Diode circuits-3 (EC_diode_3.sqproj)

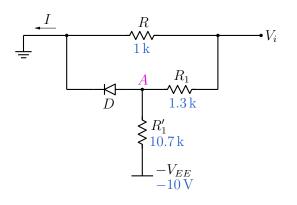


Figure 1: Diode circuit example.

Question: For the diode circuit shown in Fig. 1, plot I versus V_i for $-1 V < V_i < 4 V$. Assume $V_{on} = 0.7 V$ for the diode.

Solution:

Let us start with $V_i = 0$ V. The current through R is zero in this case since its two ends are at the same potential (0 V). If the diode is on, $V_A = 0.7$ V. KCL at node A requires $\frac{0.7 - (-10)}{R'_1} + \frac{0.7 - 0}{R_1} = 0$, which is clearly not possible. We conclude that the diode must be off when $V_i = 0$ V.

Let us now obtain the value of V_i for which the diode starts conducting. When the diode is off (see Fig. 2 (a)), the node voltage V_A can be obtained using superposition and is given by

$$V_A = (-V_{EE}) \times \frac{R_1}{R_1 + R_1'} + V_i \times \frac{R_1'}{R_1 + R_1'}.$$
(1)

For the numerical values specified in Fig. 1, and with $V_i = 0$ V, V_A is -1.1 V.

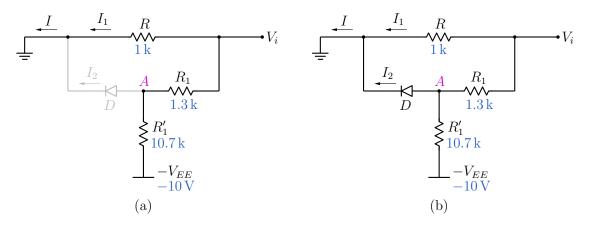


Figure 2: Diode circuit of Fig. 1 with (a) diode off, (b) diode on.

If a negative V_i is applied, we see from Eq. 1 that V_A remains negative, and the diode cannot conduct. If V_i is increased in the positive direction, the second term in Eq. 1 increases, and at some point, V_A becomes equal to $V_{\rm on} = 0.7$ V. This "break point" can be found by equating V_A in Eq. 1 to $V_{\rm on}$, giving

$$(-V_{EE}) \times \frac{R_1}{R_1 + R_1'} + V_i \times \frac{R_1'}{R_1 + R_1'} = V_{\text{on}}$$
(2)

$$\rightarrow V_i^{\text{break}} = V_{EE} \frac{R_1}{R_1'} + V_{\text{on}} \left(1 + \frac{R_1}{R_1'}\right). \tag{3}$$

With the component values given in Fig. 1, we get $V_i^{\text{break}} = 2 \text{ V}$. Next, let us find the slope $\frac{dI}{dV_i}$. When the diode is off (see Fig. 2 (a)), $I = I_1 = \frac{V_i}{R} \rightarrow \frac{dI}{dV_i} = \frac{1}{R}$. When the diode is conducting (see Fig. 2 (b)), $V_A = V_{\text{on}} = 0.7 \text{ V}$, and

$$I = I_1 + I_2 = \frac{V_i}{R} + \frac{V_i - V_A}{R_1} - \frac{V_A - (-V_{EE})}{R_1'}.$$
(4)

The slope is now given by $\frac{dI}{dV_i} = \frac{1}{R} + \frac{1}{R_1} = \frac{1}{(R \parallel R_1)}$. To summarise, we can write

$$\frac{dI}{dV_i} = \frac{1}{R}, \qquad V_i < V_i^{\text{break}}, \\
= \frac{1}{(R \parallel R_1)}, \qquad V_i > V_i^{\text{break}}.$$
(5)

Using these findings, we obtain the plot shown in Fig. 3.

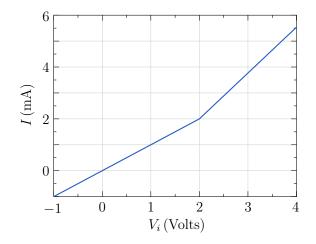


Figure 3: I versus V_i plot for the circuit of Fig. 1.

SequelApp Exercise: With $V_{EE} = 10$ V, find R, R_1 , R'_1 in order to obtain the I versus V_i plot shown in Fig. 4. Verify using SequelApp.

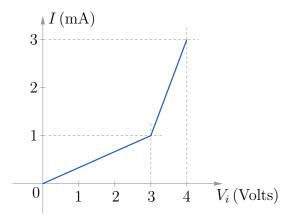


Figure 4: I versus V_i plot for SequelApp exercise.