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An introduction to VHDL

VHDL is a hardware description language which uses the
syntax of ADA. Like any hardware description language, it is
used for many purposes.

For describing hardware.

As a modeling language.

For simulation of hardware.

For early performance estimation of system architecture.

For synthesis of hardware.

For fault simulation, test and verification of designs.

etc.
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Design Elements in VHDL: ENTITY

The basic design element in VHDL is called an ‘ENTITY’.

An ENTITY represents a template for a hardware block.

It describes just the outside view of a hardware module –
namely its interface with other modules in terms of input
and output signals.

The hardware block can be the entire design, a part of it or
indeed an entire “test bench”.

A test bench includes the circuit being designed, blocks
which apply test signals to it and those which monitor its
output.

The inner operation of the entity is described by an
ARCHITECTURE associated with it.
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ENTITY DECLARATION

The declaration of an ENTITY describes the signals which
connect this hardware to the outside. These are called port
signals. It also provides optional values of manifest constants.
These are called generics.

VHDL 93

entity name is
generic (list);
port (list);

end entity name;

VHDL 87

entity name is
generic (list);
port (list);

end name ;
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ENTITY EXAMPLE

VHDL 93

entity flipflop is
generic (Tprop:delay length);
port (clk, d: in bit; q: out bit);

end entity flipflop;

VHDL 87

entity flipflop
generic (Tprop: delay length);
port (clk, d: in bit; q: out bit);

end flipflop;

The entity declares port signals, their directions and data types.

These signals are used by an architecture associated with this
entity.
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Design Elements in VHDL: ARCHITECTURE

An ARCHITECTURE describes how an ENTITY operates. An
ARCHITECTURE is always associated with an ENTITY.

There can be multiple ARCHITECTURES associated with an
ENTITY.

An ARCHITECTURE can describe an entity in a structural
style, behavioural style or mixed style.

The language provides constructs for describing components,
their interconnects and composition (structural descriptions).

The language also includes signal assignments, sequential and
concurrent statements for describing data and control flow, and
for behavioural descriptions.
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ARCHITECTURE Syntax

VHDL 93

architecture name of entity-name
is

(declarations)
begin (concurrent statements)
end architecture name;

VHDL 87

architecture name of entity-name
is

(declarations)
begin (concurrent statements)
end architecture name;

The architecture inherits the port signals from its entity. It must
declare its internal signals. Concurrent statements constituting
the architecture can be placed in any order.
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ARCHITECTURE Example

VHDL 93

architecture simple of dff is
signal ...;
begin
...
end architecture simple;

VHDL 87

architecture simple of dff is
signal ...;
begin
...
end simple;

Dinesh Sharma VHDL



Design Units in VHDL
Object and Data Types

entity
Architecture
Component
Configuration
Packages and Libraries

Design Elements in VHDL: COMPONENTS

An ENTITY↔ ARCHITECTURE pair actually describes a
component type .
In a design, we might use several instances of the same
component type .
Each instance of a component type may be distinguished
by using a unique name.
Thus, a component instance with a unique instance name
is associated with a component type , which in turn is
associated with an ENTITY↔ ARCHITECTURE pair.
This is like saying U1 (component instance) is a D Flip Flop
(component type) which is associated with an entity DFF
(which describes its pin diagram) using architecture
LS7474 (which describes its inner operation).
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Component Example

VHDL 93

component name is
generic (list);
port (list);

end component name;
EXAMPLE:
component flipflop is

generic (Tprop:delay length);
port (clk, d: in bit; q: out bit);

end component flipflop;

VHDL 87

component name
generic (list);
port (list);

end component ;
EXAMPLE:
component flipflop

generic (Tprop: delay length);
port (clk, d: in bit; q: out bit);

end component;
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Design Elements in VHDL: Configuration

Structural Descriptions describe components and their
interconnections.

A component is an instance of a component type.
Each component type is associated with
an ENTITY↔ ARCHITECTURE pair.

The architecture used can itself contain other components -
whose type will then be associated with other
ENTITY↔ARCHITECTURE pairs.

A “configuration” describes linkages between component
types and ENTITY↔ ARCHITECTURE pairs. It specifies
bindings for all components used in an architecture associated
with an entity.
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Design Elements in VHDL: Packages

Related declarations and design elements like subprograms
and procedures can be placed in a ”package” for re-use.

A package has a declarative part and an implementation part.

This is somewhat like entity and architecture for designs.

Objects in a package can be referred to by a
packagename.objectname syntax.

A description can include a ‘use’ clause to incorporate the
package in the design. Objects in the package then become
visible to the description without having to use the dot reference
as above.
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Design Elements in VHDL: Libraries

Many design elements such as packages, definitions and entire
entity architecture pairs can be placed in a library.

The description invokes the library by first declaring it:
For example, Library IEEE;

Objects in the Library can then be incorporated in the design by
a ‘use’ clause.
For example, Use IEEE.std logic 1164.all

In this example, IEEE is a library and std logic 1164 is a
package in the library.
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Object and Data Types in VHDL

VHDL defines several types of objects . These include
constants, variables, signals and files .

The types of values which can be assigned to these objects are
called data types.

Same data types may be assigned to different object types.
For example, a constant , a variable and a signal can all have
values which are of data type BIT.

Declarations of objects include their object type as well as the
data type of values that they can acquire.
For example signal Enable: BIT;
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Data Types

bit_vector string

bit character

Composite

constrained
array

unconstrained
array

Access

boolean

PhysicalFloating Pt.Discrete

timerealInteger

enumeration

Severity Level file_open_kind file_open_status

Scalar File
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Enumeration Type

VHDL enumeration types allow us to define a set of values that
a variable of this type can acquire. For example, we can define
a data type by the following declaration:

type instr is (add, sub, adc, sbb, rotl, rotr);

Now a variable or a signal defined to be of type instr can only
be assigned values enumerated above – that is: add, sub, adc,
sbb, rotl and rotr.
In actual implementation, these values may may be mapped to
a 3 bit value. However, an attempt to assign, say, ‘010’ to a
variable of type instr will result in an error. Only the enumerated
values can be assigned to a variable of this type.
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Pre-defined Enumeration Types

A few enumeration types are pre-defined in the language.
These are:
type bit is (’0’, ’1’);
type boolean is (false, true);
type severity level is (note, warning, error, failure);
type file open kind is (read mode, write mode, append mode);
type file open status is

(open ok, status error, name error, mode error);

In addition to these, the character type enumerates all the
ASCII characters.
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Types and SubTypes

A signal type defined in the IEEE Library is std logic. This is a
signal which can take one of 9 possible values. It is defined by:

type std logic is (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’);

A subtype of this kind of signal can be defined, which can take
the four values ‘X’, ‘0’, ‘1’, and ‘Z’ only.
This can be defined to be a subtype of std logic

subtype fourval logic is std logic range ‘X’ to ‘Z’;

Similarly, we may want to constrain some integers to a limited
range of values. This can be done by defining a new type:
subtype bitnum is integer range 31 downto 0;
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Physical Types

Objects which are declared to be of Physical type, carry a value
as well as a unit. These are used to represent physical
quantities such as time, resistance and capacitance.

The Physical type defines a basic unit for the quantity and may
define other units which are multiples of this unit.

Time is the only Physical type, which is pre-defined in the
language. The user may define other Physical types.
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Pre-defined Physical Type: Time

type time is range 0 to . . .
units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units time;

The user may define other physical types as required.
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User Defined Physical Types

As an example of user defined Physical types, we can define
the resistance type.

type resistance is range 0 to 1E9
units

ohm;
kohm = 1000 ohm;
Mohm = 1000 kohm;

end units resistance;
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Composite Data Types

Composite data types are collections of scalar types.

VHDL recognizes records and arrays as composite data types.

Records are like structures in C.

Arrays are indexed collections of scalar types. The index must
be a discrete scalar type.

Arrays may be one-dimensional or multi dimensional.
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Arrays

Arrays can be constrained or unconstrained.

In constrained arrays, the type definition itself places
bounds on index values. For example:

type byte is array (7 downto 0) of bit;
type rotmatrix is array (1 to 3, 1 to 3) of real;

In unconstrained arrays, no bounds are placed on index
values. Bounds are established at the time of declaration.

type bus is array (natural range <>) of bit;

The declaration could be:
signal addr bus: bus(15 downto 0);
signal data bus: bus(7 downto 0);
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Built in Array types

VHDL defines two built in types of arrays. These are:
bit vectors and strings. Both are unconstrained.

type bit vector is array (natural range <>) of bit;
type string vector is array (positive range <>) of character;

As a result we can directly declare:
variable message: string(1 to 20)
signal Areg: bit vector(7 downto 0)
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Records

While an array is a collection of the same type of objects,
a record can hold components of different types and sizes.

This is like a struct in C.

The syntax of a record declaration contains
a semicolon separated list of fields, each field having the format
name, . . ., name : subtype
For example:

type resource is record
(P reg, Q reg : bit vector(7 downto 0); Enable: bit)
end record resource;
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Structural Style

Structural style describes a design in terms of components and
their interconnections.

Each component declares its ports and the type and direction
of signals that it expects through them

How can we describe interconnections between components?

U1

U2

U3
In

Outs1

s2

s3

s4

s5

s6

s7

p1

p2p3

p1

p2

p2

p3

p3

p1

p4

p4

p4

p5

p6

p5

p5

p6
s3

s4

p6
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Describing Interconnect

U1

U2

U3
In

Outs1

s2

s3

s4

s5

s6

s7

p1

p2p3

p1

p2

p2

p3

p3

p1

p4

p4

p4

p5

p6

p5

p5

p6
s3

s4

p6

For each internal interconnect, we
define an internal signal.

When instantiating a component,
we map its ports to specific internal
signals.

For example, in the circuit above, At the time of
instantiating U1, we map its pin p2 to signal s2.

Similarly, when instantiating U2, we map its pin p3 to s2.

This connects p2 of U1 to s2 and through s2 to pin p3 of
U2.
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Structural Architecture

A purely structural architecture for an entity will consist of

1 Component declarations: to associate component types
with their port lists.

2 Signal Declarations: to declare the signals used.

3 Component Instantiations: to place component instances
and to portmap their ports to signals. Signals can be
internal or port signals declared by the ENTITY.

4 Configurations: to bind component types to ENTITY→
ARCHITECTURE pairs.

5 Repetition grammar: for describing multiple instances of
the same component type – for example, memory cells or
bus buffers.

Dinesh Sharma VHDL



Structural Description

Component Declarations
Component Instantiation
Configuration
Repetition Grammar

Component Declarations

VHDL 93

component name is
generic (list);
port (list);

end component name;
EXAMPLE:
component flipflop is

generic (Tprop:delay length);
port (clk, d: in bit; q: out bit);

end component flipflop;

VHDL 87

component name
generic (list);
port (list);

end component ;
EXAMPLE:
component flipflop

generic (Tprop: delay length);
port (clk, d: in bit; q: out bit);

end component;

Dinesh Sharma VHDL



Structural Description

Component Declarations
Component Instantiation
Configuration
Repetition Grammar

Component Instantiation

VHDL-93: Direct Instantiation

VHDL-93 allows direct instantiation of
ENTITY↔ ARCHITECTURE pairs without having to go through
a component type declaration first.

Instance-name: entity entity-name (architecture-name)
generic map(list)
port map(list);

This form is convenient, but does not have the flexibility of
associating alternative ENTITY↔ ARCHITECTURE pairs with
a component.

VHDL-87 does not allow direct instantiation.
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Component Instantiation

VHDL-93: Normal Instantiation

Instance-name: component component-type-name
generic map(list)
port map(list);

The association here is with a previously declared component
type. The type will be bound to an ENTITY↔ ARCHITECTURE
pair using an inline configuration statement or a configuration
construct.
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Component Instantiation

VHDL-87

The keyword component is not used in VHDL-87. This is
because direct instantiations are not allowed and therefore the
binding is always to a component.

Instance-name: component-type-name
generic map(list)
port map(list);

The association is with a previously declared component type.
The type will be bound to an ENTITY↔ ARCHITECTURE pair
using an inline configuration statement or construct.
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Inline Configuration

The association between component types and
ENTITY↔ARCHITECTURE pairs can be made inline with a
use clause.

for all: component-name
use entity entity-name(architecture-name);

Instead of saying for all , we can specify a list of selected
instances of this component type to which this binding will
apply.

instance-name-list: component-name
use entity entity-name(architecture-name);
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The key word OTHERS

If we use the keyword others instead of a list of instance
names, it refers to all component instances of this
component-name which have not yet figured in a name-list.

In VHDL, the key word others is used in different contexts
involving lists.

If some members of the list have been specified, then others
refers to the remaining members. (If none was specified, it is
equivalent to all .
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Hierarchical Configuration

When we associate a component type with a previously defined
ENTITY↔ ARCHITECTURE pair,
the chosen architecture could itself contain other components
- and these components in turn would be associated with other
ENTITY↔ ARCHITECTURE pairs.

This hierarchical association can be described by a standalone
design unit called a configuration .
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Hierarchical Configuration

VHDL contains fairly complex configuration statements. A
simplified construct is introduced here:

configuration config-name of entity-name is
for architecture-name

for component-instance-namelist: component-type-name
use entity entity-name(architecture-name);

end for
end for

end configuration config-name;
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Structural description: Example

A

B

A+B

A+BA

B A+B

A + B

Let us choose the xor gate
shown on the left as an
example for structural
description.

It uses four instances of a
single type of component: two
input NAND.

We shall describe the NAND
gate first.
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The work library

In VHDL, as we describe entities and architectures, these
are compiled into a special library called WORK.

This library is always included and does not have to be
declared.

In some sense, the WORK library represent the current
state of development of the project for designing
something.
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Definition of NAND

Entity nand2 is
port (in1, in2: in bit; p: out bit);

end entity nand2;

We do not use any generic for this
simple example.

Architecture trivial of nand2 is
p <= not (in1 and in2);
end Architecture trivial;

‘not’ and ‘and’ are inbuilt logical
functions.
(Actually so is nand – but we are
trying to be cute!)

Now that we have this entity-architecture pair, we can use it to
build our xor gate.
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XOR Gate example

A

B

A+B

A+BA

B
A+B

A + B
s1

s1

s1

s2

s3N1

N2

N3

N4 axb

USE WORK.ALL
Entity xor is
port(a,b: in bit; axb: out bit);
End Entity xor;

Architecture simple of xor is
component NAND2in IS port(a,b:
in bit; axb: out bit);
For all NAND2in: use Entity
NAND2(Trivial);
signal s1,s2,s3: bit;
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XOR Architecture body

A

B

A+B

A+BA

B
A+B

A + B
s1

s1

s1

s2

s3N1

N2

N3

N4 axb

begin
N1: component NAND2in
portmap(a, b, s1);
N2: component NAND2in
portmap(a, s1, s2);
N3: component NAND2in
portmap(b, s1, s3);
N4: component NAND2in
portmap(s2, s3, axb);
end Architecture simple;
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Repetition Grammar

We frequently use a large number of identical components of
the same type. (For example memory cells or bus drivers).
It is tedious to instantiate and configure each one of them
individually.

VHDL provides a way to place a collection of instances of a
component type at one go using the generate statement.
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GENERATE Statement

The generate statement contains a for loop which takes effect
during the circuit elaboration step. This can be used to repeat
instantiation constructs. We illustrate this statement with an
example:

groupname: for index in 0 to width-1 generate
begin

some-name: component outbuf
portmap (...);

end generate groupname;

The defined index in the “for” construct has local scope and can
be used to pick specific signals from an array in portmap
statements.
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Example: Full adder

a

b

C_in

sum

C_out
Full

Adder
Entity FullAdder is
Port(a,b, C in: in bit; sum, C out: out bit);
End Entity FullAdder;

C out and sum represent the more significant and less
significant bits of a+b+C in.
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Example: Full adder

a

b

C_in

sum

C_out
Full

Adder
Entity FullAdder is
Port(a,b, C in: in bit; sum, C out: out bit);
End Entity FullAdder;

C out and sum represent the more significant and less
significant bits of a+b+C in.

Suppose this is too difficult for the likes of us to figure out
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Example: Full adder

a

b

C_in

sum

C_out
Full

Adder
Entity FullAdder is
Port(a,b, C in: in bit; sum, C out: out bit);
End Entity FullAdder;

C out and sum represent the more significant and less
significant bits of a+b+C in.

Suppose this is too difficult for the likes of us to figure out

We would like to decompose the circuit into blocks which
handle two bits at a time.
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Decomposition of Full Adder

HA1

HA2

a

b

C_in

sum

C_out

cy1

cy2

combn

s1

s2

s

cy
i1

i2

i1
i2

s

cy

The combiner just combines the
carries from the two half adders.
(Just an OR Gate will do it.)

i1

i2

s

cy

Half Adder

Each half adder represents the
sum and carry of just two bits.

Carry occurs only if both bits are 1.
Sum is zero if both bits are zero or
both are one.
so sum = a xor b, cy = a and b.
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Description of full Adder

Entity HalfAdder is
port(in1, in2: in bit; s, cy: out bit);
End Entity HalfAdder;

Architecture trivial of HalfAdder is
begin

s <= a xor b;
cy <= a and b;

end Architecture trivial;

Architecture simple of FullAdder is
Component HalfAdder is

port(a, b: in bit; s, cy: out bit);
End Component HalfAdder;
signal s1, cy1, cy2: bit;
begin
HA1: Component HalfAdder

portmap(a,b,s1,cy1)
HA2: Component HalfAdder

portmap(s1,cy1,sum,cy2)
Cmbn: Component OR2in

portmap(cy1, cy2, C out)
end Architecture simple;
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The half adder

Carry from the half adder is an AND gate, and the combiner is
an OR.

But Gates without inversion are slow. So we bring out carry
rather than carry, using a NAND gate.

i1

i2

s

Half Adder

cybar

Entity HalfAdder is
port(in1, in2: in bit; s, cybar: out bit);
End Entity HalfAdder;
Architecture better of HalfAdder is
begin

s <= a xor b;
cybar <= a nand b;

end Architecture better;
The combiner should now be an OR of negative true signals.
This is just a NAND.
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Efficient Full Adder

HA1

HA2

a

b

C_in

sum

C_out

combn

cybar

cybar

i1

i2

s

s

i1

i2

s1

c1b

c2b

s2

Architecture better of FullAdder is
Component HalfAdder is
port(a, b: in bit; s, cybar: out bit);
End Component HalfAdder;
signal s1, c1b, c2b: bit;
begin
HA1: Component HalfAdder

portmap(a,b,s1,c1b);
HA2: Component HalfAdder

portmap(s1,c1b,sum,c2b);
Cmbn: Component NAND2in

portmap(c1b, c2b, C out);
end Architecture better;
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Behavioural Style

Behavioural style describes a design in terms of its behaviour,
and not in terms of a netlist of components.

We describe behaviour through “if-then-else” type of constructs,
loops, sequential and concurrent assignment statements.

Statements like “if-then-else” are inherently sequential. These
must therefore occur only inside sequential bodies like
processes.

A concurrent assignment statement may be considered as a
shorthand for a very simple process.

Dinesh Sharma VHDL



Behavioural Description
Subprograms

Attributes

Concurrent Statements
VHDL Operators
Processes
Sequential Statements

Specifying a waveform

A waveform is described by a comma separated list of values
and optionally, delays. For example, we may assign a waveform
by a statement like

indata <= ’0’, ‘1’ AFTER 20 NS, ’0’ AFTER 50 NS;

The values at different times are treated as transport delays
and are all inserted in the time ordered queue without wiping
out earlier values.

(This is the only context where delays are transport by default).
Single value assignments use inertial delay by default.
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Concurrent Assignment

A concurrent assignment can be made conditionally by using
‘when’ clauses.

name < = [delay-mechanism]
waveform when Boolean-expression else
waveform when Boolean-expression;

The assignment is made from the first waveform where the
Boolean expression evaluates to TRUE.
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Concurrent Assignment

The assignment can also be made on a selective basis, based
on the value of some expression:

with expression select
name < = [delay-mechanism]

waveform when choices,
waveform when choices;

If the expression evaluates to one of the specified choices, the
corresponding assignment is made.
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Assignment to an aggregate

Assignments can be made to a collection of signals
simultaneously. For example let vec be defined as bit vector(2
downto 0)

vec <= (“000”) - - 000 : string
vec <= (’0’,’0’,’1’) - - 001 : positional
vec <= (1=>’1’, others => ’0’) - - 010 : named, partial
vec <= (’1’, others => ’0’) - - 100 : positional, partial
vec <= (2|0 =>

′ 1′, others => ’0’) - - 101 : partial
vec <= (others => ’1’) - - 111
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VHDL Operators

Logical operators: AND, OR, NAND, NOR, OR, XNOR and
NOT
For example x <= a xor b;

Relational operators: =, /,̄ <, <=, >, >=
= and = operate on any type. Others operate on arithmetic
types: (integers, reals etc.). All of these return a boolean
value.

Shift operators: SLL (logical left), SLA (arithmetic left) SRL
(logical right), SRA (Arithmetic right), ROL rotate left and
ROR (rotate right).

Dinesh Sharma VHDL



Behavioural Description
Subprograms

Attributes

Concurrent Statements
VHDL Operators
Processes
Sequential Statements

Processes

Sequential constructs need to be placed inside a process. A
process uses the syntax:

[ process-label: ] process [(sensitivity-list)] [is ]
[declarations]
begin

[sequential statements]
end process [process-label];

Sequential statements include “if” constructs, case statements,
looping constructs, assertions, wait statements etc.
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Process with Sensitivity list

Every process is like an endless loop. Therefore, it requires an
explicit or implicit suspend statement.

If a sensitivity list is given with the process statement, the
process automatically suspends when it reaches its end.

It restarts from the beginning when any of the signals in its
sensitivity list has an event.

This process has a static sensitivity and an implicit suspend
statement.
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Wait statements

A process without a sensitivity list requires explicit suspend
statements. These are provided by wait statements. These can
be of the form:

wait for waiting-time;
wait on signal-list;
wait until waiting-condition;
wait for 0 some-time-unit;
wait ;

wait for 0 ns causes the process to suspend till the next delta.
The last form (bare wait statement) suspends the process for
ever.
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Dynamic sensitivity

Processes without a sensitivity list and multiple wait statements
have a dynamic sensitivity. This is because these processes
are sensitive to different events at different times.

One cannot mix static and and dynamic sensitivity
Thus, a process with a sensitivity list cannot use wait
statements.

This is because once the process is suspended, it is possible to
have an event on a signal in the sensitivity list simultaneously
with the condition for resumption after wait being fulfilled.

This would leave the process undecided on where to resume
from.
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IF statements

if statements are similar to their counterparts in programming
languages. The syntax is:

[ if-label: ] if Boolean-expression then
sequential statements

[ elsif Boolean-expression then
sequential statements ]

[ elsif ... ]
[ else sequential statements ]

end if [ if-label ];
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CASE statements

A case statement acts like a multiplexer.
The syntax is:

[ case-label:] case expression is
when choices = >

sequential-statements
[ when ... ]

end case [ case-label ];
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CASE Choices

Choices can be specified in CASE statements as vertical bar
separated lists of expressions, discrete ranges or the keyword
others . For example:

case opcode is
load | store | add | subtract = >

...
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Loop Statements

There are several different forms of the loop statement. The
simplest is the endless loop:

[ loop-label: ] loop
[ loop-label: ] loop

sequential statements
end loop [ loop-label ];

This constitutes an endless loop.
It is assumed that it will have an exit statement or a wait
statement inside to suspend operation.
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Exiting a Loop

The exit statement has the syntax:
[ label: ] exit [ loop-label ] [ when Boolean expression ]

The loop label allows one to exit several levels of nested loops.

We can also skip to the end of a loop by using the next
statement. This works like “continue” in C.

Dinesh Sharma VHDL



Behavioural Description
Subprograms

Attributes

Concurrent Statements
VHDL Operators
Processes
Sequential Statements

NEXT Statement

[ label: ] next [ loop-label ] [ when Boolean expression ]

The next statement skips the statements of the loop
and immediately starts the next iteration of the specified loop.

The loop label allows one to skip through several levels of
nested loops.
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WHILE Loops

VHDL also has a while loop.

[ loop-label: ]
while Boolean-expression loop

sequential statements
end loop [ loop-label ];

The loop continues as long as the Boolean expression is TRUE.
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For Loops

VHDL also provides a for loop.

[ loop-label: ]
for identifier in discrete-range loop

sequential statements
end loop [ loop-label ];

The discrete range can be of the form
expression to | downto expression

The identifier is initialized to the left limit of the range and takes
on successive values in the discrete range till it exceeds the
right limit.
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Assertions and Reports

The assert statement takes the form

[ label: ] assert Boolean expression
[ report expression ] [ severity expression ];

If the Boolean expression is TRUE, no action is taken.
If it is FALSE, an assertion violation is said to have occurred.
The simulators then outputs the report expression.

Subsequent operation depends on the severity clause.
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Severity Clause in Assertions

Assert statements are used for debugging and documentation.
The severity clause decides what happens when an assertion
failure occurs.

Severity is an enumerated type which is predefined to take any
of the values:

note, warning, error, failure

Depending on the severity value, simulation continues or is
aborted.
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Severity values

Note is simply to generate an output when an assertion
violation occurs.

Warning is useful when the validity of the simulation may be
in doubt, but we would like to issue a warning and
continue anyway.

Error is used when an unexpected value is encountered.

Failure is the most severe violation and is used when
some inconsistency is detected.
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Assertions defaults

[ label: ] assert Boolean expression
[ report expression ] [ severity expression ];

If the optional report clause is missing in the assert statement,
the default report message is “Assertion Violation”.

If the severity clause is omitted, the default value is ‘error’.

Most simulators allow the user to set a severity threshold,
beyond which the simulation is aborted on an assertion
violation. It is common to continue on note and warning and to
abort on error and failure.

In VHDL-93, the report clause can be used by itself as a
statement to output useful messages.
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Subprograms in VHDL

VHDL has two types of subprograms: Functions and
Procedures.

FUNCTIONS are used to return a single value from a given list
of input parameters. These occur in expression on
the right hand side of VHDL statements. Functions
execute in zero simulation time.

PROCEDURES can return multiple values and need not
execute in zero simulation time. The parameters
have their type as well as direction defined in the
parameter list. These are invoked like a VHDL
statement.
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Functions can be PURE or IMPURE.

A PURE function returns the same value every time it is called
with the same value of input parameters. Most functions are
PURE.

An IMPURE function can return different values for calls with
the same parameter values.
For example, the function NOW, which returns the current
simulation time.
RANDOM is also an IMPURE function.
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Function name(parameter list) Return type IS
. . . Local declarations . . .

BEGIN
Sequential Statements;
. . . ;

END [FUNCTION] name;
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TYPE Byte IS ARRAY(7 DOWNTO 0) OF BIT;

FUNCTION ByteVal(InByte: Byte) RETURN Integer IS
Variable RetVal: Integer := 0;

BEGIN
FOR I IN 7 DOWNTO 0 LOOP

RetVal = 2 * RetVal;
IF (InByte = ’1’) THEN RetVal := RetVAl + 1;
END IF;

END LOOP;
RETURN RetVal;

END FUNCTION ByteVal;

Dinesh Sharma VHDL



Behavioural Description
Subprograms

Attributes

Procedures

Declaration:

PROCEDURE name (parameter list) IS
. . . Local declarations . . .

BEGIN
Sequential Statements;
. . . ;

END [PROCEDURE] name;

A procedure ends when it reaches the END statement. It can
be terminated earlier by using the RETURN statement.
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Similar to List of signals in a PORT declaration.

Elements of the list have a TYPE as well as a direction.

The direction can be in, out or inout.

Elements of the list can also have their Object Class
(Constant/ Variable/ Signal) also in the parameter list.

For example: (SIGNAL a, b, c: IN BIT; Variable result: OUT
INTEGER);
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Attributes

VHDL provides built in functions which return usefult attributes
of the objects that they operate on.
Attribute functions may provide attributes of

Arrays

Types

Signals

Entities

Attributes are invoked as name’attrib name.
The single quote is read as “tick”
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Array Attributes

Array attributes interrogate the property of arrays. Consider the
declaration:
TYPE regfile IS ARRAY(0 To 3, 7 Downto 0) OF BIT;
Then we can use the following attributes:

’LEFT :
regfile’LEFT(2) = 7
’RIGHT:
regfile’RIGHT(1) = 3
’HIGH:
regfile’HIGH(2) = 7
’LOW:
regfile’LOW(1) = 0

’RANGE:
regfile’RANGE(1)= 0 TO 3
’REVERSE RANGE:
regfile’REVERSE RANGE(1) = 3
DOWNTO 0
’LENGTH: regfile’LENGTH(1) = 4
’ASCENDING:
regfile’ASCENDING(1) = TRUE
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Type Attributes

Type attributes apply only to scalar types. Consider the
declarations:
TYPE nineval IS(’U’, ’X’, ’0’, ’1’, ’Z’, ’L’, ’H’, ’W’, ’-’)
SUBTYPE fourval IS nineval RANGE ’X’ to ’Z’
Then, fourval’BASE = nineval

Attributes LEFT, RIGHT, HIGH and LOW are defined for TYPES
also. When applied to a TYPE, these return the corresponding
values as defined for the type. For example,

nineval’LEFT = ’U’, fourval’LEFT = ’X’
POSITIVE’LOW = 1
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Signal Attributes

Name Example Return type Value type
’DELAYED s’DELAYED Signal same as s
’STABLE s’STABLE(5ns) Signal Boolean
’EVENT s’EVENT Value Boolean
’QUIET s’QUIET(3ns) Signal Boolean

’TRANSACTION s’TRANSACTION Signal BIT
’DRIVING s’DRIVING Value Boolean

’DRIVING VALUE s’DRIVING VALUE Value same as s
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Case of RS Latch

R

S

Q

Q

Entity RS Latch is
Port(R,S: IN BIT; Q, Qbar: OUT BIT);
End Entity RS Latch;
Architecture trouble of RS Latch is
Begin
Q <= R NOR Qbar;
Qbar <= S NOR Q;
End Architecture trouble;

This will run into trouble as Q and Qbar are declared to be
outputs and cannot be used on the RHS expression of an
assignment.
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RS Latch

R

S

Q

Q

We have several choices:

Declare Q and Qbar to be inout.
This is not safe as this will allow outside circuitry to drive Q and
Qbar nodes.

Use structural description and connect nor outputs to internal
signals s1 and s2. Later assign s1 and s2 to Q, Qbar.
Introduces artificial delay in driving of Q and Qbar.

Better choice is to use the driving value attribute.
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9 Valued Logic

The stdlogic package uses 9 valued logic.
The basic unresolved signal type is declared as:

TYPE std ulogic IS (’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

Here U is uninitialized,
X is forcing unknown, W is weak unknown,
L and H are weak 0 and 1,
Z is high impedance and - is “don’t care”.

This type combines signal values and drive strengths,
permitting modeling of open drain and wired or circuits. Other
types are derived from this basic signal type.
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Derived types

We derive the following types from the basic u logic signal

TYPE std ulogic vector IS
ARRAY (NATURAL RANGE<>) OF std ulogic);

FUNCTION resolved(s:std ulogic vector) RETURN std ulogic;

SUBTYPE std logic IS resolved std ulogic;

TYPE std logic vector IS
ARRAY (NATURAL RANGE<>) OF std logic);

Dinesh Sharma VHDL



Signal types in Package Std Logic 1164
Functions Defined in std logic package 1164

The resolution Function
Logic Functions with std logic

Other Types

The IEEE package 1164 also defines the following subtypes of
std ulogic.

1 X01 allows the values X, 0 and 1.

2 X01Z allowed the values X, 0, 1 and Z. This type is
compatible with the default verilog signal type.

3 UX01 allows the values U, X, 0 and 1.

4 UX01Z allows the values U, X, 0 1 and Z.

The package includes functions for conversion between various
types.
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The Resolution Function

This function uses the following table:

U X 0 1 Z W L H -
U U U U U U U U U U
X U X X X X X X X X
0 U X 0 X 0 0 0 0 X
1 U X X 1 1 1 1 1 X
Z U X 0 1 Z W L H X
W U X 0 1 W W W W X
L U X 0 1 L W L W X
H U X 0 1 H W W H X
- U X X X X X X X X

The resolution function receives a vector of driving values of
type std ulogic. The return is type std ulogic!
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The Resolution Function

FUNCTION resolved(s: std ulogic vector)
RETURN std ulogic IS

VARIABLE result:std ulogic:=’Z’
BEGIN
IF (s’LENGTH = 1) THEN RETURN s(s’LOW);
ELSE

FOR i IN s’RANGE LOOP
result:= resolution table(result,s(i));

END LOOP;
END IF;
RETURN result;
END resolved;
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Logic Functions with std logic

Since signals can now acquire a multiplicity of values, we need
to redefine logic functions.

This is done by overloading logic functions with new definitions
when their arguments are of type std ulogic or std logic.

What happens when we put an inverter on a std ulogic signal?

This is defined by the ‘NOT’ logic function:

NOT
input U X 0 1 Z W L H -
output U X 1 0 X X 1 0 X
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Logic Truth TABLES

Truth tables of 2 input logic functions will now be 9x9 matrices!
AND

U X 0 1 Z W L H -
U U U 0 U U U 0 U U
X U X 0 X X X 0 X X
0 0 0 0 0 0 0 0 0 0
1 U X 0 1 X X 0 1 X
Z U X 0 X X X 0 X X
W U X 0 X X X 0 X X
L 0 0 0 0 0 0 0 0 0
H U X 0 1 X X 0 1 X
- U X 0 X X X 0 X X
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Conversion Functions

The following type conversion functions are included in
package 1164:

These include To bit (from std ulogic) and To std ulogic
(from bit)

To bit vector (from std ulogic vector and std ulogic vector)

To std ulogic vector (from bit vector) and
To std logic vector (from bit vector)

To std logic vector (from std ulogic vector) and
To std ulogic vector (from std logic vector)

There are similar functions for inter-conversions between
X01, X01Z etc. and std logic and std ulogic.
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Edge Detection Functions

The IEEE library package 1164 includes edge detection
functions for std ulogic types. These are defined as:

FUNCTION rising edge (SIGNAL s: std ulogic)
RETURN Boolean

The rising edge is detected when there is a transition
from 0 or L to 1 or H.

FUNCTION falling edge (SIGNAL s: std ulogic)
RETURN Boolean

The falling edge is detected when there is a transition
from 1 or H to 0 or L.
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A Magnitude Comparator

The example used in this section has been described in
the book: “VHDL: Analysis and Modeling of Digital
Systems” by Zainalabedin Navabi (McGraw Hill).

However the treatment in this tutorial is different.

We illustrate top down design using this example.
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A magnitude comparator

We want to design a circuit to compare the magnitude of
two binary numbers.
We shall illustrate the design by a comparator for byte wide
numbers.
However, the design should be stackable, so that wider
numbers can be compared.
The input to the system are the two numbers and stacking
inputs, gt in, eq in and lt in.
The outputs are the result of comparison: gt out, eq out
and lt out.
The stacking inputs and outputs use “one hot” coding:
exactly one of the conditions gt, eq or lt is TRUE at a given
time.
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First level description

Library IEEE;
USE IEEE.std logic 1164.ALL;
TYPE Byte IS Array (7 DownTo 0) OF std ulogic;
Entity Byte Compar is

Port(a, b: IN BYTE;
gt in, eq in, lt in: IN std ulogic;
gt out, eq out, lt out: OUT std ulogic);

End Entity Byte Compar;
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Architecture of Byte Comparator

Architecture first Of Byte Compar is
Variable val1, val2: Integer:= 0;

BEGIN
P1: PROCESS(a, b, gt in, eq in, lt in)

BEGIN
val1 := ByteVal(a);
val2 := ByteVal(b);
IF (val1 > val2) THEN

gt out <= ’1’; eq out <= ’0’; lt out <= ’0’;
ELSIF (val1 < val2) THEN

gt out <= ’0’; eq out <= ’0’; lt out <= ’1’;
ELSE gt out <= gt in; eq out <= eq in; lt out <= lt in;
END IF;

END PROCESS P1;
END Architecture first;
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Decomposition of Byte Comparator

The byte comparator is difficult to design directly.
We can brek up the design into bit comparators

with cascading inputs gt in, eq in and lt in;
and cascading outputs gt out, eq out and lt out.

>

<
=

>

<
=

BitPart BitPart BitPart BitPart BitPart BitPart BitPart BitPart

A7A0 B7B0 B6A6A1 B1 B2A2 A3 B3 A4 B4 A5 B5

Notice that the most significant bit is compared closest to the
output.
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Composing the Byte comparator

Architecture compose of Byte Compar IS
COMPONENT BitPart IS

Port(a, b: IN std ulogic;
gt in, eq in, lt in: IN std ulogic;
gt out, eq out, lt out: OUT std ulogic);

END COMPONENT BitPart;
FOR ALL: BitPart

USE ENTITY Bit Compar(behave);
TYPE Connect IS ARRAY (1 TO 3, 0 TO 6) OF std ulogic);
Signal Cascade: Connect;
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Composing the Byte comparator

BEGIN
FOR I in 0 T0 7 GENERATE
First: IF I = 0 GENERATE

COMPONENT BitPart
PORTMAP
(gt in, eq in, lt in,
a(I), b(I),
Connect(1, I), Connect(2,I), Connect(3,I));

END GENERATE;
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Composing the Byte comparator

Last: IF I = 7 GENERATE
COMPONENT BitPart

PORTMAP
(Connect(1, I-1), Connect(2,I-1), Connect(3,I-1));
a(I), b(I),
gt out, eq out, lt out)

END GENERATE;
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Composing the Byte comparator

Mid: IF (I >0) AND (I< 7) GENERATE
COMPONENT BitPart

PORTMAP
(Connect(1, I-1), Connect(2,I-1), Connect(3,I-1));
a(I), b(I),
Connect(1, I), Connect(2,I), Connect(3,I));

END GENERATE;
END GENERATE;

END Architecture Compose;
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The bit comparator

Once we have decomposed the byte comparator as above, we
need to design the bit comparator.

The bit comparators recieve a pair of bits to compare.

If A > B, i.e. A=1 and B=0; it makes the output gt out
TRUE and makes the other outputs FALSE.

If A < B, i.e. A=0 and B=1; it makes the output lt out TRUE
and makes the other outputs FALSE.

IF A and B are equal, it copies its cascading inputs (gt in,
eq in, lt in) to its outputs (gt out, eq out, lt out);
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The bit comparator

Library IEEE;
USE IEEE.std logic 1164.ALL;

Entity Bit Compar is
Port(a, b: IN std ulogic;

gt in, eq in, lt in: IN std ulogic;
gt out, eq out, lt out: OUT std ulogic);

End Entity Bit Compar;
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Behavioural Architecture of Bit Comparator

Architecture behave Of Bit Compar is
BEGIN
P1: PROCESS(a, b, gt in, eq in, lt in)

BEGIN
IF (a = ’1’ AND b = ’0’) THEN

gt out <= ’1’; eq out <= ’0’; lt out <= ’0’;
ELSIF (a = ’0’ AND b = ’1’) THEN

gt out <= ’0’; eq out <= ’0’; lt out <= ’1’;
ELSE gt out <= gt in; eq out <= eq in; lt out <= lt in;
END IF;

END PROCESS P1;
END Architecture behave;
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Structural Description of Bit Comparator

We can write Karnaugh Maps for the three outputs easily:

gt out
ab → 00 01 11 10
gt in ↓

0
√

1
√ √ √

lt out
ab → 00 01 11 10
lt in ↓

0
√

1
√ √ √

eq out
ab → 00 01 11 10

eq in ↓
0
1

√ √

This gives:

gt out = a · b + gt in · (a + b)

lt out = a · b + lt in · (a + b)

eq out = eq in · (a · b + a · b)
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Final Design of bit comparator

a

b

gt_in

a + b

a + b

lt_in

eq_out

eq_in

lt_out

gt_out

a

b
This design can be described
structurally in terms of basic
gates.

The design uses only inverting
gates. It can be implemented
directly on a chip.
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Structural Description of Bit Comparator

Architecture struct Of Bit Compar is
Component Inv IS

PORT(In1: IN std ulogic; op1: OUT std ulogic);
END COMPONENT Inv;
FOR ALL: Inv USE ENTITY Inverter(behav);
Component Nand2 IS

PORT(In1, In2: IN std ulogic; op1: OUT std ulogic);
END COMPONENT Nand2;
FOR ALL: Nand2 USE ENTITY Nand2(behav);
Component Nand3 IS

PORT(In1, In2, In3: IN std ulogic; op1: OUT std ulogic);
END COMPONENT Nand3;
FOR ALL: Nand3 USE ENTITY Nand3(behav);
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Structural Architecture of Bit Comparator

SIGNAL Abar, Bbar, AplusBbar, BplusAbar: std ulogic;
SIGNAL s1, s2, Eqbar: std ulogic;
BEGIN
Inv1: Inv PORTMAP(A, Abar);
Inv2: Inv PORTMAP(B, Bbar);
N1: Nand2 PORTMAP(A, Bbar, BplusAbar);
N2: Nand2 PORTMAP(B, Abar, AplusBbar);
N3: Nand2 PORTMAP(lt in, BplusAbar, s1);
N4: Nand2 PORTMAP(gt in, AplusBbar, s2);
N5: Nand2 PORTMAP(s1, AplusBbar, lt out);
N6: Nand2 PORTMAP(s2, BplusAbar, gt out);
N7: Nand3 PORTMAP(AplusBbar, BplusAbar, Eq in, Eqbar);
Inv3: Inv PORTMAP(Eqbar, Eq out);
END ARCHITECTURE struct;Dinesh Sharma VHDL
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Inline configuration

The configuration of a component can be declared “inline” in an
architecture.

Architecture compose of Byte Compar IS
COMPONENT BitPart IS

Port(a, b: IN std ulogic;
gt in, eq in, lt in: IN std ulogic;
gt out, eq out, lt out: OUT std ulogic);

END COMPONENT BitPart;
FOR ALL: BitPart

USE ENTITY Bit Compar(behave);
TYPE Connect IS ARRAY (1 TO 3, 0 TO 6) OF std ulogic);
Signal Cascade: Connect;

All components of type BitPart have been configured to use the
entity Bit Compar with architecture behave.Dinesh Sharma VHDL
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Standalone configuration

In the example given, all components of type BitPart were
configured to use the entity Bit Compar with architecture
behave.

This was specified ”inline” in the architecture declarative
part.

We can write a separate configuration description outside
the architecture using the configuration.
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Stand alone configuration

The syntax of a standalone configuration is:

CONFIGURATION configname OF entityname IS
FOR architecture name

FOR instance name | OTHERS | ALL : component name
USE ENTITY sub entity name(sub architecture name);
. . .

END FOR;
END FOR;

END [CONFIGURATION] [configname];
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Hierarchical configuration

The architecture being configured may contains
components which are bound to architectures containing
other components.

This requires hierarchical configuration.

Instead of binding component instances to
entity-architecture pairs directly, we bind these to other
configurations.

These other configurations associate the component with
an entity-architecture pair and cofigure the lower level
components.
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Hierarchical configuration

The syntax used for hierarchical configuration is:

CONFIGURATION configname OF entityname IS
FOR architecture name

FOR instance name | OTHERS | ALL : component name
USE CONFIGURATION subconfig name;
. . .

END FOR;
END FOR;

END [CONFIGURATION] [configname];

Subconfig name will associate the component with an
entity-architecture pair and will configure lower level
components in the hierarchy.
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Hierrarchy in a single configuration

The hierarchy can be described through nested FORs in a
single configuration description.

CONFIGURATION single OF Byte compar IS
FOR compose – architecture name

FOR ALL: BitPart
USE ENTITY WORK.Bit Compar(struct);
FOR struct – architecture of Bit Compar

FOR ALL: Nand2 USE ENTITY . . .
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Files in VHDL

To VHDL, a file is a collection of information of a type that is
known to it.

File I-O presents a special problem, because conventions
for naming files and directories are different for different
Operating Systems.

We would like to insulate hardware descriptions from this
variation.

We do it by making a distinction between file names used
by VHDL and the operating system dependent filename
which is associated with it.
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FILE Types

In VHDL, in order to use files, we use a two step procedure.

1 We declare a FILE TYPE first. This associates a File TYPE
with the kind of objects that files of this type will contain.

2 We can then decare files of this FILE TYPE.
The file declaration associates a VHDL filename with a
FILE TYPE and optionally, with a Physical file name and
file mode (read, write or append).
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Examples

TYPE datafile IS FILE OF CHARACTER;
This specifies that any file which has the type datafile will
contain characters and each read will return a character while
each write will accept a character to be written to the file.

Once a file type has been declared, we may declare one or
more files of this type. For example,

FILE vfile1: datafile;
FILE vfile2: datafile IS “indata.dat”
FILE vfile3: datafile OPEN WRITE MODE is “output.dat”;
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FILE vfile1: datafile;
This form merely associates the VHDL name vfile1 with the file
TYPE datafile, which specifies that it contains characters.

FILE vfile2: datafile IS “indata.dat”
This form also associates the VHDL filename vfile2 with the
Physical filename indata.dat.

FILE vfile3: datafile OPEN WRITE MODE is “output.dat”; This
form associates the vhdl filename vfile3 with the physical
filename output.dat and also opens it in write mode.
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Opening and Closing Files

If a file has not been opened during its declaration, it can be
opened later by specific statements.

Once a file type has been declared as:
TYPE FileType IS FILE OF DataType;
it implicitly defines various procedures and functions.

PROCEDURE FILE OPEN(FILE f: FileType;
Phys name: IN string;
open kind: IN FILE OPEN KIND:= READ MODE);

PROCEDURE FILE CLOSE(FILE f: FileType);

Dinesh Sharma VHDL



Files in VHDL
The Textio Package

File Declarations
Opening and Closing Files
Reading and writing
Example of File usage

Reading from and Writing to Files

Once file types and files have been declared, various
subprograms become available.

PROCEDURE READ(FILE f: FileType; value: OUT Data type);
PROCEDURE WRITE(FILE f: FileType; value: IN Data type);
FUNCTION ENDFILE(FILE f: FileType) RETURN Boolean;
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Unconstrained Data Types

It is possible to declare a File Type to contained unconstrained
arrays as data types. For example:

TYPE VectorFile IS FILE OF std ulogiv vector;

Now how do we know the amount of data which will be returned
upon each read request? For this, there is an additional syntax
for the read procedure:
PROCEDURE READ(FILE f: FileType; value: OUT Data type

Length: OUT natural);
When we use this form, we supply an array large enough to
accommodate the array in the worst case and a variable, which
will receive the length of the vector actually read.
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Example of File usage

Library IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY ROM Block IS

GENERIC(size: NATURAL, content file: STRING)
PORT(Chip sel: IN std logic;

rdbar: IN std logic;
Addr: IN std logic vector;
Data: IN std logic vector);

END ENTITY ROM Block;
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ROM Initialization

ARCHITECTURE From File OF ROM Block IS
SUBTYPE Word IS

std logic vector(Data’Length-1 DOWNTO 0);
TYPE Mem Array IS

ARRAY(NATURAL RANGE 0 TO 2**size -1) of Word;
VARIABLE Mem Contents: Mem Array;
VARIABLE Index: Natural;
. . .
TYPE RomData File IS FILE of WORD;
FILE Rom Contents : RomData FILE

OPEN Read Mode IS content file;
. . .
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ROM Initialization

BEGIN
Filling: Process IS
BEGIN

Index := 0;
WHILE NOT EndFile(ROM Contents) LOOP

READ(ROM Contents, Mem Contents(Index);
Index:= Index+1;

END LOOP;
WAIT;
END PROCESS Filling;
. . . - - process to handle rdbar

END ARCHITECTURE From File;
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The Textio Package

This package defines various TYPEs and provides many
procedures for handling text.

TYPE TEXT IS FILE OF STRING;
TYPE LINE IS ACCESS STRING;
FILE INPUT: TEXT OPEN READ MODE IS “std input”
FILE OUTPUT: TEXT OPEN WRITE MODE IS “std output”
PROCEDURE READLINE(FILE f: TEXT; L: INOUT LINE)
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Reading and Writing Text

Text reading and writing is a two step procedure. For writing,
you first compose a line and then write it to a file. For reading,
you read a line and then extract values from it.

Several overloaded functions all carrying the names READ or
WRITE are provided for this. For example:

PROCEDURE READ (L: InOut LINE; value: OUT BIT);
PROCEDURE READ (L: InOut LINE; value: OUT
BIT VECTOR);
PROCEDURE READ (L: InOut LINE; value: OUT Integer);
PROCEDURE READ (L: InOut LINE; value: OUT BIT);
etc.
Similarly, there are many WRITE functions.
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