 2, we find that both its inputs are 1, and its output X5 will

104 SEQUEL Users’ Manual: Part 1

therefore change from 0 to 1. We must take into account the delay of gate 2 (δ2) in scheduling
this change, so the change is scheduled at t4 = t3 + δ2.

(4) At t4, we process or execute the above change, viz., set X5 to 1.

(5) When we complete the above processing operation, we check if this event (i.e., X5 going from
0 to 1) will drive any other change, by visiting all elements for which X5 is an input. There is
only one such gate (gate 3), and since the other input of this gate (X4) is already 1, we figure
that no change is required to be scheduled.

(6) The next event is at t5, when X3 goes from 1 to 0. This event will cause X5 to change from 1 to
0 at t6 = t5 + δ2, so we schedule that change.

(7) At t6, we set X5 to 0 as scheduled.

(8) By visiting gate 3 for which X5 is an input, we conclude that the above change in X5 does not
drive any change at X6.

(9) The next event is at t7, when X1 goes from 0 to 1. This event will cause X4 to change from 1 to
0 at t8 = t7 + δ1, so we schedule that change.

(10) At t8, we set X4 to 0 as scheduled.

(11) We find that the above event will drive a change in X6 from 0 to 1, so we schedule it at
t9 = t8 + δ3.

(12) At t9, we process the above change. Since X6 is not an input for any gate, we do not need to
check if a change in X6 will cause any other change.

(13) The next event is at t10, when X2 goes from 1 to 0. This event will not affect X5, but it will
cause X4 to change from 0 to 1 at t11 = t10 + δ1, so we schedule that change.

(14) At t11, we set X4 to 1 as scheduled.

(15) We find that the above event will drive a change in X6 from 1 to 0, so we schedule it at
t12 = t11 + δ3.

(16) At t12, we process the above change. Since X6 is not an input for any gate, no change needs to
be scheduled because of the change at t12.

When sequential elements (flip-flop, shift register, counter) are present in the circuit, the process of
scheduling an event becomes more complex since it would involve the present input values as well as
the past states of the sequential elements. However, the overall simulation scheme remains the same.

It is clear that simulation of digital circuits is completely different from that of analog circuits,
and it is computationally much simpler, almost trivial. There are no equations to be solved, only
values to be assigned (0 or 1). Thus, for the same complexity (say, the same number of nodes), the
CPU time required per time step would be significantly smaller for digital circuits.

There are circuits with both analog and digital elements, e.g., the 555-based oscillator circuit
shown in Fig. 10.2. In these “mixed-signal” circuits, we can divide the elements into different
categories:

Digital Circuits 105

(a) Purely analog elements (resistor, capacitor, DC voltage source in the figure).

(b) Purely digital elements (RS flip-flop in the figure)

(c) “ADC-type” elements in which the inputs are analog and outputs digital (comparators in the
figure)

(d) “DAC-type” elements which behave like analog elements but also have digital inputs
(controlled switch in the figure)

R

R

R

R

S

Q

Q

Ra

Rb

C

VCC

Vo

IC 555

Figure 10.2: Oscillator based on the 555 timer.

In mixed-signal simulation, there are “analog time points” at which the analog variables are
computed and “digital time points” at which the digital variables are treated (by scheduling and
processing events). At the end of an analog time point, the analog variables would have changed; and
if there are ADC-type elements in the circuit, some events may have to be scheduled as a result of
the change in the analog variables. Similarly, at the end of a digital time point, the digital variables
would have changed; and if there are DAC-type elements, the system of equations involving the
analog variables must be solved to update the analog variables accordingly. Thus, the analog and
digital variables are continuously upgraded, and the analog and digital time steps are automatically
synchronised.

Chapter 11

SEQUEL library

The usefulness of a circuit simulator or ODE solver depends on the applications it can handle.
Simulators are available for various applications, e.g., electronic circuits, power electronic circuits,
automotive systems, power systems, “multi-physics” circuits (involving different domains
simultaneously, such as electrical, thermal, mechanical), MEMS, digital circuits, etc. For a specific
application, the developer must incorporate suitable elements inside the program. For example, a
circuit simulator meant for electronic circuits must have diodes and transistors, apart from linear
elements such as R, L, C, and sources.

SEQUEL is meant to be somewhat broad in scope, so it allows different types of elements. It is
organised so that the main program and the element library are decoupled, making it easier to add
new library elements1. The element help files can be accessed from the GUI, and they provide
information about the nodes of an element, its parameters, and its behaviour. Here, we mainly want
to look at how the element library is organised. Fig. 11.1 shows the library organisation. At the
lowest level, we have the “basic” elements. Four types of basic elements are allowed, viz., electrical,
general, digital, and explicit. Let us take a brief look at them.

(a) Electrical Basic Elements (EBE): These are elements with which voltages and currents are
associated. When the circuit file contains EBEs, the program uses the MNA approach to
assemble the circuit equations (see Chapter 2). Examples: R, L, C, sources, diode, BJT, FET,
MOSFET, transformers, switches, induction motor, DC motor, thyristor, etc.

(b) General Basic Elements (GBE): These elements are used to implement relationships or
equations between “general variables” (gvar). There is no KCL or KVL associated with these
elements, only the relationships provided by the concerned GBE. Examples: summer,
multiplier, integrator, transfer function, look-up tables, trigonometric functions, sources,
clocks, etc.

(c) Digital Basic Elements (DBE): These elements are used to build a digital circuit. The
event-driven simulation approach (see Chapter 10) is used to describe their behaviour. Their
inputs and outputs are generally digital variables (except the “ADC”-type elements which have
analog input nodes as well). Examples: gates, flip-flops, counters, multiplexer, demultiplexer,
etc.

1SEQUEL stands for “Solver of circuit EQuations with User-defined ELements.” The original idea was to allow the
user to add new elements, but for practical reasons, it was abandoned. Perhaps, it is time to change the name of the
program.

106

SEQUEL library 107

General
Mixed
Elements
(GME)

ElectricalElectrical
Basic
Elements
(EBE)

General
Basic
Elements
(GBE)

Digital
Basic
Elements
(DBE)

Explicit
Basic
Elements
(XBE)

Compound
Elements
(ECE)

Digital
Compound
Elements
(DCE)

Explicit
Compound
Elements
(XCE)

General
Compound
Elements
(GCE)

Figure 11.1: SEQUEL library organisation. Elements in the blue boxes can be used in the circuit file.

(d) Explicit Basic Elements (XBE): As explained in Chapter 4, explicit methods such as Forward
Euler and Runge-Kutta-4 are advantageous for non-stiff problems. The XBEs provide the
building blocks when an explicit method is used in transient simulation. The nodes of an XBE
are of type xvar (explicit variable). Examples: summer, multiplier, integrator, transfer
function, look-up tables, trigonometric functions, sources, induction motor, BLDC motor,
clocks, etc. Note that several elements have been implemented as GBEs as well as XBEs.
GBEs are used with implicit methods whereas XBEs are used with explicit methods.

At the next higher level, we have the “compound” elements. There are four types of compound
elements: electrical, general, digital, and explicit. A compound element is made up of basic element
of the same type. It may also include another compound element, again of the same type. Here are
some examples.

(a) Electrical Compound Elements (ECE): An Op Amp macromodel can be constructed as an
ECE and will possibly include BJTs, resistors, capacitors, and dependent sources as EBEs.

(b) General Compound Elements (GCE): A PI controller can be constructed as a GCE using a
scalar multiplier, an integrator, and a summer as GBEs.

108 SEQUEL Users’ Manual: Part 1

(c) Digital Compound Elements (DCE): A 4-bit counter can be constructed as a DCE using JK
flip-flops as DBEs. An 8-bit counter can be constructed as a DCE using two 4-bit counters as
DCEs.

(d) Explicit Compound Elements (XCE): A PI controller can be constructed as an XCE using a
scalar multiplier, an integrator, and a summer as XBEs.

At the next higher level, we have the General Mixed Elements (GME) which allow compound
elements of different types to be combined into a single element. The 555 timer (see Fig. 10.2) is a
good example where we have ECEs (such as resistor, switch) and DCEs (RS flip-flop) combined into
a single GME. Note that a GME cannot directly use the basic elements.

The user’s circuit file –which is created by the SEQUEL GUI from the user’s circuit
schematic – can use elements of type ECE, GCE, DCE, XCE, and GME (the blue boxes in
Fig. 11.1). At the circuit file level, we do not have direct access to the basic elements.

Bibliography

[1] http://www.ee.iitb.ac.in/∼sequel.

[2] http://www.pitt.edu/∼dash/type1620.html#andersen.

[3] http://jeanporter.cmswiki.wikispaces.net/The+Emperor%27s+New+Clothes+%28clipart+
%26+images%29.

[4] D.O. Pederson, “A historical review of circuit simulation,” IEEE Trans. Circuits Syst., vol. 31,
pp. 103–111, 1984.

[5] M.B. Patil, M.C.. Chandorkar, B.G.. Fernandes, and K. Chatterjee, “Computation of
steady-state response in power electronic circuits,” IETE journal of research, vol. 48, no. 6, pp.
471–477, 2002.

[6] W.J. McCalla, Fundamentals of Computer-Aided Circuit Simulation. Boston: Kluwer
Academic Publishers, 1987.

[7] M.B. Patil, V. Ramanarayanan, and V.T. Ranganathan, Simulation of power electronic circuits.
New Delhi: Narosa, 2009.

[8] T. Tuma and A. Bűrmen, Circuit Simulation with SPICE OPUS. Boston: Birkhäuser, 2009.

[9] L.F. Shampine, Numerical Solution of Ordinary Differential Equations. New York: Chapman
and Hall, 1994.

[10] L. Lapidus and J.H. Seinfeld, Numerical Solution of Ordinary Differential Equations. New
York: Academic Press, 1971.

[11] R.L. Burden and J.D. Faires, Numerical Analysis. Singapore: Thomson, 2001.

[12] R.E. Bank, W.M. Coughran, W. Fichtner, E.H. Grosse, D.J. Rose, and R.K. Smith, “Transient
simulation of silicon devices and circuits,” IEEE Trans. Electron Devices, vol. 32, no. 10, pp.
1992–2006, 1992.

[13] T.J. Aprille and T.N. Trick, “Steady-state analysis of nonlinear circuits with periodic inputs,”
Proc. IEEE, vol. 60, pp. 108–114, 1972.

[14] ——, “A computer algorithm to determine the steady-state response of nonlinear oscillators,”
IEEE Trans. Circuit Theory, vol. 19, pp. 352–360, 1972.

109

http://www.ee.iitb.ac.in/~sequel
http://www.pitt.edu/~dash/type1620.html#andersen
http://jeanporter.cmswiki.wikispaces.net/The+Emperor%27s+New+Clothes+%28clipart+%26+images%29
http://jeanporter.cmswiki.wikispaces.net/The+Emperor%27s+New+Clothes+%28clipart+%26+images%29

110 SEQUEL Users’ Manual: Part 1

[15] M.S. Nakhla and F.H. Branin, “Determining the periodic response of nonlinear systems by a
gradient method,” Int. J. Circuit Theory Appl., vol. 5, pp. 255–273, 1977.

[16] R. Raghuram, Computer Simulation of Electronic Circuits. New Delhi: Wiley Eastern, 1989.

	Introduction
	The Emperor's New Clothes
	Weavers and their tricks

	Modified Nodal Analysis
	Nodal Analysis
	Modified Nodal Analysis

	Newton-Raphson Method
	Single equation
	Extension to set of equations
	Convergence criteria
	Graphical interpretation of the NR process
	Convergence issues
	Damping of the NR iterations
	Parameter stepping
	Limiting junction voltages
	Changing time step

	Nonlinear circuits

	Numerical Solution of ODEs: Explicit Methods
	Forward Euler method
	Runge-Kutta method of order 4
	System of ODEs
	Adaptive time step
	Stability
	What are those arrows in Simulink?

	Is y = dxdt same as x = ydt?
	Numerical Solution of ODEs: Implicit Methods
	Backward Euler, trapezoidal, and BDF2 methods
	Stability
	Some practical issues
	Oscillatory circuits
	Ringing

	TR-BDF2 method
	Systematic assembly of circuit equations
	Adaptive time steps using NR convergence

	Steady-State Waveform (SSW) Computation
	Start-up Simulation
	AC Simulation
	Digital Circuits
	SEQUEL library

