DAC with *R*-2*R* ladder network (EC_dac_1.sqproj)

Figure 1: DAC using R-2R ladder network.

Question: In the DAC circuit shown in Fig. 1, $R = R_f = 10$ k, and $V_R = 5$ V. The digital input number is represented by the variables S_3 , S_2 , S_1 , S_0 , with S_3 as the MSB and S_0 as the LSB. The voltage at node A_k is V_R if $S_k = 1$ and 0 V otherwise. Find V_o if S_1 is 1 and S_3 , S_2 , S_0 are all 0.

Solution:

To obtain V_o , we will replace the *R*-2*R* network with its Thevenin equivalent circuit, as shown in Fig. 2. The computation of the Thevenin resistance and Thevenin voltage is shown in Figs. 3 and 4, respectively, where repeated use of Thevenin's theorem has been made to simplify the circuit systematically.

Figure 2: Representation of R-2R ladder with Thevenin equivalent circuit.

Finally, we replace the R-2R network in the original DAC circuit of Fig. 1 with its Thevenin equivalent circuit and obtain the circuit shown in Fig. 5. This circuit is simply an inverting amplifier, and the output voltage is given by

$$V_o = -\frac{R_f}{R} V_{\rm Th} = -\frac{V_R}{8} = -0.625 \,\mathrm{V},\tag{1}$$

Figure 3: The venin resistance calculation for the R-2R ladder network.

since R_f and R are equal.

SequelApp Exercises: Answer the following and verify using SequelApp.

- 1. Find V_o for the following input binary numbers.
 - (a) $S_3 S_2 S_1 S_0 = 1000$.
 - (b) $S_3S_2S_1S_0 = 0100$.
 - (c) $S_3 S_2 S_1 S_0 = 0001$.
- 2. Using superposition, find V_o for the following input binary numbers.
 - (a) $S_3 S_2 S_1 S_0 = 1001$.
 - (b) $S_3 S_2 S_1 S_0 = 1010$.
- 3. Find the input binary numbers $(S_3S_2S_1S_0)$ which will give the following outputs.
 - (a) $V_o = -1.875$ V.
 - (b) $V_o = -1.5625 \,\mathrm{V}.$

Figure 4: The venin voltage calculation for the $R\mathchar`-2R$ ladder network.

Figure 5: Original DAC circuit with R-2R ladder network replaced with its Thevenin equivalent circuit.