*RC* circuits (EC\_rc\_1.sqproj)

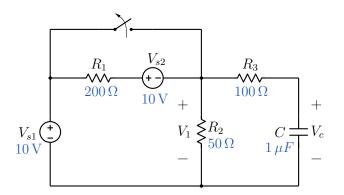



Figure 1: RC circuit example.

**Question:** In the circuit shown in Fig. 1, the switch has been closed for a long time and opens at t = 0.

- (a) Find  $V_c(0^-)$ .
- (b) Find  $V_c(0^+)$  and  $V_1(0^+)$ .
- (c) Find  $V_c(\infty)$  and  $V_1(\infty)$ .
- (d) What is the circuit time constant for t > 0?
- (e) Using the above results, plot  $V_c(t)$  and  $V_1(t)$ .

## Solution:

First, let us look at the circuit at  $t = 0^-$  (see Fig. 2 (a)). Since the switch has been closed for a long time, the circuit is in steady state, i.e., the currents and voltages are constant. Since  $i_c = C \frac{dV_c}{dt}$  for a capacitor,  $i_c(0^-)$  must be zero (since  $\frac{dV_c}{dt} = 0$ ) which means that the capacitor behaves like an open circuit, as shown in Fig. 2 (b), and we find that  $V_1(0^-) = V_c(0^-) = 10$  V. The circuit after the switch opens at t = 0 is shown in Fig. 3 (a). The two voltage source are in series and can be replaced with a single source  $(V_{s1} + V_{s2})$  which happens to be 0 V, a short circuit. The simplified circuit is shown in Fig. 3 (b).

Now,  $V_c(0^+)$  must be the same as  $V_c(0^-)$ ; otherwise, the capacitor current  $C \frac{dV_c}{dt}$  would become infinitely large, thus violating circuit equations. We have therefore

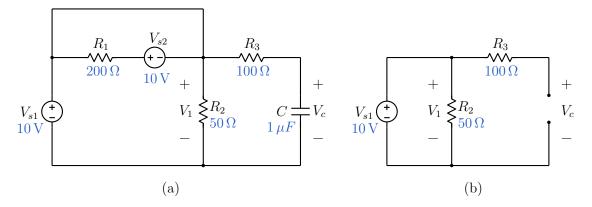



Figure 2: (a) Circuit of Fig. 1 at  $t = 0^-$ , (b) simplified circuit.

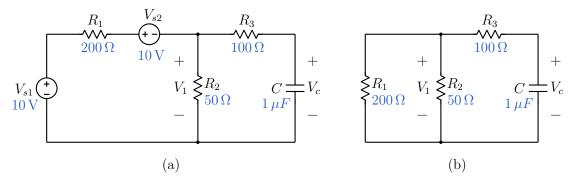



Figure 3: (a) Circuit of Fig. 1 for t > 0, (b) simplified circuit.

 $V_c(0^+) = V_c(0^-) = 10$  V. From  $V_c(0^+)$ , we can obtain  $V_1(0^+)$  as (see Fig. 3(b))

$$V_1(0^+) = V_c(0^+) \times \frac{(R_1 \parallel R_2)}{(R_1 \parallel R_2) + R_3} = 10 \,\mathrm{V} \times \frac{40\,\Omega}{140\,\Omega} = 2.86\,\mathrm{V}.$$
 (1)

For t > 0, the Thevenin equivalent resistance seen by the capacitor is  $(R_1 \parallel R_2) + R_3 = 140 \Omega$ ; therefore, the circuit time constant is  $\tau = 140 \Omega \times 1 \mu F = 140 \mu sec$ . After the switch opens at t = 0, we expect all transients to vanish in about  $5 \tau$  or  $140 \mu sec$ , and all currents and voltages would remain constant thereafter.

From Fig. 3 (b),  $V_c(\infty)$  and  $V_1(\infty)$  (i.e., after steady state has been attained) are found by inspection to be 0 V each since there is no independent source in the circuit.

Putting together the above observations, we obtain the plots for  $V_c(t)$  and  $V_1(t)$  as shown in Fig. 4.

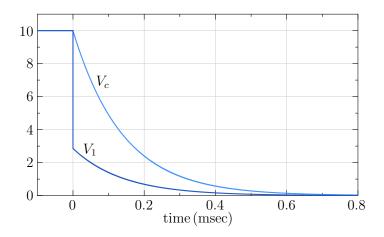



Figure 4:  $V_c$  and  $V_1$  versus time for the circuit of Fig. 1.

**SequelApp Exercises:** Repeat the above steps for the following situations, with other parameters the same as in Fig. 1. Verify your answers using SequelApp.

- 1.  $V_{s2} = -10$  V, switch opens at t = 0.
- 2.  $V_{s2} = 10$  V, switch closes at t = 0.
- 3.  $V_{s2} = -10$  V, switch closes at t = 0.