Phasors (EC_phasors_1.sqproj)

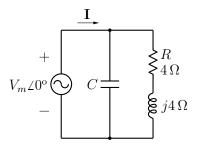


Figure 1: Phasor calculation example.

Question: In the circuit shown in the figure, the frequency is 50 Hz. Let $\mathbf{I} = I_m \angle \theta$. What value of C is required for $\theta = 45^{\circ}$?

Solution:

The impedance as seen by the source is given by

$$\mathbf{Z}_{eq} = (-jX_c) \parallel (4+j4)$$

$$= \frac{X_c \angle -90^{\circ} \times 4\sqrt{2} \angle 45^{\circ}}{-jX_c + (4+j4)}$$

$$= \frac{X_c \times 4\sqrt{2} \angle -45^{\circ}}{4+j(4-X_c)} \equiv \frac{a \angle -45^{\circ}}{b \angle \alpha},$$
(1)

where α is 45° and -90° for $X_c \to 0$ and $X_c \to \infty$, respectively. For **I** to lead the source voltage by 45°, $\mathbf{Z}_{\rm eq}$ must be of the form $Z_m \angle -45^\circ$, i.e., α in Eq. 1 must be 0°. This gives $4 - X_c = 0 \to X_c = 4 \to \frac{1}{\omega C} = 4 \to C = \frac{1}{2\pi \times 50 \times 4} = 800 \,\mu\text{F}$.

SequelApp Exercises: Find the value of C required for (a) $\theta = 0^{\circ}$, (b) $\theta = 20^{\circ}$. Verify your answers using SequelApp.