Op-amp circuits (EC_schmitt_1.sqproj)

Figure 1: Schmitt trigger circuit.

Question: For the Schmitt trigger circuit shown in Fig. 1, plot V_o versus V_i for (a) $V_R = 0$ V, (b) $V_R = 5$ V.

Solution:

(a) With $V_R = 0$ V, the circuit is the "standard" inverting Schmitt trigger with the V_o - V_i relationship shown in Fig. 2 (a). The output voltage changes from $+V_{\text{sat}}$ to $-V_{\text{sat}}$ at $V_i = V_{TH}$ (see Fig. 2 (b)), and it corresponds to $(V_+ - V_-)$ changing sign. To find V_{TH} , we need to find V_+ with $V_o = +V_{\text{sat}}$. In other words,

$$V_{TH} = V_{+}|_{V_{o} = +V_{\text{sat}}} = +V_{\text{sat}} \times \frac{R_{1}}{R_{1} + R_{2}} = (+12\,\text{V}) \times \frac{1\,\text{k}\Omega}{10\,\text{k}\Omega} = 1.2\,\text{V},\tag{1}$$

where the op-amp input current, which is negligibly small, has been ignored. Similarly,

$$V_{TL} = V_{+}|_{V_{o} = -V_{\text{sat}}} = -V_{\text{sat}} \times \frac{R_{1}}{R_{1} + R_{2}} = (-12 \,\text{V}) \times \frac{1 \,\text{k}\Omega}{10 \,\text{k}\Omega} = -1.2 \,\text{V}.$$
 (2)

(b) With $V_R = 5$ V (see Fig. 3 (a)), the basic operation of the circuit remains the same; however, the tripping points V_{TH} and V_{TL} get shifted, as shown in Fig. 3 (b). V_{TH} is found by calculating V_+ when $V_o = +V_{\text{sat}}$.

$$V_{TH} = V_{+}|_{V_{o}=+V_{\text{sat}}} = +V_{\text{sat}} \times \frac{R_{1}}{R_{1}+R_{2}} + V_{R} \times \frac{R_{2}}{R_{1}+R_{2}}$$
$$= (+12 \text{ V}) \times \frac{1 \text{ k}\Omega}{10 \text{ k}\Omega} + (5 \text{ V}) \times \frac{9 \text{ k}\Omega}{10 \text{ k}\Omega}$$
$$= 5.7 \text{ V},$$
(3)

where once again, we have neglected the op-amp input current. Similarly, V_{TL} can be found by evaluating V_+ when $V_o = -V_{\text{sat}}$.

$$V_{TL} = V_{+}|_{V_{o} = -V_{\text{sat}}} = -V_{\text{sat}} \times \frac{R_{1}}{R_{1} + R_{2}} + V_{R} \times \frac{R_{2}}{R_{1} + R_{2}}$$

= $(-12 \text{ V}) \times \frac{1 \text{ k}\Omega}{10 \text{ k}\Omega} + (5 \text{ V}) \times \frac{9 \text{ k}\Omega}{10 \text{ k}\Omega}$ (4)
= $3.3 \text{ V}.$

Figure 2: (a) Schmitt trigger of Fig. 1 with $V_R = 0$ V, (b) V_o versus V_i relationship.

Figure 3: (a) Schmitt trigger of Fig. 1 with $V_R = 5$ V, (b) V_o versus V_i relationship.

SequelApp Exercises:

- 1. For the Schmitt trigger of Fig. 1, find V_{TH} and V_{TL} in the following situations, other circuit parameters being the same as in the figure.
 - (a) $V_R = 2 V.$
 - (b) $V_R = -2 V.$
 - (c) $V_R = 5 \text{ V}, R_1 = 4 \text{ k}.$
- 2. With $V_{\text{sat}} = 12$ V and $R_2 = 9$ k, find R_1 and V_R required to obtain $V_{TL} = 1$ V and $V_{TH} = 3$ V.

Verify your answers using SequelApp.