Uncontrolled Rectifier - 1 (PE_rectifier_1.sqproj)

Question: For the circuit shown in Figure 1,

- (a) Find the average output voltage V_{out} .
- (b) Find the average current through the circuit I.

(Solving by numerical method, the extinction angle, β is found to be 272.8° in the above case)

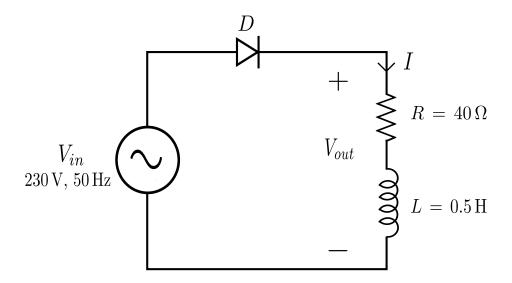


Figure 1: Half wave diode rectifier with RL load.

Solution:

(a) The extinction angle is given as $\beta=272.8^{\circ}$. This means the diode, D conducts until 272.8° in a complete cycle. By solving KVL, output voltage V_{out} is identical to V_{in} until 272.8° and is zero from 272.8° to 360° (see Fig. 2).

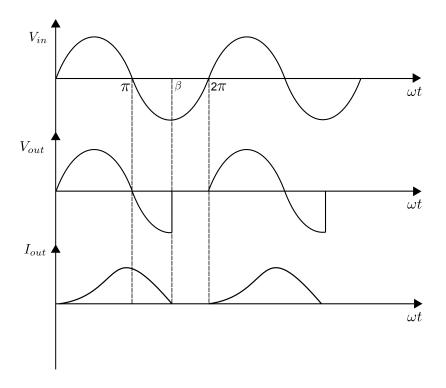


Figure 2: Plot of V_{in}, V_{out}, I vs ωt

The average value of output voltage,

$$V_{out} = \frac{1}{2\pi} \int_0^{272.8} 230\sqrt{2} \sin(\omega t) d(\omega t)$$
 (1)

$$V_{out} = \frac{1}{2\pi} \left[230\sqrt{2} \left(1 - \cos(272.8^{\circ}) \right) \right] = 49.4 \,\text{V}$$
 (2)

(b) The average value of voltage across inductor is zero in a complete cycle.

$$V_{out} = IR \tag{3}$$

So the average value of current,

$$I = \frac{V_{out}}{R} = 1.23 \,\mathrm{A} \tag{4}$$

SequelApp Exercises:

Find the average output voltage V_{out} and the average circuit current I for each of the following cases (with other component values as shown in Fig. 1).

1.
$$L=0.5\,\mathrm{H},\,R=20\,\Omega.$$
 (Extinction angle $\beta=294.3^\circ)$

2.
$$L=0.25\,\mathrm{H},\,R=40\,\Omega.$$
 (Extinction angle $\beta=249.3^\circ).$

Verify your results using SequelApp.