RC circuits (EC_rc_3.sqproj)

Figure 1: RC circuit example.

Question: In the circuit shown in Fig. 1, V_c is initially 0 V (i.e., before the input pulse is applied). The capacitance C is $0.5 \,\mu$ F.

- (a) Sketch $V_c(t)$ and i(t).
- (b) Find the following values: (i) $V_c(t_0^-)$, (ii) $V_c(t_0^+)$, (iii) $i(t_0^-)$, (iv) $i(t_0^+)$.

Solution:

The waveforms $V_c(t)$ and i(t) are shown in Fig. 2. The falling edge of the input voltage at $t = t_0$ does not affect the circuit response for $0 < t_0 < t$. In other words, we can compute the response for a step change in V_s (see the dashed part in Fig. 2) rather than a pulse, and simply take the solution for $0 < t_0 < t$.

For this condition (i.e., a step change in V_s), let $V_c(t) = A_1 e^{-t/\tau} + B_1$. Since $V_c(t)$ is the capacitor voltage, it does not change instantaneously, which means $V_c(0^+) = V_c(0^-) = 0$ V. As $t \to \infty$, $V_c \to 5$ V since the capacitor current $i = \frac{dV_c}{dt}$ is zero in the steady state, leading to zero voltage drop across R. Using the above two conditions, we obtain $A_1 = -5$, $B_1 = 5$ (volts). At $t = t_0^-$, $V_c(t)$ can now be evaluated as

$$V_c(t_0^-) = (-5)e^{-t/RC} + 5 = (-5)e^{-1 \operatorname{msec}/0.5 \operatorname{msec}} + 5 = 4.32 \operatorname{V}.$$

 $V_c(t_0^+)$ is the same as $V_c(t_0^-)$ since the capacitor voltage does not change instantaneously. The current transient for $0 < t_0 < t$ can be obtained in two ways: (i) by differentiating $V_c(t)$, since $i = C \frac{dV_c}{dt}$, (ii) by computing i(t) for a step change in V_s to obtain i(t) for $0 < t_0 < t$. Let us use the second approach, with $i(t) = A_2 e^{-t/\tau} + B_2$. At $t = 0^+$, we have $V_s(0^+) = 5$ and $V_c(0^+) = 0$. The voltage drop across R is therefore 5 V, which means $i(0^+) = \frac{5 V}{R} = 5 \text{ mA}$. As $t \to \infty, i \to 0$. These two conditions give $A_2 = 5 \text{ mA}, B_2 = 0$, resulting in $i(t) = (5 \text{ mA}) e^{-t/\tau}$.

Figure 2: Schematic diagram showing $V_c(t)$ and i(t) for the circuit of Fig. 1.

At $t = t_0^-$, the above expression gives i(t) = 0.68 mA. The current at t_0^+ can be obtained as $i(t_0^+) = \frac{V_s(t_0^+) - V_c(t_0^+)}{R} = \frac{0 - 4.32}{R} = -4.32 \text{ mA}.$

SequelApp Exercises: Find C for each of the following conditions:

- 1. $V_c(t_0^-) = 3$ V.
- 2. $i(t_0^-) = 1 \text{ mA}.$
- 3. $i(t_0^+) = -1 \,\mathrm{mA}$.

Verify your answers using SequelApp.