RC circuits (EC_rc_2.sqproj)

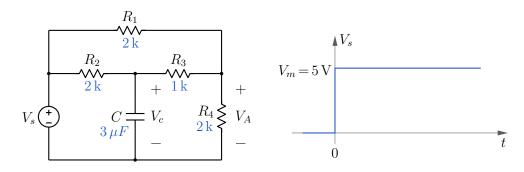


Figure 1: RC circuit with a step input.

Question: For the circuit shown in Fig. 1, find the following.

- (a) time constant
- (b) $V_c(0^-)$ and $V_A(0^-)$
- (c) $V_c(0^+)$ and $V_A(0^+)$
- (d) $V_c(\infty)$ and $V_A(\infty)$

Using the above values, plot $V_c(t)$ and $V_A(t)$.

Solution:

(a) The circuit time constant is given by $\tau = R_{Th}C$, where R_{Th} is the Thevenin equivalent resistance seen by the capacitor. To obtain R_{Th} , we deactivate the voltage source and find the resistance seen from the capacitor, as shown in Fig. 2. After simplifying the circuit, we get

$$R_{Th} = R_2 \parallel [R_3 + (R_1 \parallel R_4)].$$
(1)

For the component values given in Fig. 1, we get $R_{Th} = 1$ k, and $\tau = R_{Th}C = 3$ msec. We can expect the transients to vanish after about $5\tau = 15$ msec.

(b) Since the source voltage has been 0 V for a long time before t = 0, we have $V_c(0^-) = V_A(0^-) = 0$ V.

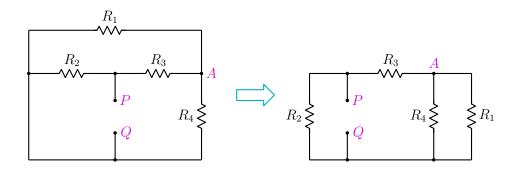


Figure 2: Calculation of the Thevenin resistance seen by the capacitor in the circuit of Fig. 1.

(c) Since the capacitor voltage cannot change abruptly between $t = 0^-$ and $t = 0^+$, we have $V_c(0^+) = V_c(0^-) = 0$ V, as shown by a short circuit in Fig. 3. Writing KCL at node A, we get

$$\frac{V_m - V_A}{R_1} = \frac{V_A}{R_3} + \frac{V_A}{R_4} \to V_A \left[\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4}\right] = \frac{V_m}{R_1},\tag{2}$$

where we have taken node Q as the reference node (0 V). Solving Eq. 2, we get $V_A(0^+) = 1.25$ V.

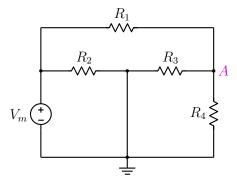


Figure 3: Circuit of Fig. 1 at $t = 0^+$.

(d) As $t \to \infty$, all voltages and currents become constant, the capacitor current $i_c = C \frac{dV_c}{dt}$ becomes zero, and the capacitor can therefore be replaced with an open circuit, as shown in Fig. 4. Writing KCL at node A, we get

$$\frac{V_m - V_A}{R_1} + \frac{V_m - V_A}{R_2 + R_3} = \frac{V_A}{R_4} \to V_A \left[\frac{1}{R_1} + \frac{1}{R_2 + R_3} + \frac{1}{R_4}\right] = V_m \left[\frac{1}{R_1} + \frac{1}{R_2 + R_3}\right].$$
 (3)

Solving this equation, we get $V_A(\infty) = 3.125$ V. $V_c(\infty)$ can now be obtained as

$$V_c(\infty) = V_m \frac{R_3}{R_2 + R_3} + V_A(\infty) \frac{R_2}{R_2 + R_3}.$$
(4)

Substituting numerical values, we get $V_c(\infty) = 3.75$ V.

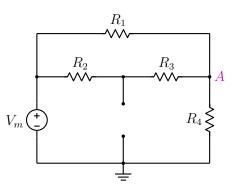


Figure 4: Circuit of Fig. 1 as $t \to \infty$.

Using the above results, we can now plot $V_c(t)$ and $V_A(t)$ (see Fig. 5).

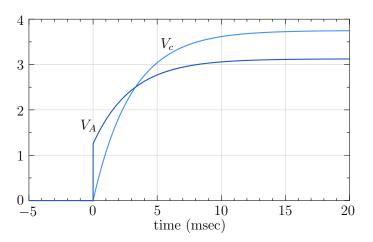


Figure 5: $V_c(t)$, $V_A(t)$ for the circuit of Fig. 1.

SequelApp Exercises: Repeat the above steps for the following situations, with other parameters the same as in Fig. 1. Verify your answers using SequelApp.

- 1. $R_3 = 3$ k.
- 2. $R_2 = 1 \,\mathrm{k}.$