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Abstract— We study a problem of information gathering in
a social network with dynamically available sources and time
varying quality of information. We formulate this problem
as a restless multi-armed bandit (RMAB). In this problem,
information quality of a source corresponds to the state of
an arm in RMAB. The decision making agent does not know
the quality of information from sources a priori. But the
agent maintains a belief about the quality of information
from each source. This is a problem of RMAB with partially
observable states. The objective of the agent is to gather relevant
information efficiently from sources by contacting them. We
formulate this as a infinite horizon discounted reward problem,
where reward depends on quality of information. We study
Whittle index policy which determines the sequence of play
of arms that maximizes long term cumulative reward. We
illustrate the performance of index policy compare it myopic
and uniform random policies through numerical examples.

I. INTRODUCTION

Recent developments in the field of information and
communication technology have made possible, a large
number of “smart” hand-held devices and pervasive internet
connectivity. These technologies lead to easier access and
delivery of information to users who may use it for various
applications. At a social level, this information and com-
munication technology has increased the connectivity and
interaction among people across the world through many
vibrant media and networking platforms including Facebook,
Twitter, Linkedin etc. serving different purposes.

These networks are increasingly being used by people
as a source of information that help to make personal
and professional decisions. In recent times there have been
instances of large news agencies using social media and
crowd sourcing to gather and disseminate information [1].
Individuals and organizations who source information from
social networking platforms are faced with the problem of
not only efficient sourcing, but also of accuracy. This may
often be due to the dynamic nature of such sources and a
limited capacity to “fact check”, [2]–[4]. In this work we
define and solve the problem of such an agent in a social or
information network who tries gather information efficiently
and maximize benefit from it.

Let us look at a motivating example, one from a social
network scenario. Suppose there is an agent in a social
or information network. The agent has connections to N
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neighbors which are its information sources. The agent needs
information for its use and it gathers this information through
its sources at regular intervals. In each interval, the agent
can contact only M < N of its sources for information.
The information provided by a source may be either relevant
(1) or non-relevant (0) to the agent. So, there are two states
{0, 1} corresponding to the information quality. However, the
agent does not know a priori whether a certain source has
relevant information. Relevance of the information received
becomes apparent to the agent at end of the interval after
processing it. The agent however knows that the information
quality of a source varies in a Markovian manner and
also knows its Markov matrix. The reward from relevant
information is high and non-relevant information is low.

Further, in a given interval each source may or may not be
available. However, an unavailable source may be leveraged
through an additional cost. Hence the immediate reward that
such information gives may be lower. This is a situation
where the choice of sources might effect the their future
availability and information quality of the sources. The agent
here needs a policy to choose which sources it must contact
in each interval along the time line so that its cumulative
reward is maximized. The agent above and its neighbors
can be imagined to be - an investigative journalist [1] and
his sources, a newspaper editor and her staff reporters, a
manufacturing business and its suppliers etc.

A dynamic information sourcing problem such as above is
sequential decision problem where a current decision impacts
future rewards. Such sequential decision problems are often
modeled using Multi-armed bandits (MAB) (see [5]). In this
work we model the dynamic sourcing problem as a restless
multi-armed bandit (RMAB) problem.

A MAB is an agent with N arms and each arm can be
in one of the finite state. The states of arms evolve along
Markov chains whose transition probabilities are known to
the agent. The agent can pull M < N arms at a time. Reward
of pulling an arm depends on its state. The agent’s needs a
policy to make these arm choices each slot to maximize its
long term cumulative reward. In a restless multi-armed bandit
(RMAB), state of each arm evolves in each time slot and that
evolution can be action dependent, [6].

Our proposed RMAB model will be applicable not only
to dynamic sourcing of resources problem but also to crowd-
sourcing of computational resources in a communication
network such as below. Consider a communication system
with a coordinating entity (CE), a group of N user equipment



(UEs) and N independent links between CE and UEs. The
CE always has set of tasks, that need to process at UEs.
The UE can process one task at a time. The CE send M
tasks to M different UEs in a time slot, M < N. The
communication link quality between CE and UEs is time
varying in nature due to fading, path loss and interference.
This link quality may be one of two states good (1) or
bad(0). CE sends a task to UE, and feedback such as ACK
or NACK is obtained at end of time slot. Clearly the reward
for each slot here depends on link state (quality). Here link
states are not directly observable by the CE but are inferred
using feedback signals, ACK or NACK which are obtained
when a link is used for transmission. Further, the links are
dynamically available i.e. in each slot a UE may or may not
be available due to battery consideration or mobility issues.
In such scenario, reward from using that UE is less than that
of fully available UE. This may be due to slow processing of
task to conserve the battery life. This dynamic availability
is represented using a set of probabilities. We now briefly
review some related work.

A. Literature overview

RMAB problems have been extensively studied in oppor-
tunistic communication systems, [7]–[9]. Here, a wireless
channel is modeled using two state Markov chain (Gilbert-
Elliot channel model). In general, the transmitter may not
observe the state of channel, but it can observe the feedback
signals ACK or NACK. This is referred to, as a partially
observable model. In all of the RMAB, it is assumed that
the model parameters are known. The goal of the transmitter
is to determine the optimal sequence of play of the arms
(channels) such that it maximizes long term reward. RMAB
problems are known to be PSAPCE-hard, [10]. But in sem-
inal paper [6], a heuristic index based policy was proposed,
and it is now referred to as Whittle index policy. The Whittle
index based policies for opportunistic communication sys-
tems were studied in [8], [9], where in [8], index policy is
shown to be optimal for identical channel model and in [9],
authors considered hidden Markov model which generalizes
the work of [8]. The myopic policy was also investigated
for restless bandits in [7] and it is shown to be optimal for
identical channel model and reward conditions.

Recently, RMAB was used to model recommendation
systems in [11]–[14], where Whittle index policy is used
to recommend ads to the user.

All the above models of RMAB assume that each arm
(communication channel or ad) is always available to play,
and the decision in each slot is whether to play or not play an
arm. However, availability of communication channels or ads
to display can be dynamic. This problem is not analyzed with
RMAB. In this paper, we study such problem. The multi-
armed bandit problems with dynamic availability constraints
have been studied for machine-repair problem in [15], where,
if the machine breaks down, then it will be available in next
time slot with some probability after getting repaired. This
model assumes that the state is observable and the authors
analyze index-type policy for rested bandits.

In literature [16]–[20], MAB problems which are different
from RMAB, have been studied extensively for social net-
works and recommendation systems. In these MAB prob-
lems, each arm has a single state and the agent does not
know the reward distribution for each arm. The objective is
to play and learn the arm with the highest mean as quickly
as possible. Alternatively, this is formulated as a regret
minimization problem. The regret is the difference between
expected reward obtained if the distribution were known and
expected reward obtained under the policy with unknown
distribution. It is shown that the regret grows sub-linear in
time and it is also a function of network structures. In [18]–
[20], MAB problem with side information is considered. All
the above work assumes that arms are always available for
play. In [21], authors studied sleeping MAB problem with
dynamic availability of arms and regret bounds are derived.
They employ the upper confidence bound (UCB) algorithm.

In this paper, we analyze RMAB problem with partially
observable states and dynamic availability arms. One can
also study UCB based learning algorithm for this problem.
But our goal here is to propose and analyze an index policy.

B. Our contributions

We formulate the problem of an agent in a social network,
gathering information from neighbors, as RMAB problem
with dynamic availability of sources. We also consider the
problem of using UEs in a wireless network, under time
varying channel conditions and processing capabilities.

The problem formulation is given in Section II. We study
Whittle index based policy. To use this policy, we first
analyze a single-armed bandit problem in Section III. We
further show that the optimal policy is of a threshold-type,
and the arm is indexable. We next devise the algorithm
to compute Whittle index for each arm. The algorithm is
based on two timescales stochastic approximations. We also
present simulation results in Section IV and compare the
performance of Whittle index policy with that of myopic
policy and uniform random policy.

II. PRELIMINARIES AND MODEL DESCRIPTION

There is an agent in a social or information network.
The agent has connections to N neighbors which are its
information sources. The agent can contact only (M < N)
neighbors for information. The system is assumed to be time
slotted and it is indexed by t. The quality of information
available at the source represented by a Markov chain with
state space {0, 1}. Let Xn(t) denote the state corresponding
to information quality of source n at beginning of time
slot t, Xn(t) ∈ {0, 1}. We suppose that each source has
dynamic availability i.e. in a given slot it may or may not be
available. When a source is not available, it may be leveraged
to provide information by incurring an additional cost. Let
Yn(t) ∈ {0, 1} represent the availability of the source n in
time slot t and

Yn(t) =

{
1 if source n is available,
0 if source n is not available.



Since the agent contacts M sources out of N in each time
slot to gather information, we define An(t) ∈ {0, 1} as the
action in slot t with the following interpretation.

An(t) =

{
1 if source n is contacted in slot t,
0 otherwise.

Even when a source is unavailable, the agent can still contact
it by incurring additional cost. Thus we can have An(t) = 1
in both available and unavailable scenarios.

We further assume that the information quality of a source
varies in a Markovian manner. Hence Xn(t) changes state
at the end of time slot t according to transition probabilities
that depend on An(t), Yn(t) and it is defined as follows.

Pr{Xn(t+ 1) = j | Xn(t) = i, Yn(t) = y,An(t) = a} = Pnij(y, a).

If source n is contacted in slot t, then quality of information
from source n is known exactly at the end of slot, i.e., state of
source is known exactly. At the end of slot t, the agent makes
a binary observation Zyn(t) about source n that has been
contacted about the relevance of the information received in
the slot. Now,

Zyn(t) =

{
1 if information from source n is relevant,
0 otherwise.

Let ρn(i, y) be the probability of Zyn(t) = 1 given that
Xn(t) = i, Yn(t) = y and An(t) = 1.

Pr (Zyn(t) = 1 | Xn(t) = i, Yn(t) = y,An(t) = 1) = ρn(i, y).

We assume that ρn(0, y) = 0 and ρn(1, y) = 1 for all
y ∈ {0, 1}. When source n is not used, the agent do not
know the quality of information, hence state of source n
is unobservable. Hence, the agent maintains a belief πn(t)
about the state of source n. Here, belief is the probability
that the source is in state 0 given all past availability, actions,
observations and given as

πn(t) = Pr
(
Xn(t) = 0 | (Yn(s) = ys, An(s), Zysn (s))

t−1
s=1

)
.

We now define the reward as measure of the quality of
information from different sources. When the agent uses
source n, it obtains reward from the information it receives.
This reward depends on current state of that source and avail-
ability of that source. Let Ran(i, y) be the reward obtained
from using source n given that Xn(t) = i, Yn(t) = y,
An(t) = a, and it is as follows.

R1
n(i, 1) = rn,i, R1

n(i, 0) = ηn,i,

R0
n(i, 1) = 0, R0

n(i, 0) = 0.

We further assume that rn,0 = ηn,0 = 0, no reward
from source n if it has Xn(t) = 0. Also, we suppose
rn,1 > ηn,1, for all n. This implies that an unavailable source
may be leveraged through an additional cost. Hence, the
immediate reward is lower than when source is available.
However, agent knows that the availability of sources is
dynamic. This dynamic availability of each source n is
modeled stochastically as probability of availability θan =

Pr (Yn(t+ 1) = 1|An(t) = a). Thus availability of a source
varies according to Bernoulli distribution with parameter θan.
This is known to the agent. Let Ht denote the history up to
time t,

Ht := (Yn(s) = ys, An(s), Zysn (s))1≤n≤N,1≤s<t .

We can describe the state of source n at time t by Sn(t) =
(πn(t), Yn(t)) ∈ [0, 1]×{0, 1}. (S1(t), · · ·SN (t)) is the state
information of all the sources at the beginning of time slot
t. The expected reward from using source n at time t given
that Yn(t) = y is

R̃1
n(πn(t), y) = πn(t)R1

n(0, y) + (1− πn(t)R1
n(1, y).

In each slot, agent uses exactly M sources. Let φ(t) is the
policy of agent such that φ(t) : Ht → {1, · · · , N} maps the
history to M sources at each slot t. Let

Aφn(t) =

{
1 if n ∈ φ(t),

0 if n /∈ φ(t),

and
∑N
n=1A

φ
n(t) = M.

We are now ready to define the infinite horizon discounted
reward under policy φ for initial state information (π, y),
π = (π1(1), · · · , πN (1)) and y = (y1(1), · · · , yN (1)). It is
given by

Vφ(π, y) = Eφ

( ∞∑
t=1

βt−1

[
N∑
n=1

Aφn(t)R̃1
n(πn(t), Yn(t))

])
.

Here, β is discount parameter, 0 < β < 1. Then

φ∗ = arg maxφ Vφ(π, y)

s.t.
∑N
n=1A

φ
n(t) = M,

π ∈ [0, 1]N , y ∈ {0, 1}N . (1)

The optimization problem (1) is a restless multi-arm bandit
problem with availability constraints. Here, each source will
correspond to an arm. The state of information quality of
source n and its availability represent the state Sn(t) =
(πn(t), Yn(t)) of an arm n. This is a generalized version
of restless multi-arm bandits with partially observable states
and availability constraints. Recall that this problem is known
to be PSPACE-hard, [10]. A heuristic index based policies
are developed for restless bandits in [6]. In this paper we
consider index based policies. In such index polices, the
dimensionality of the problem is reduced by calculating the
index for each arm separately. The M arms with highest
indices are played at each time slot. That is, the agent uses
M sources with highest indices.

To use index policies, one requires to study relaxed version
of optimization problem (1), where a subsidy w is introduced
for not playing arm (not using source by agent), see [5], [6].
We first analyze agent with a single-armed bandit (a single
source scenario) in next section.



III. A SINGLE-ARMED BANDIT PROBLEM

For notation convenience, we will drop the subscript n.
In the view of subsidy w, we can rewrite optimization
problem (1) for a single-armed bandit as follows.

φ∗ = arg max
φ

Vφ(π, y) = Eφ
(
∞∑
t=1

βt−1
[
Aφ(t)R̃1(π(t), Y (t))

+w(1−Aφ(t))
])

for initial belief π ∈ [0, 1] and availability y ∈ {0, 1}. Here,
action A(t) under policy φ is

Aφ(t) =

{
1 if φ(t) = 1,

0 if φ(t) = 0.

We further simplify the model and assume that
P00(y, a) = µ0 and P10(y, a) = µ1 for a, y ∈ {0, 1}.1

Recall that π(t) = Pr(X(t) = 0|Ht) and the using Bayes
rule, we update the belief π(t+ 1) in following manner.

π(t+ 1) =


µ1 if A(t) = 1, Y (t) = y, and Zy(t) = 1,

µ0 if A(t) = 1, Y (t) = y, and Zy(t) = 0,

Γ(π(t)) if A(t) = 0, and Y (t) = y,

for y ∈ {0, 1}. Here, Γ(π(t)) = π(t)µ0 + (1 − π(t))µ1.
If the agent uses a source in slot t, and it observed that
information is relevant, i.e., A(t) = 1, and Zy(t) = 1 for
any y ∈ {0, 1}, then state is known exactly and X(t) = 1,
thus belief π(t + 1) = µ1. Whereas if agent uses a source,
A(t) = 1 but Zy(t) = 0 then state is known exactly and
X(t) = 0, thus belief π(t + 1) = µ0. If source is not used,
state is not observed but belief is updated.

From [22], we know that the π(t) captures the information
about the history Ht, and it is a sufficient statistic. It suggests
that the optimal policies can be restricted to stationary
Markov policies. In this, one can obtain the optimum value
function by solving dynamic program. We first define the
value function under initial action A1 and availability Y1.

VT := value function under A1 = 1, Y1 = 1,

ṼT := value function under A1 = 1, Y1 = 0,

VNT := value function under A1 = 0, Y1 = 1,

ṼNT := value function under A1 = 0, Y1 = 0.

We can write the following.

VT (π) = ρ(π) + β[(1− π){θ1V (µ1) + (1− θ1)Ṽ (µ1)}
+π{θ1V (µ0) + (1− θ1)Ṽ (µ0)}]

VNT (π) = w + β[θ0V (Γ1(π)) + (1− θ0)Ṽ (Γ1(π))]

ṼT (π) = ξ(π) + β[(1− π){θ1V (µ1) + (1− θ1)Ṽ (µ1)}
+π{θ1V (µ0) + (1− θ1)Ṽ (µ0)}]

1In general, Markov model for source availability and unavailability could
be different.

ṼNT (π) = w + β[θ0V (Γ0(π)) + (1− θ0)Ṽ (Γ0(π))]

Here r(π) = (1 − π)r1, η(π) = (1 − π)η1, . The optimal
value function V (π, y), is determined by solving the follow-
ing dynamic program

V (π) = max{VT (π), VNT (π)},
Ṽ (π) = max{ṼT (π), ṼNT (π)}. (2)

A. Structural Results

We now derive structural results for value functions,
convexity of value functions and a threshold type policy.
We will derive all result for µ0 > µ1. This means that
source is positively correlated, where a source that provides
relevant information is more likely to it will provide relevant
information in future also.

Lemma 1:
1) For fixed w, V (π), VT (π), VNT (π), Ṽ (π), ṼT (π) and

ṼNT (π) are convex functions of π.
2) For a fixed π, V (π), VT (π), VNT (π), Ṽ (π), ṼT (π) and

ṼNT (π) are non decreasing and convex in w.
3) For fixed subsidy w, β, and µ0 > µ1, the value

functions V (π), VT (π) and VNT (π) are decreasing in
π.

4) For fixed subsidy w, β, and µ0 > µ1, the value
functions Ṽ (π), ṼT (π) and ṼNT (π) are decreasing in
π.

5) (VT (π)− VNT (π)) is decreasing in π.
6) (ṼT (π)− ṼNT (π)) is decreasing in π.

For completeness, we detailed sketch of the proof in Ap-
pendix.

We first define the threshold type policy and later we prove
this results.

Definition 1: (Threshold type policy) A policy is said to
be threshold type if one of the following is true.

1) The optimal action is to play an arm for all π.
2) The optimal action is to not play an arm for all π.
3) There exists a threshold π∗ such that for all π ≤ π∗

the optimal action is to play an arm and not to play
an arm otherwise.

Theorem 1: For fixed w and β,
1) The optimal policy is threshold type for VT (π) and

VNT (π). That is, either V (π) = VT (π) for all π ∈
[0, 1] or V (π) = VNT (π) for all π ∈ [0, 1] or there
exists π∗ such that

V (π) =

{
VT (π) for π ≤ π∗

VNT (π) for π ≥ π∗.

2) The optimal policy is threshold type for ṼT (π) and
ṼNT (π). That is, either Ṽ (π) = ṼT (π) for all π ∈
[0, 1] or Ṽ (π) = ṼNT (π) for all π ∈ [0, 1] or there
exists π̃ such that

Ṽ (π) =

{
ṼT (π) for π ≤ π̃
ṼNT (π) for π ≥ π̃.



Proof: The difference (VT (π)−VNT (π)) and (Ṽ (π)−
ṼNT (π)) is decreasing in π as per Lemma 1(4-5). Also
the value functions VT (π), VNT (π), ṼT (π) and ṼNT (π) are
convex in π. Which implies that there exists π∗ ∈ [0, 1]
and π̃ ∈ [0, 1] such that VT (π∗) = VNT (π∗), ṼT (π̃) =
ṼNT (π̃) or VT (π) > VNT (π), ṼT (π) > ṼNT (π) or VT (π) <
VNT (π), ṼT (π) < ṼNT (π) for all π. Hence its proved.

Remark 1: In Lemma 1 and Theorem 1, we assumed that
0 < θa < 1 for a ∈ {0, 1}. This suggest that there is
interaction between value function from available to not
available and vice-versa. If either θa = 0 or θa = 1 for
all a ∈ {0, 1}, results similar to Lemma 1 and Theorem 1
are studied in [8].

B. Indexability and Whittle index computation

Recall that our interest is to seek the index type policy.
We use threshold policy result to show indexability and later
provide index computation algorithm.

We now define indexability and index. Let G(w) be the
subset of state vector S in which it is optimal to not play
the arm with subsidy w, it is given as follows.

G(w) :={(π, y) ∈ [0, 1]× {0, 1} :

VT (π,w) ≤ VNT (π,w), ṼT (π,w) ≤ ṼNT (π,w)}.
(3)

For clarity, we have explicitly mentioned dependence of
value function on w. Using set G(w), the indexability and
index is defined as follows.

Definition 2: An arm is indexable if G(w) is increasing
in subsidy w, i.e.,

w2 ≤ w1 ⇒ G(w2) ⊆ G(w1).

Definition 3: The index of an indexable arm is defined as

w(π, y) := inf{w ∈ R : (π, y) ∈ G(w),∀(π, y) ∈ S}. (4)

Remark 2:
1) Note that we can rewrite the definition of set G(w) in

following way.

G(w) = {[πL, 1]× {1}, [π̃L, 1]× {0}} ,

where πL := min{π ∈ [0, 1] : VT (π,w) ≤
VNT (π,w)}, and π̃L := min{π ∈ [0, 1] : ṼT (π,w) ≤
ṼNT (π,w)}. If the optimal policy is of threshold type,
then πL and π̃L are singleton.

2) Here, the definition of indexability and index is moti-
vated from work of [6] on restless bandits. In standard
restless bandits, arms are assumed to be always avail-
able and y = 0 is not feasible option.

3) When θa = 0 or θa = 1 for all a ∈ {0, 1}, our
definitions of indexability and index are still valid.

To claim the indexability, we will require to show that
πL(w) and π̃L(w) is non-increasing in w. Now, we state the
following lemma

Lemma 2: If
∂VT (π,w)

∂w

∣∣∣∣
π=πL(w)

<
∂VNT (π,w)

∂w

∣∣∣∣
π=πL(w)

,

∂ṼT (π,w)

∂w

∣∣∣∣
π=π̃L(w)

<
∂ṼNT (π,w)

∂w

∣∣∣∣
π=π̃L(w)

,

then πL(w) and π̃L(w) is monotonically decreasing function
of w.
Proof is along the same lines of Lemma 4 of [9]. Now, using
Lemma 2 and Definition 2, we can show that single-armed
restless bandit is indexable.

Theorem 2: If µ0 > µ1, then a single-armed restless
bandit is indexable.

Proof of indexability for 0 < θa < 1 for all a ∈ {0, 1}
is non-trivial and it is given in Appendix V-G. Whereas
for θa = 1 or 0, indexability can be shown easily by
obtaining value function expression and then differentiating
w.r.t. subsidy w, such result is studied in [8, Theorem 1].

We now use Definition 3 and restate the Whittle index
definition as follows.

Definition 4 (Whittle’s index): For a given belief π ∈
[0, 1] and availability y ∈ {0, 1}, Whittle index w(π, y) is
the minimum subsidy w for which not playing the arm is
the optimal action.

w(π, 1) = inf{w ∈ R : VNT (π) = VT (π)},
w(π, 0) = inf{w ∈ R : ṼNT (π) = ṼT (π)}. (5)

When θa = 0, 1 for all a ∈ {0, 1}, the expression for
index can be computed and this is given in [8, Section IV].
But for θa ∈ (0, 1), it is very difficult to obtain closed
form expression for value functions because there is coupling
between value functions from when arm is available and arm
is not available. Thus it is difficult to derive closed form
expression for Whittle index formula.

Hence, we study numerical scheme for Whittle index
computation. This scheme uses the threshold result of value
functions and two-timescales stochastic approximations. In
two-timescales stochastic approximations, we update wt at
slower timescales or natural timescales, and the value func-
tions are updated using value iteration algorithm at faster
timescales. This scheme here is inspired from stochastic
approximation algorithms, see [23], [24].

In this scheme for fixed w, y = 1 and a threshold π,
we know that VT (π,w) = VNT (π,w). Using value itera-
tion algorithm, we compute VT (π,w) and VNT,w(π,w) on
faster time scales until difference |VT (π,w)−VNT,w(π,w)|
becomes smaller than tolerance h. To compute the index
w(π, 1), our algorithm starts with initial subsidy w0 and
it is updated iteratively at slower timescales according to
following expression.

wt+1 = wt + α(VT (π,wt)− VNT (π,wt)).

These computations are performed till difference
|VT (π,wt) − VNT (π,wt)| is smaller than tolerance
h.

Using similar procedure mentioned above, we update wt
with slower timescales and run value iteration for ṼT (π,wt)



and ṼNT (π,wt) on faster timescales when π is threshold and
y = 0. Hence this is used to compute the index w(π, 0). The
details are given in Algorithm 1. The convergence of two
timescales stochastic approximation algorithm is presented
in [23, Chapter 6].

Algorithm 1: Algorithm that computes Whittle index
for the single arm

Input: Reward values r1, η1; Initial subsidy w0,
tolerance h, step size α.

Output: Whittle index,w(π, y)
if (y==1) then

wt ← w0

while |VT (π,wt)− VNT (π,wt)|> h do
wt+1 = wt + α(VT (π,wt)− VNT (π,wt));
t = t+ 1;
compute VT (π,wt), VNT (π,wt);

end
else

wt ← w0

while |ṼT (π,wt)− ṼNT (π,wt)|> h do
wt+1 = wt + α(ṼT (π,wt)− ṼNT (π,wt));
t = t+ 1;
compute ṼT (π,wt), ṼNT (π,wt);

end
end
return w(π, y) = wt

IV. NUMERICAL RESULTS

We now illustrate performance of index based algorithm
and compare it with different algorithms. We assume M = 1.
The algorithms included in the comparative analysis are 1)
Whittle index policy (WI)—contacts a source with highest
Whittle index, 2) myopic policy (MP)—contacts a source
with highest expected immediate reward, 3) uniform random
policy(UR)—contacts a source randomly with uniform dis-
tribution.

Simulations were performed using MATLAB. In these
simulations, the sources start in random states and random
initial beliefs. The initial availability of sources are random.
In each slot one source is contacted by agent according to
the given policy. The reward is accumulated at the end of
each slot from the source that is contacted and this reward
is stored. These rewards are averaged over L iterations.

We will plot and compare the discounted cumulative
reward that is obtained from these policies as function of
time slots. We define source choice fraction as follows. Let
1m,t,l be the indicator variable if source m is contacted in
slot t, and lth iteration. Then Nm,l := 1

Tmax

∑Tmax

t=1 1m,t,l,
where Tmax number of time slots for which simulations
are performed. This is further averaged over L number of
iterations. We call this as source m choice fraction. To
gain further insight, we will plot this for all the sources for
different policies.
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Fig. 1. We plot a) discounted cumulative rewards as function of time slot
for different policies and b) source choice fraction for different policies.

We use discount parameter β = 0.99 and N = 9, 10.
In our numerical examples, we consider that 5 sources
are always available and other sources have dynamically
availability. We present three different numerical examples.

In our first example, N = 9 and we use non-identical
transition probabilities for sources and identical probability
of availability and rewards. We use following set of param-
eters.

µo = [0.66, 0.69, 0.75, 0.78, 0.63, 0.66, 0.69, 0.75, 0.78],

µ1 = [0.28, 0.25, 0.2, 0.15, 0.3, 0.28, 0.25, 0.2, 0.15],

r1 = [1.3, 1.1, 0.9, 1.1, 1, 1.2, 1.2, 1.2, 1.2],

η1 = [0.7, 0.7, 0.7, 0.7, 0.75, 0.7, 0.7, 0.7, 0.7],

θ0 = [1, 1, 1, 1, 1, 0.85, 0.85, 0.85, 0.85],

θ1 = [1, 1, 1, 1, 1, 0.85, 0.85, 0.85, 0.85].

In Fig. 1-a) we plot the discounted cumulative reward
as a function of time slots. It can be seen that the dis-
counted cumulative reward under Whittle index policy (WI)
is comparable with that of the Myopic policy (MP). We also
observe that WI and MP yield higher discounted cumulative
reward compared to that of uniform random policy. We also
plot source choice fraction in Fig. 1-b). It suggests that
myopic policy contacts source 1 most frequently compared
to other sources and this is due to source 1 is always
available and it has the highest reward. Whereas WI policy
contacts from sources {4, 9} more frequently even though
they have less reward. This behavior of Whittle index policy
due to it accounts for future rewards, availability of sources
through the action value function. This is also determined
by transition probabilities i.e., µ0, and µ1, where we observe
that for source 4 and 9 difference (µ0 − µ1) is very large
compared to other sources.

In second example, N = 10 and we consider following
parameters. We have used non-identical transition probabil-
ities for sources, probability of availability and rewards.

µo = [0.66, 0.69, 0.75, 0.78, 0.63, 0.66, 0.69, 0.75, 0.78, 0.87],

µ1 = [0.28, 0.25, 0.2, 0.15, 0.3, 0.28, 0.25, 0.2, 0.15, 0.1],

r1 = [1.3, 1.1, 0.9, 1.1, 1, 1.4, 1.3, 1.2, 1.35, 1.15],

η1 = [0.7, 0.7, 0.7, 0.7, 0.75, 0.9, 0.8, 0.7, 0.6, 0.7],

θ0 = [1, 1, 1, 1, 1, 0.35, 0.45, 0.75, 0.85, 0.9],

θ1 = [1, 1, 1, 1, 1, 0.35, 0.45, 0.75, 0.85, 0.9].

In Fig. 2-a) we plot the discounted cumulative reward verses
time slot. The Whittle index policy yields higher discounted
cumulative reward compared to UR policy. The myopic
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Fig. 2. a) The discounted cumulative reward verses time slot for different
policies and b) source choice fraction with different policies.
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Fig. 3. a) The discounted cumulative reward verses time slot for different
policies and b) source choice fraction with different policies.

policy has better cumulative reward than other policy. In
Fig. 2-b), we have plotted source choice fraction. It suggests
that Whittle index policy has a tendency to contacts the
source from a smaller subset of sources, {4, 9, 10}. Myopic
policy contacts the source from subset of sources, {1, 9}.
UR policy contacts all the sources equally. The behavior
of Whittle index policy is determined by µ0 and µ1. Here,
index is dependent on these parameters, availability and it
accounts for future rewards through the action value function.
The behavior of myopic policy depends on value of r1 and
observe that sources 1 and 9 have highest values of r1. Thus
MP contacts sources 1 and 9 more frequently compared to
other sources.

Finally, we illustrate an example with identical transition
probabilities for all sources but non-identical probability of
availability and rewards. Parameters used are as follows.
N = 10, µi,0 = 0.9 and µi,1 = 0.1 for 1 ≤ i ≤ N.

r1 = [1.25, 0.8, 0.8, 0.8, 0.8, 1.5, 1.3, 1.25, 1.2, 1.2],

η1 = [0.7, 0.7, 0.7, 0.7, 0.75, 0.7, 0.7, 0.7, 0.7, 0.7],

θ0 = [1, 1, 1, 1, 1, 0.35, 0.45, 0.75, 0.85, 0.9],

θ1 = [1, 1, 1, 1, 1, 0.35, 0.45, 0.75, 0.85, 0.9].

From Fig. 3-a) we observe that the Whittle index policy
and myopic policy yield higher discounted cumulative reward
compared to UR policy. WI and Myopic policy performance
is very similar. We notice from Fig. 3-b) that both WI policy
and myopic policy contacts sources from {1, 10}, this is due
to large reward and better availability.

A. Additional example
We use discount parameter β = 0.99 and N = 15. In our

numerical examples, we consider that 5 sources are always
available and other sources have dynamically availability.
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Fig. 4. We plot a) discounted cumulative rewards as function of time slot
for different policies and b) source choice fraction for different policies.

Parameters used are as follows.

µo = [0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.66, 0.69, 0.75, 0.78, 0.87],

µ1 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.28, 0.25, 0.2, 0.15, 0.1],

r1 = [1.25, 0.8, 0.8, 0.8, 0.8, 1.5, 1.3, 1.25, 1.2, 1.2, 1.4, 1.3, 1.2, 1.35, 1.15],

η1 = [0.7, 0.7, 0.7, 0.7, 0.75, 0.7, 0.7, 0.7, 0.7, 0.7, 0.9, 0.8, 0.7, 0.6, 0.7],

θ0 = [1, 1, 1, 1, 1, 0.35, 0.45, 0.75, 0.85, 0.9, 0.35, 0.45, 0.75, 0.85, 0.9],

θ1 = [1, 1, 1, 1, 1, 0.35, 0.45, 0.75, 0.85, 0.9, 0.35, 0.45, 0.75, 0.85, 0.9].

From Fig. 4-a) we observe that the Whittle index policy
yields higher discounted cumulative reward compare to pre-
vious examples. This is due to increase in number of sources
available to the agent. The gain over Myopic and uniform
random policy can be improved further with more number
of sources.

V. CONCLUDING REMARKS

We formulated problem of information gathering in a
social network with dynamic availability of sources and
time varying information quality using RMAB model. We
studied numerical scheme for Whittle index computation
and compared performance with that of myopic and uniform
random policy.

The immediate possible generalisations of our current
work are as follows. 1) Learning algorithm when model
parameters are unknown. 2) Multi-agent problem in social
network, where these agents compete for gathering reliable
information from sources.
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APPENDIX

A. Proof of Lemma 1.1

The proof is similar to the proof of Lemma 2 in [9].

B. Proof of Lemma 1.2

Using induction technique, We can rewrite VT (π) and
VNT (π), in form of Vn+1,T (π,w) and Vn+1,NT (π,w) as
function of w. We can see that V1(π,w) is monotone
non decreasing and convex in w. Vn+1,T (π,w) is constant
independent of w. Vn+1,NT (π,w) is the sum of three non
decreasing function of w. The convexity is preserved under
max operation so Vn+1(π,w) is also non decreasing and
convex in w and using induction, all Vn(π,w) follows the
same. As Vn(π,w) → V (π,w) and this complete the proof
for V (π). Similarly, we can show for other value functions.

C. Proof of Lemma 1.3

The proof is done by induction technique. Assume that
Vn(π) and Ṽn(π) is non increasing in π. Lets take π′ ≥ π

and playing an arm is optimal. Then induction step

Vn+1(π) = ρ(π) + β[(1− π){θ1Vn(µ1) + (1− θ1)Ṽn(µ1)}
+ π{θ1Vn(µ0) + (1− θ1)Ṽn(µ0)}]

Here ρ(π) is decresing in π, i.e. ρ(π′) < ρ(π) for π′ > π.
Hence

Vn+1(π) ≥ ρ(π′) + β[(1− π){θ1Vn(µ1) + (1− θ1)Ṽn(µ1)}
+ π{θ1Vn(µ0) + (1− θ1)Ṽn(µ0)}]

From our assumptions µ0 > µ1, we get stochastic ordering
on observation probability, i.e., [π, 1−
pi]T ≤s [π′, 1− π′]T . and Vn(π), Ṽ (π) are decreasing in π,
then we have

Vn+1(π) ≥ ρ(π′) +β[(1−π′){θ1Vn(µ1) + (1− θ1)Ṽn(µ1)}
+ π′{θ1Vn(µ0) + (1− θ1)Ṽn(µ0)}]

Vn+1(π) ≥ Vn+1(π′).

Similarly we can show that Ṽn+1(π) ≥ Ṽn+1(π′). This
is true for every n ≥ 1. From Chapter 7 of [22] and
Proposition 2.1 of Chapter 2 of [25], Vn(π) → V (π),
uniformly and similarly Ṽn(π) → Ṽ (π). Hence V (π) ≥
V (π′) and Ṽ (π) ≥ Ṽ (π′) for π′ ≥ π.

Next we prove, VT (π) and VNT (π) is non increasing in
π.

VT (π) = ρ(π) + β[(1− π){θ1V (µ1) + (1− θ1)Ṽ (µ1)}
+π{θ1V (µ0) + (1− θ1)Ṽ (µ0)}] (6)

VNT (π) = w + β[θ0V (Γ1(π)) + (1− θ0)Ṽ (Γ1(π))] (7)

For π1 > π2,

VT (π1)− VT (π2) = (π1 − π2)βθ1(V (µ0)− V (µ1))

+ (π1−π2)β(1− θ1)(Ṽ (µ0)− Ṽ (µ1))

Using above result and µ0 > µ1, VT (π) is non increasing in
π. Similarly, VNT (π) is non increasing in π.

D. Proof of Lemma 1.4

The proof is similar to the proof of Lemma 2(3) in
Appendix V-C.

E. Proof of Lemma 1.5

Let D(π) = VT (π)− VNT (π) and D(π) is decreasing in
π, i.e D(π) < D(π′) for π > π′. This implies that we need
to show

(8)VT (π)− VNT (π) < VT (π′)− VNT (π′)

Rearranging 8 we need to show

(9)VT (π)− VT (π′) < VNT (π)− VNT (π′)

Now, the right hand side of the (9),

VNT (π)− VNT (π′) = βθ0{V (Γ1(π))− V (Γ1(π′))}
+β(1−θ0){Ṽ (Γ1(π))− Ṽ (Γ1(π′))}

≥ βθ0{V (µ0)− V (Γ1(π′))}
+ β(1− θ0){Ṽ (µ0)− Ṽ (Γ1(π′))}

≥ βθ0{V (µ0)− V (µ1)}
+ β(1− θ0){Ṽ (µ0)− Ṽ (µ1)}



The left hand side of the (9),

VT (π)− VT (π′) = (ρ(π)− ρ(π′))

+ β(π − π′)θ1{V (µ0)− V (µ1)}
+ β(π − π′)(1− θ1){Ṽ (µ0)− Ṽ (µ1)}

Note that ρ(π)− ρ(π′) = r1(π′−π) < 0 because π > π′.
Also note from previous two expressions of difference in
value functions that for θ0 = θ1, we can easily see that
Eqn (9) is true.

But even for θ0 6= θ1, Eqn (9) is true because ρ(π) −
ρ(π′) < 0 and other terms of VT (π)− VT (π′) are scaled by
π−π′ which is positive and if this difference is small, other
terms are going to be small.

F. Proof of Lemma 1.6

The proof is similar to the proof of Lemma 1(5) in
Appendix V-E.

G. Proof of Theorem 2

The following inequalities obtain using induction tech-
nique, .∣∣∣∣∂V (π,w)

∂w

∣∣∣∣, ∣∣∣∣∂VT (π,w)

∂w

∣∣∣∣, ∣∣∣∣∂VNT (π,w)

∂w

∣∣∣∣ ≤ 1

1− β
and ∣∣∣∣∂Ṽ (π,w)

∂w

∣∣∣∣, ∣∣∣∣∂Ṽ (π,w)

∂w

∣∣∣∣, ∣∣∣∣∂ṼNT (π,w)

∂w

∣∣∣∣ ≤ 1

1− β
Also,

∂VT (π,w)

∂w
= β

[
(1− π){θ1 ∂V (µ1, w)

∂w
+ (1− θ1)

∂Ṽ (µ1, w)

∂w
}

+ π{θ1 ∂V (µ0, w)

∂w
+ (1− θ1)

∂Ṽ (µ0, w)

∂w
}

]
and

∂VNT (π,w)

∂w
= 1 + β{θ0 ∂V (Γ1(π), w)

∂w

+ (1− θ0)
∂V (Γ1(π), w)

∂w
}.

Now from Lemma 2, we require the difference
∂VNT (π,w)

∂w − ∂VT (π,w)
∂w to be nonegative at πL(w) and π̃L(w)

. This reduces to following expression.

(10)

[
(1− π){θ1 ∂V (µ1, w)

∂w
+ (1− θ1)

∂Ṽ (µ1, w)

∂w
}

+ π{θ1 ∂V (µ0, w)

∂w
+ (1− θ1)

∂Ṽ (µ0, w)

∂w
}

]

−
[
θ0
∂V (Γ1(π), w)

∂w

+ (1− θ0)
∂V (Γ1(π), w)

∂w

]
<

1

β
.

Note that we can provide upper bound on LHS of above
expression and it is upper bounded by 2/(1−β). If β < 1/3,
Eqn. (10) is satisfied. πL(η) is decreasing in w. Similarly
π̃L(η) is decreasing in w. And claim follows.


