DC-DC Converter (PE_dual.sqproj)

Question : The converter shown in Fig. 1(a) is a dual output single input DC - DC converter. Each switch operates with a switching frequency of 500 kHz and their switching pattern is as shown in Fig. 1 (b). All the elements of circuit are assumed to be ideal and capacitors are large enough to assume ripple free output voltages. Find the average value of output voltages, v_{o} and v_{B}.

Figure 1: Dual output DC - DC converter

Solution :

Fig. 1(a) shows a dual output single input $\mathrm{DC}-\mathrm{DC}$ converter with outputs denoted by v_{B} and v_{o}. Each switch has a duty ratio of 0.67 and Fig. 2 shows the three switching stages of the converter.

Figure 2: Dual output DC-DC converter (a) $S_{1} \& S_{2}$ are ON, (b) $S_{1} \& S_{3}$ are ON, (b) $S_{2} \& S_{3}$ are ON

Assume that the inductor currents ($i_{L 1}$ and $i_{L 2}$) are continuous.
Operation: When the switches $S_{1} \& S_{2}$ are ON $\left(0<t<\frac{T}{3}\right)$, inductor L_{1} stores energy and L_{2} releases energy. When the switches $S_{1} \& S_{3}$ are ON $\left(\frac{T}{3}<t<\frac{2 T}{3}\right)$, inductor L_{1}
releases energy and L_{2} stores energy. When the switches $S_{3} \& S_{3}$ are ON $\left(\frac{2 T}{3}<t<T\right)$, inductors L_{1} and L_{2} releases energy.
The circuit is operating under steady state, i.e., the energy stored in the inductor during the ON interval should be released during the OFF interval as shown in Fig. 3.

Figure 3: Inductor current waveforms for continuous conduction

The average voltage across the 15Ω resistor $\left(V_{o}\right)$ can be derived as follows:
When the switches $S_{1} \& S_{2}$ are ON, applying KVL gives

$$
V_{i n}=L_{1} \frac{d i_{L 1}}{d t}
$$

When the switches $S_{1} \& S_{3}$ are ON, applying KVL gives

$$
V_{i n}=L_{1} \frac{d i_{L 1}}{d t}+v_{o}(t)
$$

When the switches $S_{2} \& S_{3}$ are ON, applying KVL gives

$$
V_{i n}=L_{1} \frac{d i_{L 1}}{d t}+v_{o}(t)
$$

Applying the volt-sec balance equation across L_{1} :

$$
V_{o}=\frac{3}{2} \cdot V_{i n} \quad \Longrightarrow \quad V_{o}=\frac{3}{2} \times 100=150 \mathrm{~V}
$$

The average voltage across the 5Ω resistor $\left(V_{B}\right)$ can be derived as follows:
When the switches $S_{1} \& S_{2}$ are ON, applying KVL gives

$$
v_{B}+L_{2} \frac{d i_{L 2}}{d t}=0
$$

When the switches $S_{1} \& S_{3}$ are ON, applying KVL gives

$$
v_{B}+L_{2} \frac{d i_{L 2}}{d t}=v_{o}(t)
$$

When the switches $S_{2} \& S_{3}$ are ON, applying KVL gives

$$
v_{B}+L_{2} \frac{d i_{L 2}}{d t}=0
$$

Applying the volt-sec balance equation across L_{2} :

$$
V_{B}=\frac{1}{3} \cdot V_{o} \quad \Longrightarrow \quad V_{B}=\frac{1}{3} \times 150=50 \mathrm{~V}
$$

The above calculations were done with the assumption that the inductor currents are continuous. When the inductor current is continuous, $I_{L}^{\text {avg }}>\frac{\Delta I_{L}}{2}$, where $I_{L}^{\text {avg }}$ is the average inductor current and ΔI_{L} is the peak - to - peak ripple inductor current. To validate our assumption:

The overall circuit is lossless, i.e., $P_{\text {out }}=P_{\text {in }}$.

$$
\therefore \frac{V_{o}^{2}}{R_{o}}+\frac{V_{B}^{2}}{R_{B}}=V_{i n} I_{i n} \Longrightarrow I_{L 1}^{a v g}=I_{i n}=\frac{1}{100} \cdot\left(\frac{150^{2}}{15}+\frac{50^{2}}{5}\right)=20 \mathrm{~A}
$$

The average current through capacitor under steady state is zero. Hence the average current through L_{2} is equal to the average current through R_{B} and is given by

$$
I_{L 2}^{a v g}=I_{B}=\frac{V_{B}}{R_{B}}=\frac{50}{5}=10 \mathrm{~A}
$$

The peak - to - peak inductor currents can be calculated as follows:
When the switches $S_{1} \& S_{2}$ are ON $\left(0<t<\frac{T}{3}\right)$, applying KVL gives

$$
V_{i n}=L_{1} \frac{d i_{L 1}}{d t}=L_{1} \frac{\Delta I_{L 1}}{\Delta t}
$$

where $\Delta I_{L 1}$ is the peak - to - peak inductor current and Δt is $T / 3$ as shown in Fig. 3 (a).

$$
\therefore \Delta I_{L 1}=\frac{V_{i n} \times \frac{T}{3}}{L_{1}}=\frac{100}{\left(500 \times 10^{3} \times 3\right) \times\left(11.11 \times 10^{-6}\right)}=6 \mathrm{~A}
$$

Similarly, when the switches $S_{1} \& S_{3}$ are ON $\left(\frac{T}{3}<t<\frac{2 T}{3}\right)$, applying KVL gives

$$
V_{B}+L_{2} \frac{d i_{L 2}}{d t}=V_{o} \Longrightarrow V_{o}-V_{B}=L_{2} \frac{\Delta I_{L 2}}{\Delta t}
$$

where $\Delta I_{L 2}$ is the peak - to - peak inductor current and Δt is $T / 3$ as shown in Fig. 3 (b).

$$
\therefore \Delta I_{L 2}=\frac{\left(V_{o}-V_{B}\right) \times \frac{T}{3}}{L_{2}}=\frac{100}{\left(500 \times 10^{3} \times 3\right) \times\left(22.22 \times 10^{-6}\right)}=3 \mathrm{~A}
$$

From the above calculations $I_{L}^{\text {avg }}>\frac{\Delta I_{L}}{2}$ in both inductors, i.e., the current through the inductors are continuous and hence our assumption is correct.

SequelApp Exercises:

1. Calculate the value of inductances L_{1} and L_{2} such that the percentage ripple current $\left(\frac{\Delta I_{L}}{I_{L}^{\text {avg }}} \times 100\right)$ in both the inductors is 20%, keeping all other parameters the same as the previous question.

Verify your answer using SequelApp.

