AC voltage controller - 2 (PE_AC_Controller_2.sqproj)

Question: For the single phase AC voltage controller shown in Fig. 1,

- (a) Find the RMS values of the output votage and current if the firing angle $\alpha = 30^{\circ}$.
- (b) Find the output power and input power factor in this case.

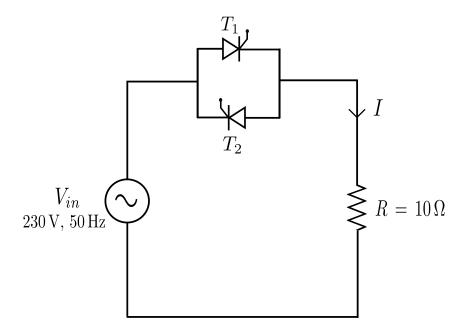


Figure 1: Single phase AC voltage controller with R load

Solution:

(a) For the single phase AC voltage controller circuit in Fig. 1, thyristor T_1 is fired at $\alpha = 30^{\circ}$ and thyristor T_2 is fired at $\pi + \alpha$. The thyristor T_1 is reversed biased from π to 2π and since T_2 is fired at $\pi + \alpha$, current in the circuit is zero from π to $\pi + \alpha$. Similarly current is zero from 2π to $\pi + \alpha$. Therefore, the output voltage is also zero in these time periods. The output voltage and current waveforms are shown in Fig. 2. The RMS value of output voltage,

$$V_{out} = \sqrt{\frac{1}{\pi} \int_{\alpha}^{\pi} (V_m \sin \omega t)^2 \cdot d\omega t}$$
 (1)

$$\frac{V_m}{\sqrt{2}}\sqrt{\frac{1}{\pi}\left((\pi-\alpha)+\frac{1}{2}\sin 2\alpha\right)} = 226.5 \,\mathrm{V} \tag{2}$$

The RMS value of output current,

$$I_{out} = \frac{V_{out}}{R} = 22.65 \,\text{A}$$
 (3)

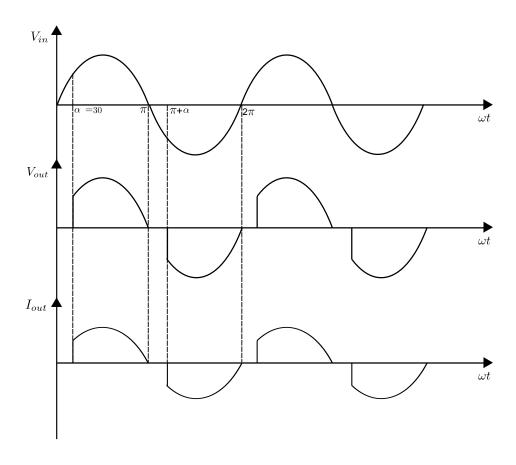


Figure 2: Output waveforms of AC voltage controller with R load

(b) The output power,

$$P_{out} = I_{out}^2 R = 5.13 \,\text{kW} \tag{4}$$

Since losses in thyristor switches are assumed to be zero, the input power is equal to output power.

$$P_{in} = V_{in} I cos \phi \tag{5}$$

$$P_{out} = V_{out} I \tag{6}$$

The input power factor,

$$\cos\phi = \frac{V_{out}I}{V_{in}I} = 0.98 \tag{7}$$

SequelApp Exercises:

For the circuit in Fig. 1, find the following.

- (a) The load resistance R to get a load power of $10\,\mathrm{kW}$ when $\alpha=0$.
- (b) Find the output power and the source power factor for the above value of R when the firing angle α is 45°.

Verify your answers using SequelApp.