Diode circuits-2 (EC_diode_2.sqproj)

Figure 1: Diode circuit example.

Question: For the diode circuit shown in Fig. 1, plot V_o versus V_i for $-5 \text{ V} < V_i < 5 \text{ V}$. Assume $V_{\text{on}} = 0.7 \text{ V}$ for D_1 and D_2 and $V_Z = 3 \text{ V}$ for D_1 .

Solution:

We note that the following conditions are required for D_1 or D_2 to conduct¹.

- (i) D_1 conducting in the forward direction: $V_{AB} > V_{on}^{D1} = 0.7 \text{ V}.$
- (ii) D_2 conducting in the forward direction and D_1 off: $V_{BA} > V_{on}^{D2} = 0.7 \text{ V}$ and $V_{BA} < V_Z = 3 \text{ V}$, i.e., $-3 \text{ V} < V_{AB} < -0.7 \text{ V}$.
- (iii) D_2 conducting in the forward direction and D_1 conducting in the reverse direction: $V_{BA} > V_{on}^{D2} = 0.7 \text{ V} \text{ and } V_{BA} > V_Z = 3 \text{ V} \text{ which means } V_{BA} > 3 \text{ V} \rightarrow V_{AB} < -3 \text{ V}.$

Let us now use the above conditions and analyse the various possibilities.

- 1. For $-0.7 \text{ V} < V_{AB} < -0.7 \text{ V}$, none of the diodes can conduct, the current through R is zero, and we have $V_i = V_{AB} = 0 \text{ V}$. The slope $\frac{dV_o}{dV_i} = 1$ in this region.
- 2. For D_1 to be conducting in the forward direction, we require $V_{AB} > 0.7$ V which means that D_2 must be off. D_1 just starts conducting when the current I_1 in Fig. 2 (b) is small (zero), and therefore the voltage drop across R is zero. In other words, D_1 starts conducting when $V_i = 0.7$ V.

¹We assume that D_2 can only conduct in the forward direction, i.e., it has a large breakdown voltage.

- 3. When D_2 conducts in the forward direction and D_1 not conducting (see Fig. 2 (c)), the current through R is the same as I_{D2} . The condition for D_2 to *just* start conducting is by KVL, $V_i + I_2R_2 + V_{on}^{D2} + I_2R = 0$, with $I_2 \rightarrow 0$, giving $V_i = -V_{on}^{D2} = -0.7$ V.
- 4. When V_i is increased in the negative direction, the current I_2 in Fig. 2 (c) starts increasing, and at some point, V_{BA} becomes equal to V_Z of D_1 . This condition gives us the break point between the situations shown in Figs. 2 (c) and 2 (d). KVL gives $V_i + I_2 R_2 + V_{on}^{D2} + (I_1 + I_2)R = 0$, with $I_1 \approx 0$ at the break point. Solving for I_2 and then using $I_2 R_2 + V_{on}^{D2} = V_Z$ gives

$$V_{\rm on}^{D2} + \frac{-V_i - V_{\rm on}^{D2}}{R_2 + R} \times R_2 = V_Z,\tag{1}$$

from which the break point V_i can be obtained. Substitution of numerical values gives $V_i = -4.15\,\mathrm{V}.$

The break points are summarised in Fig. 3.

Figure 2: Diode circuit of Fig. 1 under different conditions: (a) D_1 off, D_2 off, (b) D_1 conducting in the forward direction, D_2 off, (c) D_1 off, D_2 conducting in the forward direction, (d) D_1 conducting in the reverse direction, D_2 conducting in the forward direction.

Figure 3: Break points in the V_o versus V_i relationship for the circuit of Fig. 1.

Next, we compute the slope $\frac{dV_o}{dV_i}$ in each of the four regions shown in Fig. 3. For this purpose, we replace the diode with an open circuit when it is off, with a voltage source V_{on} when it is conducting in the forward direction, and with a voltage source V_Z when it is conducting in the reverse direction, as shown in Figs. 4 (a)-(d).

Figure 4: Diode circuit of Fig. 1 under different conditions, with diodes replaced by equivalent circuits, (a) D_1 off, D_2 off, (b) D_1 conducting in the forward direction, D_2 off, (c) D_1 off, D_2 conducting in the forward direction, (d) D_1 conducting in the reverse direction, D_2 conducting in the forward direction.

We can use KVL to obtain V_o in terms of V_i in each of these cases and then differentiate to get $\frac{dV_o}{dV_i}$. However, there is a simpler way to arrive at the same result. Since we are only interested in the effect of V_i on V_o in each of the circuits in Figs. 4 (a)-(d) – which are linear – we simply deactivate the voltage source(s) representing the diode(s), as shown in Figs. 5 (a)-(d), and obtain V_o in each case.

Figure 5: Simplification of circuits in Figs. 4 (a)-(d) for computation of $\frac{dV_o}{dV_i}$: (a) D_1 off, D_2 off, (b) D_1 conducting in the forward direction, D_2 off, (c) D_1 off, D_2 conducting in the forward direction, (d) D_1 conducting in the reverse direction, D_2 conducting in the forward direction.

Using this procedure, we get the following values for $\frac{dV_o}{dV_i}$.

(i)
$$-0.7 \text{ V} < V_i < 0.7 \text{ V}$$
: $V_o = V_i \rightarrow \frac{dV_o}{dV_i} = 1$.

(ii)
$$V_i > 0.7 \,\mathrm{V}: \ V_o = \frac{R_1}{R + R_1} \times V_i \to \frac{dV_o}{dV_i} = \frac{R_1}{R + R_1}$$

(iii)
$$-4.15 \,\mathrm{V} < V_i < -0.7 \,\mathrm{V}$$
: $V_o = \frac{R_2}{R+R_2} \times V_i \to \frac{dV_o}{dV_i} = \frac{R_2}{R+R_2}$.

(iv)
$$V_i < -4.15 \text{ V}$$
: $V_o = \frac{(R_1 \parallel R_2)}{R + (R_1 \parallel R_2)} \times V_i \to \frac{dV_o}{dV_i} = \frac{(R_1 \parallel R_2)}{R + (R_1 \parallel R_2)}$

Figure 6: V_o versus V_i plot for the diode circuit of Fig. 1. Slopes are marked in red.

Finally, putting together all our observations, we obtain the V_o versus V_i plot shown in Fig. 6. SequelApp Exercises: Answer the following, and verify using SequelApp.

- 1. How will the V_o versus V_i curve be affected with the following changes (keeping all other component values the same as in Fig. 1)?
 - (i) R_1 is changed 0.5 k.
 - (ii) R_2 is changed 0.5 k.
- 2. If $V_i(t) = V_m \sin \omega t$, find the minimum and maximum values of $V_o(t)$ for two cases: (a) $V_m = 3 \text{ V}$, (b) $V_m = 5 \text{ V}$.