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Abstract—Restless multi-armed bandits(RMAB) with partially
observable states have been extensively studied for scheduling
in opportunistic communication systems. These RMAB models
assume that when the decision maker plays a particular arm, it
gathers information about system state through feedback signals.
These models allow only one state transition in a single decision
interval.

In this paper, we propose a cumulative feedback model,
where multiple state transitions occur in a decision interval.
We formulate opportunistic scheduling in communication systems
and relay selection problem as partially observable RMAB with
cumulative feedback. In this model, state of an arm is not
observable whether it is played or not. But belief about state
is maintained and it is updated at end of each decision interval
based on feedback from the played arm. If an arm is not played,
then no feedback is available. But belief is updated with natural
evolution. In case of large number of channel state transitions in
a decision interval for not-played arms, we approximate belief
with stationary probability. For this scenario we solve partially
observable RMAB using the Whittle index policy. A closed-form
expression for Whittle index is obtained for a special case. The
efficacy of this policy is illustrated via some numerical examples
and it is also compared with other policies.

I. INTRODUCTION

Wireless communication systems often operate in uncertain
environments such as rapidly varying channel conditions,
relative mobility of communicating nodes. Hence, the need for
decision making under uncertainty occurs in many applications
involving relay selection [1], relay employment in wireless
networks [2], channel sensing and scheduling for opportunistic
communications [3], [4].

Let us first look at the problem of relay selection in wireless
networks. Consider a wireless relay network with a source(S),
destination(D) and a set of M relays Ri, 1 ≤ i ≤M. The links
SRi and RiD operate on different frequencies. So there are
M +1 paths or links from source to destination including the
direct SD link. The channel quality along each of these paths
is varying with time. However, the source is unable to observe
the exact channel qualities. The time line is divided into
intervals. One relay may be selected for use in each interval.
A feedback in form of ACK/NACK is received by the source
at the end of each interval signifying success or failure of the
message transmission. The source has to plan the sequence of
relays to be used such that the expected long term throughput
is maximized. Thus, the problem involves sequential decision
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making, where each decision must take into account the
information gathered till that instant in the form of ACKs or
NACKs from previous transmissions (decisions).

We now look at the problem of scheduling for opportunistic
communication in cognitive radio networks. There are M
frequency channels allotted for the use of primary users of the
network. A secondary user may use these channels when they
are not in use by the primary users. A secondary user can sense
one channel at a time; if the sensed channel is free, then it is
used for transmission. A feedback in form ACK/NACK is re-
ceived at the end of each transmission signifying its success or
failure respectively. Clearly, the throughput obtained depends
on the channel quality. Here, at the beginning of each interval,
the secondary user needs to decide which channel to sense
in order to maximize probability of successful transmissions.
This problem also involves sequential decision making that
must take into account information gathered in the form of
ACKs/NACKs from previous transmissions.

Often sequential decision problems are modeled using
Markov decision processes (MDP) [5], partially observable
Markov decision processes (POMDP) [6], [7], and multi-
armed bandits (MAB) [8], [9]. In these models, environ-
ment/system state transition and decision making occur at
discrete time instants, uniformly spaced along the time line.
The knowledge of system state at these instants, provides
information that is necessary for decision making. This knowl-
edge about the system state depends on the observation or
feedback about state transition that occurs as a consequence
of the previous decision. All the above models assume that,
every state transition is either fully or partially observable by
the decision maker. This form of information gathering by
the decision maker about the consequence of its actions is
imperative for all sequential decision models.

In this work we consider a scenario where the information
gathering of the decision maker is not at par with the variation
of system state. The instants of decision making are sparse
compared to the instants of system state transition. The de-
cision maker does not observe every state transition; instead,
observation of the system takes place only when a decision
needs to be made. We refer to the information gathered by
this form of observation as cumulative feedback; it represents
the cumulative effect of a series of state transitions.

Recently, restless multi-armed bandits have been
used to model the problem of dynamic scheduling of
projects/resources in uncertain environments, [8], [9].
Restless multi-armed bandit (RMAB) problem is described
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as follows. It has M independent arms (resources), each
arm can be in one of a finite set of states. The play of an
arm yields a reward that depends on state of that arm. At
every decision epoch, decision maker plays a fixed number
of arms simultaneously; the states of arms evolve according
to Markov chains and are action dependent. The objective of
the decision maker is to select the optimal sequence in which
arms should be played such that it maximizes the long term
reward function. Finding the optimal sequence that maximizes
long term reward for RMAB, i.e., the optimal solution is
known to be PSPACE hard, see [10]. In the seminal paper [9],
Whittle introduced a hueristic index based policy for RMAB,
where state of an arm is mapped to a real valued index and
the arms with highest indices are played. The popularity of
this index policy is because of its asymptotic optimality, [11].
This index policy now referred to as Whittle index policy.

An approach to obtain index for an arm is to study
Lagrangian relaxed version of the stochastic optimization
problem. This relaxation reduces the complexity of RMAB
problem and it allows to separately solve M restless single-
armed bandit (RSAB) problem. Using structural properties of
RSAB, one requires to first show that the arm is indexable
and later one can compute the index.

The relay selection or employment problem and opportunis-
tic scheduling problem can be modeled using RMAB. Each
source-destination link in relay networks corresponds to an
arm; each link can be one of finite states which represent the
quality of that link. The reward from using a relay link is
the throughput that dependent on its state. Also, opportunistic
scheduling problem can be modeled as RMAB, where each
channel corresponds to an arm, state of an arm describes the
channel quality and reward for arm play being the throughput
that is state dependent. In these applications, the channel or
link qualities are not observed at transmitter, but ACK/NACK
feedback is available. Such bandits are referred to as partially
observable RMAB.

In this paper we formulate the problem of partially observ-
able RMAB with cumulative feedback. In both the applications
discussed above, ACK/NACK is a cumulative feedback as it
represents the impact of multiple channel state transitions in
the form of success or failure of a message transmission.

We now discuss some literature on RMAB problem, related
in particular to partially observable RMAB. It has been exten-
sively studied for opportunistic communication and resource
allocation problems, see [3], [12], [12]–[18]. The work of
[3], [12], [13], [15], [19] assumes that state of channel is
observed perfectly when channel is used for transmission
using ACK/NACK feedback and state is not observed when
channel is not used. A variation and extension of this model
is proposed in [14], where channel state is also not observed
if channel is used for transmission and no ACK received.
Further generalization of these two channel models is con-
sidered in [17], [18]. In this, channel is not observed for both
transmission and no-transmission but ACK/NACK is observed;
such bandits are referred to as hidden RMAB. All the above
work studied Whittle index based policy. In the work of [3],
[15], index policy is also shown to be asymptotically optimal.
Alternatively, myopic policy is studied for RMAB, and it is

shown to be optimal is special cases, see [4], [19]. Versions
of relay selection problem have been analyzed using POMDP
in [1], [20].

In all of the above problems, (1) each action generates at
most one system state transition till the next decision epoch,
(2) the feedback about an action is available for making
the next consecutive decision. This implies that the decision
maker receives distinct information about every system state
transition.

In this paper, we propose cumulative feedback based model
that relaxes the first assumption of the above work, i.e.,
multiple state transitions are allowed between consecutive
decision epochs. Further, this model does not necessitate
receiving distinct information about every state transition.

Our contribution and organization of the paper is as follows.
We first model each channel using Gilbert-Elliot model, and
propose cumulative feedback ACK/NACK model in Section II.
Here, we formulate optimization problem using RMAB with
partially observable states. To obtain the index, we analyze
the single-armed bandit problem in Section III. Here, we also
derive structural results and obtain closed-form expression for
index in one special case. In Section IV, we illustrate the
efficacy of index based policy via few numerical examples.
We compare the performance of index policy with myopic
and other policies. Finally, we conclude the work and provide
some discussion on future work in Section V.

II. MODEL DESCRIPTION AND PRELIMINARIES

Consider a restless multi armed bandit with M independent
arms. The time line is divided into sessions that are indexed by
s. The arms of the multi-armed bandit represent channels/links
in a communication system. We model each channel using
Gilbert-Elliot model. In this model each channel has two state,
say, good (1) and bad (0). In an arbitrary session, each arm
exists in one of two states. Ym(s) ∈ {0, 1} denotes the state
of arm m at the beginning of session s. Let K > 1 be the
number of transitions of channel state of an arm in a given
session. The state of each arm evolves according to a Markov
chain. pmi,j represents the transition probability of arm m from
state i to state j, i, j ∈ {0, 1} and the corresponding transition
probability matrix (TPM) is denoted by Pm = [pi,j ]. In a
given session s, the decision maker plays one arm out of M
arms. Am(s) denotes the action corresponding to arm m in
session s. If arm m is played in session s, then Am(s) = 1
and Am(s) = 0, otherwise. Since only one arm is played in a
session,

∑M
m=1Am(s) = 1.

At the end of each session a feedback is received by the
decision maker in the form of ACK(1) or NACK(0) from the
arm that is played. An ACK means a successful session and
a NACK means a failed session. Zm(s) ∈ {0, 1} denotes the
feedback signal that is obtained at end of session s if arm m
is played in session s. This feedback is probabilistic, and we
define ρm,i := Pr{Zm(s) = 1 | Am(s) = 1, Ym(s) = i},
i ∈ {0, 1}. We also assume that ρm,0 < ρm,1.

A reward is accrued from arm m, if that arm is played in a
session s. It depends on states of the arm, Ym(s). We denote
Rm,i as reward from arm m if it is played and it is in state i,
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pm1,1

pm1,0No Signal
No Reward

No Signal
No Reward

Arm m is not played in session s (Am(s) = 0)

0 1pm0,0

pm0,1

pm1,1

pm1,0Observe 1 w.p. ρm,0
Reward: Rm,0

Observe 1 w.p. ρm,1
Reward: Rm,1

Arm m is played (Am(s) = 1)

Fig. 1. The state transition probabilities, the reward, and the probability of
ACK (1) being observed are illustrated above when the arm is not played.
Also, the corresponding quantities are illustrated below when the arm is
played.

and further Rm,0 < Rm,1. No reward is accrued if arm m is
not played.

We assume that the exact state of each arm is not observable
by the decision maker. The decision maker maintains the belief
about the state of each arm. Let πm(s) the probability that
arm m is in state 0 at the beginning of session s given
the history H(s), where H(s) = {A(l), Z(l)}1≤l<s. Thus
πm(s) := Pr (Ym(s) = 0 | H(s)) . The belief πm(s) about
arm m, is updated by the decision maker at the end of every
session s, based on the action taken Am(s) and feedback
received Zm(s).

Let φ := {φ(s)}s≥0 be the policy, where φ(s) : Hs →
{1, · · · ,M} maps the history up to session s to action of
playing one of the M arms. Let Aφm(s) = 1, if φ(s) = m,
and Aφm(s) = 0, if φ(s) 6= m. The infinite horizon expected
discounted reward under policy φ is given by

Vφ(π) := E

{ ∞∑
s=1

βs−1
M∑
m=1

Aφm(s) (πm(s)Rm,0

+(1− πm(s))Rm,1)

}
. (1)

Here, β is discount parameter, 0 < β < 1 and the initial belief
π = [π1, · · · , πM ], πm := Pr (Ym(1) = 0) . Our objective is
to find the policy φ that maximizes Vφ(π) for all π ∈ [0, 1]M .

In [9], Lagrangian relaxation of this problem is analyzed
via introducing subsidy, it is payoff for not playing the arm.
The approach to obtain the solution of the relax problem by
studying first single-armed restless bandit and this is studied
in next section.

III. SINGLE-ARMED RESTLESS BANDIT

We consider a subsidy η is assigned if the arm is not played.
We here drop notation m for notational convenience. In the

view of subsidy η one can reformulate problem in (1) for
single-armed bandit as follows.

Vφ(π) := E

{ ∞∑
s=1

βs−1

(
Aφ(s) (π(s)R0 + (1− π(s))R1)

+η(1−Aφ(s))
)}

. (2)

The goal is to find the policy φ that maximizes Vφ(π) for
π ∈ [0, 1], π is the initial belief.

We now describe the belief update rule and it plays impor-
tant role in obtaining properties of the value function.

1) If a channel is used for transmission in session s and
ACK is received, i.e., A(s) = 1 and Z(s) = 1, then the
belief at the beginning of session s + 1 is π(s + 1) =
γ1(π(s)). Here,

γ1(π(s)) :=
(1− π(s))ρ1p1,0 + π(s)ρ0p0,0

ρ1(1− π(s)) + ρ0π(s)
.

2) If a channel is used for transmission in session s and
NACK is received, i.e., A(s) = 1 and Z(s) = 0, then
the belief at the beginning of session s+1 is π(s+1) =
γ0(π(s)), where

γ0(π(s)) :=
(1− π(s))(1− ρ1)p1,0 + π(s)(1− ρ0)p0,0

(1− ρ1)(1− π(s)) + (1− ρ0)π(s)
.

3) If a channel is not used for transmission, i.e., A(s) =
0, then the belief at the beginning of session s + 1 is
π(s+ 1) = γ2(π(s)), where

γ2(π(s)) := (p0,0 − p1,0)K π + p1,0

(
1− (p0,0 − p1,0)K

)
1− (p0,0 − p1,0)

. (3)

This is because the channel is evolving independently,
after K transitions of channel state, we obtain belief as
given in the expression (3).

Note that whenever p0,0 > p1,0, the communication channel
is called as positively correlated channel. In this paper we
study only positively correlated channel model.

Lemma 1: For positively correlated channel, i.e., p0,0 >
p1,0, the belief updates γ0(π), γ1(π) and γ2(π) are increasing
in π. Further, γ1(π) and γ0(π) are convex and concave,
respectively. Also, p1,0 ≤ γ1(π) ≤ γ0(π) ≤ p0,0.
The proof is straight forward and it can be done by twice
differentiating each of the update functions γ0, γ1 w.r.t π and
looking at their signs.

Remark 1: We can see from the expression of γ2 in Eqn. (3)
that for fixed value of π, as K →∞, we get γ2(π)→ q, where
q =

p1,0
1−(p0,0−p1,0) . The rate of convergence of γ2 to q depend

on (p0,0 − p1,0). This suggests that for large values of K, we
can approximate γ2(π) with q. If |p0,0 − p1,0| is smaller then
k required for this approximation is small. Also, γ2(π) = q
is good approximation for fast varying channel because K is
sufficiently large.

We seek for a stationary deterministic policy. From [21],
[22], we know that π(s) is a sufficient statistic for constructing
such policies and the optimal value function can be determined
by solving following dynamic program.
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VS(π) = RS(π) + β (ρ(π)V (γ1(π)) + (1− ρ(π))V (γ0(π)))

VNS(π) = η + βV (γ2(π))

V (π) = max{VS(π), VNS(π)}. (4)

Here RS(π) = πR0+(1−π)R1 and ρ(π) = πρ0+(1−π)ρ1
We next derive the structural results for value functions.

Lemma 2:
1) For fixed η, VS(π), VNS(π) and V (π) are convex in π.
2) For fixed π, VS(π, η), VNS(π, η) and V (π, η) are non-

decreasing and convex in η.
3) For fixed subsidy η, β ∈ (0, 1), and p0,0 > p1,0. The

value functions V (π), VS(π) and VNS(π) are decreasing
in π.

4) For fixed subsidy η, β ∈ (0, 1), and p0,0 > p1,0.
The difference in value function (VS(π) − VNS(π)) is
decreasing in π.

The proofs of parts 1)-4) are given in Appendix B-E respec-
tively.

We define a threshold type policy and we will show that a
threshold type optimal policy for single armed bandit for large
values of K, i.e., γ2(π) ≈ q.

Definition 1: A policy is called as a threshold type for single
armed bandit if there exists πT ∈ [0, 1] such that an optimal
action is to play the arm if π ≤ πT and to not to play the arm
if π ≥ πT .

Theorem 1: For fixed subsidy η, β ∈ (0, 1), and p0,0 > p1,0.
The optimal policy for single-armed bandit is of a threshold
type.

Proof: From the preceding Lemma 2, we know that
(Vs(π) − VNS(π)) is a decreasing in π. Further, VS(π) and
VNS(π) are convex in π. This implies that there exists a either
πT ∈ [0, 1] such that VS(πT ) = VNS(πT ) or VS(π) > VNS(π)
for all π, or VS(π) < VNS(π) for all π. This leads to desired
result.

We here define the indexability and will show that a single-
armed bandit is indexable. Using exact threshold-type policy
result, we define the following.

Pβ(η) = {π ∈ [0, 1] : VS(π, η) ≤ VNS(π, η)} .

It is a set of belief state π for which the optimal action is to
not to play the arm, i.e., A(s) = 0. From [9], we state the
definition of indexability.

Definition 2: A single-armed restless bandit is indexable if
Pβ(η) is monotonically increases from ∅ to entire state space
[0, 1] as η increases from −∞ to∞, i.e., Pβ(η1)\Pβ(η2) = ∅
whenever η1 ≤ η2.
To show indexability, we require to prove that a threshold
πT as function of η is monotonically increasing. We state the
following lemma from [18].

Lemma 3: Let πT (η) = inf{π ∈ [0, 1] : VS(π, η) =

VNS(π, η)}, if ∂VS(π,η)
∂η

∣∣∣∣
π=πT (η)

< ∂VNS(π,η)
∂η

∣∣∣∣
π=πT (η)

, then

πT (η) is monotonically decreasing function of η
Note that the value function may not be differentiable as
function of η, in that case it should taken as right partial
derivative. It exists due to convexity of value function in η
and rewards are bounded.

We now use Definition 2 and Lemma 3 to show that a
single-armed restless bandit in our setting is indexable.

Theorem 2: If γ2(π) ≈ q, and ρ0 < ρ1, then a single-armed
restless bandit is indexable for β ∈ (0, 1/3).
Proof can be found in Appendix A.

Remark 2: We believe that the indexability result is true
more generally, where, we do not require any assumption on
β. This restriction on β is required here because of difficulty
in obtaining closed-form value function expression. But if we
assume ρ0 = 0, ρ1 = 1, and K > 1, we can derive the
closed-form expressions of value functions and we can obtain
conditions for indexability without any assumption on β.

We now provide definition of the Whittle index from [9].
Definition 3: If an indexable arm is in state π, its Whittle

index W (π) is

W (π) = inf{η ∈ R : VS,β(π, η) = VNS,β(π, η)}. (5)

In order to compute the index, we require to obtain the value
function expressions at each threshold π and solve it for
subsidy η. Solving these equations, we get desired index for
that π. We assume that p0,0 > p1,0, γ2(π) ≈ q, R0 = ρ0 = 0,
and 0 < R1 = ρ1 < 1.

0 1 πp1,0 q p0,0

A1 A2 A3 A4

Fig. 2. The different cases to calculate W (π).

We consider four intervals, A1, A2, A3, and A4, this is
described in Fig. 2, where we compute the index for each
interval separately. We make use of properties of γ0, γ1 and
γ2. The index formula for each interval is given as follow.

1) For π ∈ A1, the Whittle index W (π) = ρ(π).
2) For π ∈ A2, we consider following cases.

a) if γ0(p1,0) ≥ π, then Whittle index is

W (π) =
ρ(π)

1− β(ρ(p1,0)− ρ(π))
.

b) if γ0(p1,0) < π but γ20(p1,0) ≥ π then Whittle
index W (π) = ρ(π)

C1
. Here,

C1 = 1− β(ρ(p1,0)− ρ(π))− β2(ρ(γ0(p1,0))− ρ(π)) +
β2ρ(γ0(p1,0))ρ(p1,0).

3) For π ∈ A3, obtaining index is tedious, and this has to
be computed numerically by value iteration algorithm.

4) For π ∈ A4 the Whittle index is.

W (π) = mπ(1− β(p0,0 − p1,0)) + (1− β)c− βp1,0m,

m =
−ρ1

1− β(p0,0 − p1,0)
, c =

ρ1 +
−βp1,0ρ1

1−β(p0,0−p1,0)

1− β
.

The derivation of Whittle index computation is given in the
Appendix.
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a) Discounted cumulative reward b) Arm choice fraction

Fig. 3. We plot a) discounted cumulative rewards as function of sessions
for different policies and b) arm choice fraction for each arm with different
policies. This is plotted for identical reward for all arms ρ1 = 0.9 and
identical qm = 0.45 for 1 ≤ m ≤M,m 6= 9 and q9 = 0.4.

IV. NUMERICAL EXAMPLES

We now present few numerical examples and compare
different algorithms that are used to solve partially observable
RMAB. The algorithms included in the comparative analysis
are 1) Whittle index policy (WI)– plays the arm with highest
Whittle index, 2) myopic policy (MP)– plays arm with highest
expected immediate reward, 3) uniformly random (UR), 4)
non-uniform random (NUR)– plays arm randomly with distri-
bution derived from current belief and 5) round robin (RR)–
plays arm in round robin order.

Simulations were performed using MATLAB. In these
simulations, the arms start in a random state with a given
initial belief about the state of the arm. In each session one
arm is played according to the given policy. The reward is
accumulated at end of each session from the played arm and
it is stored; these rewards are averaged over L iterations.

We will plot and compare the discounted cumulative reward
that is obtained from these policies as function of session
number. We define arm choice fraction as follows. Let 1m,s,l
be the indicator variable if arm m is played in session s, and
lth iteration. Then Nm,l :=

1
Smax

∑Smax

s=1 1m,s,l, where Smax

number of sessions for which simulations are performed. This
is further averaged over L number of iterations. We call this
as arm m choice fraction. To gain further insight, we will plot
this for all the arms for different policies.

We illustrate three numerical examples for 10 number of
arms, i.e., M = 10 and we use discount parameter β = 0.99
and Rm,0 = ρm,0 = 0, Rm,1 = ρm,1 = ρ1 for 1 ≤ m ≤ M.
In first two examples, we consider that arms with identical
rewards but different transition probabilities. A third example
is given for arms with non-identical rewards and transition
probabilities.

1) Example-1: In this scenario, all the arms have identical
reward from play of that arm. Also, all the arms have same
qm = 0.45, except for arm 9, i.e. q9 = 0.4. We use following
set of parameters: ρ1 = 0.9 and

p0,0 = [0.45, 0.5, 0.51, 0.57, 0.63, 0.66, 0.69, 0.75, 0.78, 0.87]

p1,0 = [0.45, 0.41, 0.4, 0.35, 0.3, 0.28, 0.25, 0.2, 0.15, 0.1].

In Fig. 3-a) we plot the discounted cumulative reward as
function of number of sessions. It can be seen that the
discounted cumulative reward under Whittle index policy (WI)
is higher than that of the Myopic policy (MP). We also observe
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Fig. 4. a) The discounted cumulative reward verses session number for
different policies and b) arm choice fraction for each arm with different
policies. This is plotted for identical reward for all arms ρ1 = 0.9 but different
qm for each arm.

that WI and MP yield higher discounted cumulative reward
compared to that of random and round robin policies.

We also plot arm choice fraction in Fig. 3-b). It suggests
that Whittle index policy has a tendency to choose the arm
from a smaller subset of arms, {9, 10} as compared to other
policies. This behavior of Whittle index policy might be due
to it accounts for future rewards through the action value
function. This is also determined by channel characteristics,
i.e., p0,0, and p1,0, where we observe that for arm 9 and 10
difference (p0,0 − p1,0) is very large compared to other arms.
In myopic policy, arm 9 is most frequently played compared
to other arms. This is because belief about arm 9 reaches state
q9 = 0.4 when that arm is not played, while other arms those
are not played reach q = 0.45. Note that immediate expected
reward from session is state dependent and it is decreasing
in state (π). Since rewards are identical for all arms, myopic
policy plays arm 9. Another reason for myopic policy to play
arm 9 is that (p0,0 − p1,0) is large. If arm 9 is played and
session is successful then state reaches to p1,0 = 0.15, that
means it is more likely to be in good state and hence it will
be played again. Whereas for other policies all the arms are
played equally often and hence it leads to smaller discounted
cumulative reward.

2) Example-2: In this example we consider that all arms
has identical reward structure, ρ1 = 0.9 but different values
of qm. We use the following set of parameters:

p0,0 = [0.5, 0.45, 0.45, 0.78, 0.6, 0.6, 0.7, 0.7, 0.4, 0.45],

p1,0 = [0.41, 0.4, 0.35, 0.15, 0.55, 0.5, 0.5, 0.6, 0.3, 0.25],

q = [0.45, 0.42, 0.38, 0.40, 0.57, 0.55, 0.62, 0.66, 0.33, 0.31].

In Fig. 4-a) we plot the discounted cumulative reward verses
sessions. As expected the Whittle index policy yields higher
discounted cumulative reward compared to other policies.
The myopic policy has better cumulative reward than other
policies. We also observe that non-uniform random policy
gives better performance compare to round robin and uniform
random policy.

In Fig. 4-b), we have plotted arm choice fraction for each
arm. It suggests that Whittle index policy has a tendency
to choose the arm from a smaller subset of arms, {4, 10}.
Myopic policy chooses the arm from subset of arms, {9, 10}.
Other policies plays all the arms equally. The behavior of
Whittle index policy is determined by channel characteristics,
i.e., p0,0, and p1,0, where we observe that for arm 4 has
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Fig. 5. a) The discounted cumulative reward verses session number for
different policies and b) arm choice fraction for each arm with different
policies. This is plotted for non-identical reward for all arms.

highest difference in (p0,0 − p1,0), arm 10 has smallest value
of p1,0 and (p0,0 − p1,0) = 0.2. Here index is depend on
these parameters and it accounts for future rewards through
the action value function. Here, behavior of myopic policy
depends on value of q and observe that arm 9 and 10 has least
value of q. Thus MP plays arms 9 and 10 most frequently
compare to other arms. For other policies all the arms are
played equally often.

3) Example-3: In this example arms have non-identical
reward structure.

p0,0 = [0.5, 0.45, 0.45, 0.78, 0.6, 0.6, 0.7, 0.7, 0.4, 0.45],

p1,0 = [0.41, 0.4, 0.35, 0.15, 0.55, 0.5, 0.5, 0.6, 0.3, 0.25],

q = [0.45, 0.42, 0.38, 0.40, 0.57, 0.55, 0.62, 0.66, 0.33, 0.31],

ρ1 = [0.9, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9, 0.8, 0.7].

From Fig. 5-a) we observe that the Whittle index policy
and myopic policy yield higher discounted cumulative reward
compared to other policies. We notice from Fig. 5-b) that
Whittle index policy tend to choose the arm from a smaller
subset of arms, {4, 9}, Myopic policy tend to choose the arm
from subset of arms, {1, 9}. Other policies plays all the arms
equally often. This behavior of WI and MP due to channel
characteristics and reward structure ρ1.

V. CONCLUDING REMARKS AND DISCUSSION

The problem of restless bandits with cumulative feedback
has been formulated and solved using Whittle index policy.
This cumulative feedback model is applicable in scenarios
where rate of system state evolution is faster than the rate
of information gathering by the decision maker. To solve
the problem Whittle index policy has been studied, a closed
form expression for the index obtained for a special case.
It’s performance was compared with other different policies
in numerical simulations. The cumulative feedback model is
applicable to problems such as relay selection/employment,
opportunistic communication in wireless networks. It mini-
mizes signaling overhead and suitable in applications involving
real time multimedia transmission.

A two state Gilbert-Elliot model for communication channel
was used in this work. To extend the applicability of this
model to multi-state channels, state aggregation can be used. A
rigorous analysis of restless bandits with partially observable
multiple states(> 2) remains to be done.
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APPENDIX

A. Proof of Theorem 2

Using induction technique, one can obtain the following
inequalities.∣∣∣∣∂V (π, η)

∂η

∣∣∣∣, ∣∣∣∣∂VS(π, η)∂η

∣∣∣∣, ∣∣∣∣∂VNS(π, η)∂η

∣∣∣∣ ≤ 1

1− β
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Also,

∂VS(π, η)

∂η
= β

[
ρ(π)

∂V (γ1(π), η)

∂η
+ (1− ρ(π))∂V (γ0(π), η)

∂η

]
and

∂VNS(π, η)

∂η
= 1 + β

∂V (q, η)

∂η
.

Now taking differences

∂VNS(π, η)

∂η
− ∂VS(π, η)

∂η
= 1 + β

∂V (q, η)

∂η
−

β

[
ρ(π)

∂V (γ1(π), η)

∂η
+ (1− ρ(π))∂V (γ0(π), η)

∂η

]
From Lemma 3, we require the above difference to be noneg-
ative at πT (η). This reduces to following expression.[
ρ(π)

∂V (γ1(π), η)

∂η
+(1− ρ(π))∂V (γ0(π), η)

∂η

]
− ∂V (q, η)

∂η
<

1

β
.

(6)

Note that we can provide upper bound on LHS of above
expression and it is upper bounded by 2/(1−β). If β < 1/3,
Eqn. (6) is satisfied. πT (η) is decreasing in η. Thus indexa-
bility claim follows.

�

B. Proof of Lemma 2 - Part 1)

First we prove convexity of the functions VS(π), VNS(π)
can be proved using induction. It then follows that V (π) is
convex. Let

VNS,1(π) = η

VS,1(π) = RS(π) = πR0 + (1− π)R1

V1(π) = max{VS,1(π), VNS,1(π)}.

Clearly, VNS,1(π), VS,1(π) and in turn V (π) are convex in
π. Assume this convexity claim holds for VNS,n(π), VS,n(π).
Now,

VS,n+1(π) = RS(π) + βρ(π)Vn(γ1(π))

+ β(1− ρ(π))Vn(γ0(π))

VNS,n+1(π) = η + βVn(γ2(π))

Vn+1(π) = max{VS,n+1(π), VNS,n+1(π)}.

Define

b0 := [(1− π)(1− ρ1)p10 + π(1− ρ0)p00,
(1− π)(1− ρ1)(1− p10) + π(1− ρ0)(1− p00)]

b1 := [(1− π)ρ1p10 + πρ0p00,

(1− π)ρ1(1− p10) + πρ0(1− p00)]
|| b1 ||1 = πρ0 + (1− π)ρ1 = ρ(π);

|| b0 ||1 = 1− πρ0 − (1− π)ρ1 = 1− ρ(π);

Now, VS,n+1(π) can be rewritten as

VS,n+1(π) = RS(π) +

β||b1||1Vn
(

b1
||b1||1

)
+ β||b0||1Vn

(
b0
||b0||1

)

We know that Vn (π) is convex. Using Lemma 2 from [23],
||b1||1Vn

(
b1
||b1||1

)
is also convex. This implies that VS,n+1 is

a sum of convex functions and hence convex.

VNS,n+1(π) = η + βVn(γ2(π))

Here, Vn(π) is convex and γ2(π) is linear. Hence, VNS,n+1(π)
is convex. It follows that Vn+1(π) is convex. By principle of
induction, VS,n(π), VNS,n(π) and Vn(π) are convex for all
n. From [24] Chapter 2, as n → ∞, VS,n(π) → VS(π),
VNS,n(π) → VNS(π) and Vn(π) → V (π). This means that
the functions VS , VNS , V are convex in π.

C. Proof of Lemma 2 - Part 2)

This result too can be claimed using the induction principle.
To emphasize that subsidy η is a variable, value functions are
rewritten as VS(π, η), VNS(π) and V (π, η). For a fixed π, let

VNS,1(π, η) = η

VS,1(π, η) = RS(π) = πR0 + (1− π)R1

V1(π, η) = max{RS(π), η}.

Clearly, all the above functions are convex and non-decreasing
in η. Now suppose VS,n(π, η), VNS,n(π, η) and in turn
Vn(π, η) are convex.

VNS,n+1(π, η) = η + βVn(γ2(π), η)

VS,n+1(π, η) = RS(π) + β (ρ(π)Vn(γ1(π), η)

+ (1− ρ(π))Vn(γ0(π), η))

Vn+1(π, η) = max{VS,n+1(π), VNS,n+1(π)}.

Here, VNS,n+1(π, η) is non-decreasing convex in η because
it is a sum of two non-decreasing convex functions in η.
Further, VS,n+1(π, η) is sum of a constant function and a
convex combination of two non-decreasing convex functions;
hence it is convex non-decreaing. By induction VS,n, VNS,n
and Vn are non-decreasing convex for any n ≥ 1. As in
part 1) of this lemma, as n → ∞, VS,n(π, η) → VS(π, η),
VNS,n(π, η) → VNS(π, η) and Vn(π, η) → V (π, η). This
means that the functions VS , VNS , V are convex and non-
decreasing in η for fixed π. �

D. Proof of Lemma 2 - Part 3)
The proof is done by induction technique. Assume that

Vn(π) is non increasing in π. Let π′ > π and consider playing
the arm is optimal. Then

Vn+1(π) ≥ RS(π) + β [ρ(π)Vn(γ1(π)) + (1− ρ(π))Vn(γ0(π))]

Here RS(π) = πR0 + (1 − π)R1. Note that RS(π) is
decreasing in π, i.e. RS(π′) < RS(π) whenever π′ > π.
Hence we get

Vn+1(π) ≥ RS(π′) + β [ρ(π)Vn(γ1(π)) + (1− ρ(π))Vn(γ0(π))] .

From our assumptions p00 > p10 and ρ1 > ρ0 we
get stochastic ordering on observation probability, i.e., [1 −
ρ(π), ρ(π)]T ≥s [1 − ρ(π′), ρ(π′)]T . Then, using a property
of stochastic ordering [22, Lemma 1.1], we obtain

Vn+1(π) ≥ RS(π′)+β
[
ρ(π′)Vn(γ1(π)) + (1− ρ(π′))Vn(γ0(π))

]
.
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Now that γ0, γ1 are increasing in π and Vn is decreasing in
π, we have

Vn+1(π) ≥ RS(π′)+β
[
ρ(π′)Vn(γ1(π

′)) + (1− ρ(π′))Vn(γ0(π′))
]
.

Vn+1(π) ≥ Vn+1(π
′)

This is true for every n. From [21], we know Vn(π)→ V (π)
uniformly. Thus V (π) is decreasing in π. Similarly, we can
derive proof for VS(π) and VNS(π).

�

E. Proof of Lemma 2 - Part 4)

Let d(π) := VS(π)− VNS(π). We want to prove that d(π)
decreasing in π. This implies that we need to show

VS(π)− VNS(π) < VS(π
′)− VNS(π′), whenever π > π′.

(7)
We can rewrite (7) as follows.

VS(π)− VS(π′) < VNS(π)− VNS(π′), (8)

In our setting VNS(π)−VNS(π′) = 0 whenever γ2(π) = q
and this is true for large values of k. We know that VS(π)−
VS(π

′) < 0, as VS is decreasing in π. Hence Eqn. (8) is true
and claim follows.

�

F. Index Computation

1) We first compute index for π ∈ A1. We have following
expressions.

VS(π) = ρ(π) + βρ(π)V (γ1(π)) + β(1− ρ(π))V (γ0(π))

VNS(π) = η + βV (q)

For π ∈ A1, we also have VS,β(π, η) = VNS,β(π, η)
because of a threshold type policy. Solving for η we
can obtain index. For this case, we note that q >
π and hence V (q) = VNS(q) = η + βV (q), and
V (q) = η

1−β . This implies that VNS(π) = η
1−β . Also,

note that V (γ1(π)) = VNS(γ1(π)), and V (γ0(π)) =
VNS(γ0(π)). Hence VS(π) = ρ(π) + β η

1−β , and
VNS(π) = η

1−β . By equating these expressions and
solving for η we obtain W (π) = ρ(π).

2) For π ∈ A2 we have VS,β(π, η) = VNS,β(π, η) and
solving for η we can obtain index. We also use condition
ρ0 = 0. This implies that γ1(π) = p1,0.
We first show that V (q) = η

1−β in this case. We observe
that V (q) = max{VS(q), VNS(q)} = VNS(q). After
simplification we obtain V (q) = η

1−β .

a) We first derive index for γ0(p1,0) ≥ π. Since
p1,0 < π, we have V (p1,0) = VS(p1,0). Hence
we first require to compute VS(p1,0). We also have
γ0(p1,0) ≥ π and hence

V (γ0(p1,0)) = VNS(γ0(p1,0)) =
η

1− β
.

Then we can write VS(p1,0) as follows.

VS(p1,0) = ρ(p1,0) + βρ(p1,0)V (p1,0) +

β(1− ρ(p1,0))VNS(γ0(p1,0)).

We further simplify and obtain

VS(p1,0) =
ρ(p1,0)

1− βρ(p1,0)
+
β(1− ρ(p1,0))
1− βρ(p1,0)

η

1− β
.

Then we can rewrite VS(π) in the following way.

VS(π) = ρ(π)

+βρ(π)

[
ρ(p1,0)

1− βρ(p1,0)
+
β(1− ρ(p1,0))
1− βρ(p1,0)

η

1− β

]
+ β(1− ρ(π)) η

1− β
.

After simplification we get

VS(π) = ρ(π) + β(1− ρ(π)) η

1− β

+
βρ(π) [ρ(p1,0)(1− β) + β(1− ρ(p1,0))η]

(1− βρ(p1,0))(1− β)
.

Further,

VNS(π) =
η

1− β
.

Equating the preceding two equations, we obtain

ρ(π) +
βρ(π)ρ(p1,0)(1− β)

(1− βρ(p1,0))

=−β(1− ρ(p1,0))η ×
1

(1− βρ(p1,0))(1− β)
− β(1− ρ(π)) η

1− β
+

η

1− β
.

After simplification, we get

ρ(π) +
βρ(π)ρ(p1,0)(1− β)

(1− βρ(p1,0))

=
η

1− β

[
1− β(1− ρ(p1,0))

(1− βρ(p1,0))
− β(1− ρ(π))

]
.

After further simplification we get

W (π) =
ρ(π)

1− β(ρ(p1,0)− ρ(π))
.

b) We now consider the case of γ0(p1,0) < π but
γ20(p1,0) ≥ π. From our assumptions we can obtain
the following expressions.

V (γ0(p1,0)) = VS(γ0(p1,0)),

V (γ20(p1,0)) = VNS(γ
2
0(p1,0)) =

η

1− β
.

Thus we can write

VS(γ0(p1,0)) = ρ(γ0(p1,0)) + βρ(γ0(p1,0))V (p1,0)

+β(1− ρ(γ0(p1,0)))V (γ2
0(p1,0)).

After substituting the value of V (γ20(p1,0)) we get

VS(γ0(p1,0)) = ρ(γ0(p1,0)) + βρ(γ0(p1,0))V (p1,0)

+β(1− ρ(γ0(p1,0)))
η

1− β .

(9)

We can compute V (p1,0) = VS(p1,0) and obtain
following expression.

VS(p1,0) = ρ(p1,0) + βρ(p1,0)VS(p1,0) +

β(1− ρ(p1,0))VS(γ0(p1,0)). (10)
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After substituting Eqn. (9) in Eqn. (10), we obtain

VS(p1,0) = ρ(p1,0) + βρ(p1,0)VS(p1,0) +

β(1− ρ(p1,0))
[
ρ(γ0(p1,0)) + βρ(γ0(p1,0))V (p1,0)

+β(1− ρ(γ0(p1,0)))
η

1− β

]
.

(11)

After solving Eqn. 11, we can obtain expression
of VS(p1,0).

VS(p1,0) =
T1
T2
, (12)

where

T1 = ρ(p1,0) + β(1− ρ(p1,0))ρ(γ0(p1,0)) +
β2ρ(p1,0)ρ(γ0(p1,0))

η

1− β
,

T2 = 1− βρ(p1,0)− β2ρ(p1,0)γ0(p1,0),

ρ(p1,0) = 1− ρ(p1,0),
ρ(γ0(p1,0)) = 1− ρ(γ0(p1,0)).

We now rewrite VS(π) as follows.

VS(π) = ρ(π) + βρ(π)VS(p1,0) +

β(1− ρ(π))VNS(γ0(π)). (13)

Equating VS(π) and VNS(π) and solving for η, we
obtain required W (π).

3) For π ∈ A3, computing index expression is non-trivial
because it is tedious to compute the value function
expression for VS(p1,0). Hence we use value iteration
algorithm.

4) For π ∈ A4 we have to obtain value function expressions
for VS,β(π, η) and VNS,β(π, η). Note that to compute
VS,β(π, η), we need to compute V (p1,0) = VS(p1,0)
and V (q) = VS(q). In this case the optimal action for
the π is not sample the arm once and later sample the
arm always. Similarly if the initial action is to sample
the arm and later the optimal action is to sample the
arm always. This behavior can be observed from the
operation γ0(π), which is smaller than p0,0. Then one
can easily show by using induction technique that the
VS(π) is linear in π and similarly VNS(π) is also linear
in π with slope m and intercept c as mentioned earlier.
That is,

VS(p1,0) = mp1,0 + c

VS(q) = mq + c.

Therefore,

VNS(π) = η + β(mq + c)

and

VS(π) = ρ(π) + βρ(π)(mq + c) + β(1− ρ(π))(mγ0(π) + c)

VS(π) = ρ(π) + βρ(π)(mq + c) + β {(mγ0(π) + c)

−ρ(π)(mγ0(π) + c))}

After some simplification

VS(π) = ρ(π) + βρ(π) [m(q − γ0(π))] + β(mγ0(π) + c)

Equating VS(π) and VNS(π) and solving for η we get
required W (π).


