Network Theorems-4 (EC_network_4.sqproj)

Figure 1: Superposition theorem example.

Question: For the circuit shown in Fig. 1,

- (a) Find the current i_2 using superposition.
- (b) Using the results of (a), find i_2 for $V_s = 8$ V and $I_s = 2$ A.

Solution:

- (a) We consider two cases: (i) only V_s active, (ii) only I_s active. In each case, we find i_2 and then add the two values to get the net value of i_2 .
 - (i) Only V_s active: The current source I_s is deactivated (i.e., made equal to 0 A) in this case and is represented by an open circuit. The circuit then reduces to that shown in Fig. 2. KVL gives

$$R_1 i_1 + 2 i_1 + R_2 i_1 + 12 = 0 \rightarrow i_1 = -2 A \rightarrow i_2^{(1)} = 2 A.$$
 (1)

Figure 2: Circuit of Fig. 1 with I_s deactivated.

(ii) Only I_s active: The voltage source V_s is deactivated (i.e., made equal to 0 V) in this case and is represented by a short circuit. The circuit then reduces to that shown in Fig. 3. KCL at node A gives $i_2 = 6 - i_1$ which can be used to write the following KVL equation.

$$R_1 i_1 + 2 i_1 - R_2 (6 - i_1) = 0 \rightarrow i_1 = 3 A \rightarrow i_2^{(2)} = 6 - 3 = 3 A.$$
 (2)

The net value of i_2 is therefore $i_2 = i_2^{(1)} + i_2^{(2)} = 5$ A.

Figure 3: Circuit of Fig. 1 with $V_{\!s}$ deactivated.

(b) In case (i) of part (a), since there is only one independent source in the circuit, we can write

$$i_2^{(1)} = k_1 V_s, (3)$$

where $k_1 = \frac{2 \text{ A}}{12 \text{ V}} = \frac{1}{6} \text{ } \mho.$

Similarly, in case (ii) of part (a), we have

$$i_2^{(2)} = k_2 I_s, (4)$$

where $k_2 = \frac{3 \text{ A}}{6 \text{ A}} = \frac{1}{2}$.

Using superposition, we have

$$i_2 = i_2^{(1)} + i_2^{(2)} = k_1 V_s + k_2 I_s = \left(\frac{1}{6}\mho\right) \times V_s + \frac{1}{2} \times I_s.$$
(5)

Substituting $V_s = 2 V$, $I_s = 2 A$, we obtain

$$i_2 = \frac{1}{6} \times 8 + \frac{1}{2} \times 2 = 2.33 \,\mathrm{A}.$$
 (6)

SequelApp Exercises:

- 1. For the circuit shown in Fig. 1, let $R_1 = 4 \Omega$, with all other component values as shown in the figure.
 - (i) Find the current i_2 using superposition.
 - (ii) Using the results of (a), find i_2 for $V_s = 4$ V and $I_s = 8$ A.
- 2. For the circuit shown in Fig. 1, find the value of R_1 which will give $i_2 = 5.4$ A, with all other component values as shown in the figure.

Verify your answers using SequelApp.