IEEE Standard
American National Standard
Canadian Standard

Graphic Symbols for Electrical and Electronics Diagrams
(Including Reference Designation Letters)

Sponsor
IEEE Standards Coordinating Committee 11, Graphic Symbols

Secretariat for American National Standards Committee Y32

American Society of Mechanical Engineers
Institute of Electrical and Electronics Engineers

Approved September 4, 1975
Reaffirmed October 20, 1988
Reaffirmed December 2, 1993

IEEE Standards Board

Approved October 31, 1975
Reaffirmed January 16, 1989

American National Standards Institute

Approved October 9, 1975

Canadian Standards Association

Approved Adopted for Mandatory Use October 31, 1975

Department of Defense, United States of America
Acceptance Notice

The following Industry Standardization Document was adopted on 31 October 1975 for mandatory use by the DoD. The indicated industry groups have furnished the clearances required by existing regulations. Copies of the documents are stocked by DoD Single Stock Point, Naval Publications and Forms Center, Philadelphia, PA, 19120, for issue to military activities only.

Title of Document: Graphic Symbols for Electrical and Electronics Diagrams (Including Reference Designation Class Designation Letters)

Document No. (a) IEEE Std 315-1975
(b) ANSI Y32.2-1975

Date of Specific Issue Adopted: (a) 4 September, 1975
(b) 31 October, 1975

Releasing Industry Group: (a) The Institute of Electrical and Electronics Engineers, Inc.
(b) American National Standards Institute, Inc.

Supersedes: IEEE Std 315-1971
(ANSI Y32.2-1970)

Custodians:
Army - EL
Navy - SH
Air Force - 16

Review Activities:
Army - AV, MI, MU
Navy AS, OS, SH, YD

User Activities:
Army - ME
Navy - EC, MC

Military Coordinating Activity:
Army - EL

Certain provisions of this standard are subject of International Standardization Agreement, ABC NAVY STD-28A, Symbols and Abbreviations for Electrical and Electronics Drawings, to which the U.S. Army also subscribes. When reaffirmations, amendment, revision, or cancellation of this standard is proposed which will effect or violate the international agreement concerned, the Military Coordinating Activity will take appropriate reconciliation action through military international standardization channels including departmental standardization offices, if required.

NOTICE: When reaffirmation, amendment, revision, or cancellation of this standard is initially proposed, the cognizant secretariat of the industry standard shall inform the Military Coordinating Activity of the proposed change and request their participation.

Graphic Symbols for Electrical and Electronics Diagrams

REXDALE, October 9, 1975

American National Standard Y32.2-1975 (IEEE Std 315-1975), with the modifications shown in Section 100, has been approved as CSA Standard Z99. This action was proposed by the Committee on Electrical Symbols, under the jurisdiction of the Sectional Committee on Abbreviations, Definitions and Symbols and was formerly approved by these Committees.

See Section 100, Canadian Standard Z99 modifications to American National Standard Y32.2-1975 on page 83.

NOTE: In order to keep abreast of progress in the industries concerned, CSA publications are subject to periodic review. Suggestions for improvement will be welcomed at all times. They will be recorded and in due course brought to the attention of the appropriate Committee for consideration.

Also, requests for interpretation will be accepted by the Committee. They should be worded in such a manner as to permit a simple “yes” or “no” answer based on the literal text of the requirement concerned.

All inquiries regarding this standard should be addressed to Canadian Standards Association, 178 Rexdale Boulevard, Rexdale, Ontario M9W 1R3, Canada.

IEEE Standards Board

Approved September 4, 1975

Joseph L. Koepfinger, Chair
Warren H. Cook, Vice Chair
Sava I. Sherr, Secretary

Jean Jacques Archambault
Robert D. Briskman
Dale R. Cochran
Louis Costrell
Frank Davidoff
Jay Forster
Irvin N. Howell, Jr
Stuart P. Jackson
Irving Kolodny
William R. Kruesi
Benjamin J. Leon
Anthony C. Lordi
Donald T. Michael
Voss A. Moore
William S. Morgan
William J. Neiwender
Gustave Shapiro
Ralph M. Showers
Robert A. Soderman
Leonard Thomas
Charles L. Wagner
William T. Wintringham

Copyright © 1975 by the Institute of Electrical and Electronics Engineers, Inc. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. However, individual symbols contained in this standard may be utilized without further permission of the IEEE. Any statement that the symbols used are in conformance with this standard shall be on the user’s own responsibility.
Foreword

(This foreword is not a part of American National Standard Graphic Symbols for Electrical and Electronics Diagrams, Y32.2-1975 [IEEE Std 315-1975])

A variety of specialized symbols originally used for aircraft applications have been added to make this standard more comprehensive. To improve coordination with IEC publication 117, IEC approved versions of capacitor, transformer, delay, associated conductors and specialized ground symbols have been added as alternates to those long used and standardized in the United States. A number of small changes have made the existing material more closely parallel to IEC Publication 117. Symbols have been added to cover additional devices in the photo sensitive semiconductor and specialized semiconductor fields, as well as for an electronic flash lamp. Known errors have been corrected and some items have been clarified.

The reference designation class letters were revised to include the added new device symbols and to clarify the DS and LS categories. “D” is now listed as an alternate to the common “CR” for the common semiconductor diode family of devices.

All of the symbols are designed so that their connection points fall on a modular grid. This should help those who use a grid basis for the preparation of diagrams. By proper enlargement of the symbols the usual coordinate-grid sizes can be matched. Most symbols appearing in this standard were reproduced from original drawings prepared for the Mergenthaler Diagranner.

A substantial effort has been made to have this American National Standard compatible with approved International Electronical Commission (IEC) Recommendations (IEC Publication 117, in various parts). Electrical diagrams are a factor in international trade; the use of one common symbol language ensures a clear presentation and economical diagram preparation for a variety of users. Members of the preparing committee have been active in transmitting USA viewpoints to the cognizant IEC Technical Committee.

Alternative symbols are shown only in those cases where agreement on a common symbol could not be attained at this time. It is hoped that the number of alternative symbols will be reduced in future editions.

The symbols in this standard represent the best consensus that can be attained at this time. Standardization, however, must be dynamic, not static, and any solution of a problem should be tested through use and revised if necessary. It is anticipated that the contents of this standard will be modified as future needs dictate; such modifications will be made available through the issuance of approved supplements. Suggestions for improvement are welcomed. They should be addressed to:

Secretary, IEEE Standards Board
Institute of Electrical and Electronics Engineers, Inc.
345 East 47 Street
New York, N.Y. 10017

This standard has been prepared by the Institute of Electrical and Electronics Engineers (IEEE) Standards Coordinating Committee for Letter and Graphic Symbols (SCC 11), acting for the Y32.2 Task Group on Graphic Symbols for Electrical and Electronics Diagrams of the American National Standards Committee Y32, Graphic Symbols and Designations. There has been close cooperation between the industry and DOD representatives to provide one standard that can be universally used, rather than separate documents with their tendency to differ in various respects. While credit for this accomplishment is due all participants and the organizations they represent, particular mention is given to the U.S. Department of Defense, without whose strong support in reaching the objective—standard symbols acceptable to both industry and the military departments—the effort would not have succeeded.

This standard is complemented by a number of related standards listed in Section 23.
The American National Standards Committee on Graphic Symbols and Designations, Y32, had the following personnel at the time it approved this standard:

Charles A. Fricke, Chair
Conrad R. Muller, Vice Chair, Electrical and Electronics
James L. Fisher, Jr., Vice Chair, Pictographic Symbols
James R. Couper, Vice Chair, Chemical and Process
George Platt, Vice Chair, Mechanical
Alvin Lai, Secretary

Organization Represented
Name of Representative

Acoustical Society of America ... Laurence Batchelder
Harry F. Olson

American Chemical Society... Robert F. Schuerer
Harry F. Olson

American Gear Manufacturers Association ... James R. Couper
Gerald L. Scott

American Institute of Chemical Engineers .. James R. Couper
James R. Couper

American Institute for Design and Drafting .. Francis Saint
James R. Couper

American Institute of Industrial Engineers .. Irving Goldstein

American Institute of Mining, Metallurgical and Petroleum Engineers (Vacant)

American Society of Agriculture Engineers .. James A. Basselman

American Society of Civil Engineers ... I. L. Hill
R. T. Northup

American Society of Heating, Refrigerating and Air Conditioning Engineers N. LaCourte
C.W. MacPhee (Alt)

American Society of Mechanical Engineers .. R. W. Cockrell
A. R. Machell, Jr.
O. J. Maha

American Society of Sanitary Engineering .. James C. Church

American Welding Society ... A. P. Arndt
Frank Speight (Alt)

Association of American Railroads .. M. F. McCircle
P. H. Foley

Association for Computing Machinery .. Patrick G. Skelly
Arthur C. Gannet (Alt)

Canadian Standards Association ... A. Hendry
L. E. Barbro

Illuminating Engineering Society ... John E. Kaufman (Alt)

Individual Member.. Charles A. Fricke

Institute of Electrical and Electronics Engineers .. G. A. Knapp
Sidney V. Soanes
Steven A. Wassermann

Instrument Society of America ... George Platt
Louis Costea (Alt)

Mechanical Contractors Association of America R. E. White
J. R. Mance

National Association of Plumbing, Heating, Cooling Contractors R. E. White
National Electrical Contractors Association .. William H. Paules

National Electrical Manufacturers Association .. Walter F. Huette
F. V. Kupchak

National Fluid Power Association ... James L. Fisher, Jr.
The Task Group on Graphic Symbols, Y32.2, which revised and processed this standard, had the following personnel:

C. A. Fricke*, Chair
S. A. Wassermann, Secretary

S. J. Balke
L. Batchelder
L. E. Barbrow
V. W. Bennett
H. L. Cook
D. Drusdow
S. K. Ghandi
W. Grasson
C. J. Hart
A. Hendry, Canadian Liaison
G. A. Knapp
R. Legg*
L. A. Meadows‡
C. R. Muller*
C. A. Nazian
R. V. Rice
E. F. V. Robinson‡, Canadian Liaison
J. W. Siefert
R. M. Stern*
J. Zeno

The IEEE Standards Coordinating Committee on Letter and Graphic Symbols, SCC 11, had the following membership:

C. A. Fricke, Chair
C. R. Muller, Secretary

R. B. Augus, Jr
F. K. Becker
J. C. Brown
J. M. Carroll
H. L. Cook
E. T. B. Gross
G. A. Knapp
L. A. Meadows‡
R. V. Rice
G. Shapiro
J. W. Siefert
S. V. Soanes
R. M. Stern
L. H. Warren
S. A. Wassermann
J. C. White

The IEEE Subcommittee on Graphic Symbols, SCC 11.1, and the IEC Experts Subcommittee, SCC 11.6, had the following membership:

C. A. Fricke, Chair SCC 11.1
C. A. Fricke, Chair pro tem, SCC 11.6

V. W. Bennett
I. M. Berger (SCC 11.1)
T. L. Bisbee
V. Condello
H. L. Cook
D. Drusdow
A. C. Gannett
G. A. Knapp
E. J. Lombardi (SCC 11.6)
R. Legg
J. Lusti (SCC 11.6)
L. A. Meadows‡
C. R. Muller
G. Panula (SCC 11.6)
R. V. Rice (SCC 11.1)
A. I. Rubin (SCC 11.1)
F. A. Saint
G. Shapiro
J. W. Siefert (SCC 11.1)
H. Seaman
P. G. Skelly (SCC 11.6)
S. V. Soanes (SCC 11.1)
R. M. Stern
S. A. Wasserman
R. Rondinelli (Alt)
W. W. Varnedoe (SCC 11.6)
J. Zeno (SCC 11.1)

* Member of Y32.2 Editorial Committee.
‡ Retired.
CLAUSE

<table>
<thead>
<tr>
<th>Clause</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>A1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>A2 Arrangement</td>
<td>2</td>
</tr>
<tr>
<td>A3 Application</td>
<td>2</td>
</tr>
<tr>
<td>A4 Drafting Practices Applicable to Graphic Symbols</td>
<td>3</td>
</tr>
</tbody>
</table>

Section 1 Qualifying Symbols

1.1 Adjustability
 - Variability | 5 |
1.2 Special-Property Indicators | 7 |
1.3 Radiation Indicators (electromagnetic and particulate) | 8 |
1.4 Physical State Recognition Symbols | 9 |
1.5 Test-Point Recognition Symbol | 10 |
1.6 Polarity Markings | 10 |
1.7 Direction of Flow of Power, Signal, or Information | 12 |
1.8 Kind of Current (General) | 13 |
1.9 Connection Symbol | 14 |
1.10 Envelope
 - Enclosure | 17 |
1.11 Shield
 - Shielding | 18 |
1.12 Special Connector or Cable Indicator | 19 |
1.13 Electret (shown with electrodes) | 19 |

Section 2 Graphic Symbols for Fundamental Items (not included in other sections)

2.1 Resistor | 19 |
2.2 Capacitor | 24 |
2.3 Antenna | 28 |
2.4 Attenuator | 32 |
2.5 Battery | 33 |
2.6 Delay Function
 - Delay Line
 - Slow-Wave Structure | 34 |
2.7 Oscillator
 - Generalized Alternating-Current Source | 35 |
2.8 Permanent Magnet | 35 |
2.9 Pickup
 - Head | 35 |
2.10 Piezoelectric Crystal Unit (including Crystal Unit, Quartz) | 36 |
2.11 Transducer
 - Accelerometer
 - Motional Pickup Transducer | 36 |
2.12 Squib, Electric | 37 |
2.13 Thermocouple (dissimilar-metals device) | 37 |
2.14 Thermal Element
 - Thermomechanical Transducer | 38 |
2.15 Spark Gap
 - Igniter Gap | 38 |
<table>
<thead>
<tr>
<th>Clause Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.16 Continuous Loop Fire Detector (temperature sensor)</td>
<td>38</td>
</tr>
<tr>
<td>2.17 Ignitor Plug</td>
<td>38</td>
</tr>
<tr>
<td>Section 3 Graphic Symbols for Transmission Path</td>
<td>39</td>
</tr>
<tr>
<td>3.1 Transmission Path</td>
<td></td>
</tr>
<tr>
<td>Conductor</td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td></td>
</tr>
<tr>
<td>Wiring</td>
<td>39</td>
</tr>
<tr>
<td>3.2 Distribution Lines</td>
<td></td>
</tr>
<tr>
<td>Transmission Lines</td>
<td>45</td>
</tr>
<tr>
<td>3.3 Alternative or Conditional Wiring</td>
<td>47</td>
</tr>
<tr>
<td>3.4 Associated or Future</td>
<td>47</td>
</tr>
<tr>
<td>3.5 Intentional Isolation of Direct-Current Path in Coaxial or Waveguide Applications</td>
<td>48</td>
</tr>
<tr>
<td>3.6 Waveguide</td>
<td>48</td>
</tr>
<tr>
<td>3.7 Strip-Type Transmission Line</td>
<td>49</td>
</tr>
<tr>
<td>3.8 Termination</td>
<td>49</td>
</tr>
<tr>
<td>3.9 Circuit Return</td>
<td>50</td>
</tr>
<tr>
<td>3.10 Pressure Tight Bulkhead Cable Gland</td>
<td>51</td>
</tr>
<tr>
<td>Cable Sealing End</td>
<td></td>
</tr>
<tr>
<td>Section 4 Graphic Symbols for Contacts, Switches, Contactors, and Relays</td>
<td>52</td>
</tr>
<tr>
<td>4.1 Switching Function</td>
<td>52</td>
</tr>
<tr>
<td>4.2 Electrical Contact</td>
<td>52</td>
</tr>
<tr>
<td>4.3 Basic Contact Assemblies</td>
<td>54</td>
</tr>
<tr>
<td>4.4 Magnetic Contact Assemblies</td>
<td>57</td>
</tr>
<tr>
<td>4.5 Operating Coil</td>
<td>57</td>
</tr>
<tr>
<td>Relay Coil</td>
<td></td>
</tr>
<tr>
<td>4.6 Switch</td>
<td>58</td>
</tr>
<tr>
<td>4.7 Pushbutton, Momentary or Spring-Return</td>
<td>59</td>
</tr>
<tr>
<td>4.8 Two-circuit, Maintained or Not Spring-Return</td>
<td>60</td>
</tr>
<tr>
<td>4.9 Nonlocking Switch, Momentary or Spring-Return</td>
<td>60</td>
</tr>
<tr>
<td>4.10 Locking Switch</td>
<td>61</td>
</tr>
<tr>
<td>4.11 Combination Locking and Nonlocking Switch</td>
<td>62</td>
</tr>
<tr>
<td>4.12 Key-Type Switch</td>
<td>62</td>
</tr>
<tr>
<td>Lever Switch</td>
<td></td>
</tr>
<tr>
<td>4.13 Selector or Multiposition Switch</td>
<td>63</td>
</tr>
<tr>
<td>4.14 Limit Switch</td>
<td>66</td>
</tr>
<tr>
<td>Sensitive Switch</td>
<td></td>
</tr>
<tr>
<td>4.15 Safety Interlock</td>
<td>67</td>
</tr>
<tr>
<td>4.16 Switches with Time-Delay Feature</td>
<td>68</td>
</tr>
<tr>
<td>4.17 Flow-Actuated Switch</td>
<td>69</td>
</tr>
<tr>
<td>4.18 Liquid-Level-Actuated Switch</td>
<td>69</td>
</tr>
<tr>
<td>4.19 Pressure- or Vacuum-Actuated Switch</td>
<td>69</td>
</tr>
<tr>
<td>4.20 Temperature-Actuated Switch</td>
<td>70</td>
</tr>
<tr>
<td>4.21 Thermostat</td>
<td>70</td>
</tr>
<tr>
<td>4.22 Flasher</td>
<td>71</td>
</tr>
<tr>
<td>Self-Interrupting Switch</td>
<td></td>
</tr>
<tr>
<td>4.23 Foot-Operated Switch</td>
<td>72</td>
</tr>
<tr>
<td>Foot Switch</td>
<td></td>
</tr>
<tr>
<td>CLAUSE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>4.24 Switch Operated by Shaft Rotation and Responsive to Speed or Direction</td>
<td>72</td>
</tr>
<tr>
<td>4.25 Switches with Specific Features</td>
<td>73</td>
</tr>
<tr>
<td>4.26 Telegraph Key</td>
<td>73</td>
</tr>
<tr>
<td>4.27 Governor (Contact-making) Speed Regulator</td>
<td>74</td>
</tr>
<tr>
<td>4.28 Vibrator, Interrupter</td>
<td>74</td>
</tr>
<tr>
<td>4.29 Contactor</td>
<td>74</td>
</tr>
<tr>
<td>4.30 Relay</td>
<td>76</td>
</tr>
<tr>
<td>4.31 Inertia Switch (operated by sudden deceleration)</td>
<td>78</td>
</tr>
<tr>
<td>4.32 Mercury Switch</td>
<td>78</td>
</tr>
<tr>
<td>4.33 Aneroid Capsule (air pressure) Operated Switch</td>
<td>79</td>
</tr>
<tr>
<td>Section 5 Graphic Symbols for Terminals and Connectors</td>
<td>79</td>
</tr>
<tr>
<td>5.1 Terminals</td>
<td>79</td>
</tr>
<tr>
<td>5.2 Cable Termination</td>
<td>81</td>
</tr>
<tr>
<td>5.3 Connector Disconnecting Device Jack Plug</td>
<td>81</td>
</tr>
<tr>
<td>5.4 Connectors of the Type Commonly Used for Power-Supply Purposes</td>
<td>84</td>
</tr>
<tr>
<td>5.5 Test Block</td>
<td>86</td>
</tr>
<tr>
<td>5.6 Coaxial Connector Coaxial Junction</td>
<td>86</td>
</tr>
<tr>
<td>5.7 Waveguide Flanges Waveguide Junction</td>
<td>87</td>
</tr>
<tr>
<td>Section 6 Graphic Symbols for Transformers, Inductors, and Windings</td>
<td>88</td>
</tr>
<tr>
<td>6.1 Core</td>
<td>88</td>
</tr>
<tr>
<td>6.2 Inductor Winding (machine or transformer) Reactor Radio-Frequency Coil Telephone Retardation Coil</td>
<td>89</td>
</tr>
<tr>
<td>6.3 Transductor Saturable-Core Inductor Saturable-Core Reactor</td>
<td>90</td>
</tr>
<tr>
<td>6.4 Transformer Telephone Induction Coil Telephone Repeating Coil</td>
<td>92</td>
</tr>
<tr>
<td>6.5 Linear Coupler</td>
<td>100</td>
</tr>
<tr>
<td>Section 7 Graphic Symbols for Electron Tubes and Related Devices</td>
<td>100</td>
</tr>
<tr>
<td>7.1 Electron Tube</td>
<td>100</td>
</tr>
<tr>
<td>7.2 General Notes</td>
<td>104</td>
</tr>
<tr>
<td>7.3 Typical Applications</td>
<td>105</td>
</tr>
<tr>
<td>7.4 Solion Ion-Diffusion Device</td>
<td>109</td>
</tr>
<tr>
<td>7.5 Coulomb Accumulator Electrochemical Step-Function Device</td>
<td>110</td>
</tr>
<tr>
<td>Clause</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>7.6 Conductivity Cell</td>
<td>110</td>
</tr>
<tr>
<td>7.7 Nuclear-Radiation Detector (gas-filled)</td>
<td>110</td>
</tr>
<tr>
<td>Ionization Chamber</td>
<td></td>
</tr>
<tr>
<td>Proportional Counter Tube</td>
<td></td>
</tr>
<tr>
<td>Geiger-Müller Counter Tube</td>
<td></td>
</tr>
<tr>
<td>Section 8 Graphic Symbols for Semiconductor Devices</td>
<td>111</td>
</tr>
<tr>
<td>8.1 Semiconductor Device</td>
<td>111</td>
</tr>
<tr>
<td>Transistor</td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td></td>
</tr>
<tr>
<td>8.2 Element Symbols</td>
<td>111</td>
</tr>
<tr>
<td>8.3 Special-Property Indicators</td>
<td>116</td>
</tr>
<tr>
<td>8.4 Rules for Drawing Style 1 Symbols</td>
<td>117</td>
</tr>
<tr>
<td>8.5 Typical Applications, Two-Terminal Devices</td>
<td>118</td>
</tr>
<tr>
<td>8.6 Typical Applications, Three- (or more) Terminal Devices</td>
<td>123</td>
</tr>
<tr>
<td>8.7 Photosensitive Cell</td>
<td>129</td>
</tr>
<tr>
<td>8.8 Semiconductor Thermocouple</td>
<td>130</td>
</tr>
<tr>
<td>8.9 Hall Element</td>
<td>130</td>
</tr>
<tr>
<td>Hall Generator</td>
<td></td>
</tr>
<tr>
<td>8.10 Photon-Coupled Isolator</td>
<td>130</td>
</tr>
<tr>
<td>8.11 Solid-State Thyratron (replacement type)</td>
<td>131</td>
</tr>
<tr>
<td>Section 9 Graphic Symbols for Circuit Protectors</td>
<td>132</td>
</tr>
<tr>
<td>9.1 Fuse (one-time thermal current-overload device)</td>
<td>132</td>
</tr>
<tr>
<td>9.2 Current Limiter (for power cable)</td>
<td>133</td>
</tr>
<tr>
<td>9.3 Lightning Arrester</td>
<td>134</td>
</tr>
<tr>
<td>Arrester (electric surge, etc)</td>
<td></td>
</tr>
<tr>
<td>Gap</td>
<td></td>
</tr>
<tr>
<td>9.4 Circuit Breaker</td>
<td>135</td>
</tr>
<tr>
<td>9.5 Protective Relay</td>
<td>136</td>
</tr>
<tr>
<td>Section 10 Graphic Symbols for Acoustic Devices</td>
<td>140</td>
</tr>
<tr>
<td>10.1 Audible-Signaling Device</td>
<td>140</td>
</tr>
<tr>
<td>10.2 Microphone</td>
<td>142</td>
</tr>
<tr>
<td>Telephone Transmitter</td>
<td></td>
</tr>
<tr>
<td>10.3 Handset</td>
<td>142</td>
</tr>
<tr>
<td>Operator’s Set</td>
<td></td>
</tr>
<tr>
<td>10.4 Telephone Receiver</td>
<td>143</td>
</tr>
<tr>
<td>Earphone</td>
<td></td>
</tr>
<tr>
<td>Hearing-Aid Receiver</td>
<td></td>
</tr>
<tr>
<td>Section 11 Graphic Symbols for Lamps and Visual-Signaling Devices</td>
<td>144</td>
</tr>
<tr>
<td>11.1 Lamp</td>
<td>144</td>
</tr>
<tr>
<td>11.2 Visual-Signaling Device</td>
<td>146</td>
</tr>
<tr>
<td>Section 12 Graphic Symbols for Readout Devices</td>
<td>148</td>
</tr>
<tr>
<td>12.1 Meter</td>
<td>148</td>
</tr>
<tr>
<td>CLAUSE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>12.2 Electromagnetically Operated Counter Message Register</td>
<td>149</td>
</tr>
<tr>
<td>Section 13 Graphic Symbols for Rotating Machinery</td>
<td>150</td>
</tr>
<tr>
<td>13.1 Rotating Machine</td>
<td>150</td>
</tr>
<tr>
<td>13.2 Field, Generator or Motor</td>
<td>150</td>
</tr>
<tr>
<td>13.3 Winding Connection Symbols</td>
<td>152</td>
</tr>
<tr>
<td>13.4 Applications: Direct-Current Machines</td>
<td>153</td>
</tr>
<tr>
<td>13.5 Applications: Alternating-Current Machines</td>
<td>158</td>
</tr>
<tr>
<td>13.6 Applications: Alternating-Current Machines with Direct-Current Field Excitation</td>
<td>161</td>
</tr>
<tr>
<td>13.7 Applications: Alternating- and Direct-Current Composite</td>
<td>162</td>
</tr>
<tr>
<td>13.8 Synchro</td>
<td>163</td>
</tr>
<tr>
<td>Section 14 Graphic Symbols for Mechanical Functions</td>
<td>164</td>
</tr>
<tr>
<td>14.1 Mechanical Connection</td>
<td>164</td>
</tr>
<tr>
<td>14.2 Mechanical Motion</td>
<td>165</td>
</tr>
<tr>
<td>14.3 Clutch</td>
<td>166</td>
</tr>
<tr>
<td>14.4 Manual Control</td>
<td>167</td>
</tr>
<tr>
<td>Section 15 Graphic Symbols Commonly Used in Connection with VHF, UHF, SHF Circuits</td>
<td>168</td>
</tr>
<tr>
<td>15.1 Discontinuity (Introducing intentional wave reflection)</td>
<td>168</td>
</tr>
<tr>
<td>15.2 Coupling</td>
<td>170</td>
</tr>
<tr>
<td>15.3 Directional Coupler</td>
<td>172</td>
</tr>
<tr>
<td>15.4 Hybrid</td>
<td>173</td>
</tr>
<tr>
<td>15.5 Mode Transducer</td>
<td>174</td>
</tr>
<tr>
<td>15.6 Mode Suppressor</td>
<td>175</td>
</tr>
<tr>
<td>15.7 Rotary Joint (radio-frequency rotary coupler)</td>
<td>175</td>
</tr>
<tr>
<td>15.8 Nonreciprocal Devices</td>
<td>176</td>
</tr>
<tr>
<td>15.9 Resonator</td>
<td>177</td>
</tr>
<tr>
<td>15.10 Resonator (cavity-type) Tube</td>
<td>178</td>
</tr>
<tr>
<td>15.11 Magnetron</td>
<td>178</td>
</tr>
<tr>
<td>15.12 Velocity-Modulation (velocity-variation) Tube</td>
<td>179</td>
</tr>
<tr>
<td>15.13 Transmit-Receive (TR) Tube</td>
<td>179</td>
</tr>
<tr>
<td>15.14 Traveling-Wave-Tube</td>
<td>180</td>
</tr>
<tr>
<td>15.15 Balun</td>
<td>182</td>
</tr>
<tr>
<td>15.16 Filter</td>
<td>182</td>
</tr>
<tr>
<td>15.17 Phase Shifter (matched)</td>
<td>182</td>
</tr>
<tr>
<td>15.18 Ferrite Bead Ring</td>
<td>183</td>
</tr>
<tr>
<td>15.19 Line Stretcher (with female connectors shown)</td>
<td>183</td>
</tr>
<tr>
<td>Clause</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Section 16 Graphic Symbols for Composite Assemblies</td>
<td>184</td>
</tr>
<tr>
<td>16.1 Circuit Assembly</td>
<td></td>
</tr>
<tr>
<td>Circuit Subassembly</td>
<td></td>
</tr>
<tr>
<td>Circuit Element</td>
<td>184</td>
</tr>
<tr>
<td>16.2 Amplifier</td>
<td>185</td>
</tr>
<tr>
<td>16.3 Rectifier</td>
<td>187</td>
</tr>
<tr>
<td>16.4 Repeater (includes Telephone Repeater)</td>
<td>187</td>
</tr>
<tr>
<td>16.5 Network</td>
<td></td>
</tr>
<tr>
<td>Artificial Line (other than delay line)</td>
<td>188</td>
</tr>
<tr>
<td>16.6 Phase Shifter</td>
<td></td>
</tr>
<tr>
<td>Phase-Changing Network</td>
<td>188</td>
</tr>
<tr>
<td>16.7 Chopper</td>
<td>189</td>
</tr>
<tr>
<td>16.8 Diode-Type Ring Demodulator</td>
<td></td>
</tr>
<tr>
<td>Diode-Type Ring Modulator</td>
<td>190</td>
</tr>
<tr>
<td>16.9 Gyro</td>
<td></td>
</tr>
<tr>
<td>Gyroscope</td>
<td>190</td>
</tr>
<tr>
<td>Gyrocompass</td>
<td>190</td>
</tr>
<tr>
<td>16.10 Position Indicator</td>
<td>190</td>
</tr>
<tr>
<td>16.11 Position Transmitter</td>
<td>191</td>
</tr>
<tr>
<td>16.12 Fire Extinguisher Actuator Heads</td>
<td>191</td>
</tr>
<tr>
<td>Section 17 Graphic Symbols for Analog and Digital Logic Functions</td>
<td>192</td>
</tr>
<tr>
<td>17.1 Operational Amplifier</td>
<td>192</td>
</tr>
<tr>
<td>17.2 Summing Amplifier</td>
<td>192</td>
</tr>
<tr>
<td>17.3 Integrator (Amplifier)</td>
<td>192</td>
</tr>
<tr>
<td>17.4 Electronic Multiplier</td>
<td>193</td>
</tr>
<tr>
<td>17.5 Electronic Divider</td>
<td>193</td>
</tr>
<tr>
<td>17.6 Electronic Function Generator</td>
<td>193</td>
</tr>
<tr>
<td>17.7 Generalized Integrator</td>
<td>193</td>
</tr>
<tr>
<td>17.8 Positional Servomechanism</td>
<td>193</td>
</tr>
<tr>
<td>17.9 Function Potentiometer</td>
<td>193</td>
</tr>
<tr>
<td>Section 18 Graphic Symbols for Digital Logic Functions</td>
<td>194</td>
</tr>
<tr>
<td>18.1 Digital Logic Functions</td>
<td>194</td>
</tr>
<tr>
<td>Section 19 Graphic Symbols for Special-Purpose Maintenance Diagrams</td>
<td>194</td>
</tr>
<tr>
<td>19.0 Introduction</td>
<td>194</td>
</tr>
<tr>
<td>19.1 Data-Flow Code Signals</td>
<td>195</td>
</tr>
<tr>
<td>19.2 Functional Circuits</td>
<td>197</td>
</tr>
<tr>
<td>Section 20 Graphic Symbols Commonly Used on System Diagrams, Maps, and Charts</td>
<td>198</td>
</tr>
<tr>
<td>20.1 Radio Station</td>
<td>198</td>
</tr>
<tr>
<td>20.2 Space Station</td>
<td>200</td>
</tr>
<tr>
<td>20.3 Exchange Equipment</td>
<td>201</td>
</tr>
<tr>
<td>20.4 Telegraph Repeater</td>
<td>201</td>
</tr>
<tr>
<td>20.5 Telegraph Equipment</td>
<td>203</td>
</tr>
<tr>
<td>20.6 Telephone Set</td>
<td>206</td>
</tr>
<tr>
<td>CLAUSE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Section 21 Graphic Symbols Commonly Used on System Diagrams, Maps, and Charts</td>
<td>208</td>
</tr>
<tr>
<td>21.1 Generating Station</td>
<td>208</td>
</tr>
<tr>
<td>21.2 Hydroelectric Generating Station</td>
<td>208</td>
</tr>
<tr>
<td>21.3 Thermoelectric Generating Station</td>
<td>209</td>
</tr>
<tr>
<td>21.4 Prime Mover (qualifying symbols)</td>
<td>210</td>
</tr>
<tr>
<td>21.5 Substation</td>
<td>210</td>
</tr>
<tr>
<td>Section 22 Class Designation Letters</td>
<td>211</td>
</tr>
<tr>
<td>22.1 Class Designation Letter</td>
<td>211</td>
</tr>
<tr>
<td>22.2 Special Considerations for Class Designation Letter Assignment</td>
<td>211</td>
</tr>
<tr>
<td>22.3 Item Names</td>
<td>212</td>
</tr>
<tr>
<td>22.4 Class Designation Letters: Alphabetical List</td>
<td>212</td>
</tr>
<tr>
<td>22.5 Item Names: Alphabetical List</td>
<td>220</td>
</tr>
<tr>
<td>22.6 Item Designations, IEC 113-2</td>
<td>220</td>
</tr>
<tr>
<td>Section 23 Referenced Standards and Canadian Standard Z99 Modifications</td>
<td>220</td>
</tr>
<tr>
<td>23.1 Referenced Standards</td>
<td>220</td>
</tr>
<tr>
<td>100 Canadian Standard Z99 Modifications to American National Standard Y32.2-1975 (IEEE Std 315-1975)</td>
<td>221</td>
</tr>
<tr>
<td>Annex A (Informative) Cross Reference List of Changed Item Numbers</td>
<td>222</td>
</tr>
<tr>
<td>Annex C (Informative) Revised or Deleted Symbols</td>
<td>225</td>
</tr>
<tr>
<td>Annex D (Informative) Revised or Deleted Symbols</td>
<td>226</td>
</tr>
<tr>
<td>Annex E (Informative) Revised or Deleted Symbols</td>
<td>236</td>
</tr>
<tr>
<td>Annex F (Informative) Cross-Reference List of Class Designation Letters</td>
<td>241</td>
</tr>
</tbody>
</table>
Quick Reference to Symbols

1. Qualifying Symbols
1.1 Adjustability
 Variability

1.2 Special-Property Indicators
 x

1.3 Radiation Indicators

1.4 Physical State Recognition Symbols
 •

1.5 Test-Point Recognition Symbol
 •

1.6 Polarity Markings
 +

1.7 Direction of Flow of Power,
 Signal, or Information

1.8 Kind of Current

1.9 Connection Symbols
 L + — △ ∆ ø

1.10 Envelope
 Enclosure

1.11 Shield
 Shielding

1.12 Special Connector or Cable
 Indicator
 *

1.13 Electret

2. Fundamental Items
2.1 Resistor
 —

2.2 Capacitor
 —

2.3 Antenna

2.4 Attenuator
 —

2.5 Battery
 —

2.6 Delay Function
 Delay Line
 Slow-Wave Structure

2.7 Oscillator
 Generalized Alternating-Current
 Source

2.8 Permanent Magnet

2.9 Pickup Head

2.10 Piezoelectric Crystal Unit

2.11 Primary Detector
 Measuring Transducer

2.12 Squib, Electrical

2.13 Thermocouple

2.14 Thermal Element
 Thermomechanical
 Transducer

2.15 Spark gap
 Igniter gap

2.16 Continuous Loop Fire Detector
 (temperature sensor)

2.17 Ignitor Plug

3. Transmission Path
3.1 Transmission Path
 Conductor
 Cable
 Wiring

3.2 Distribution lines
 Transmission lines
 F S T V

3.3 Alternative or Conditioned Wiring

3.4 Associated or Future

3.5 Intentional Isolation of Direct-Curr
 ent Path in Coaxial or Waveguide App
 lications
21.2 Hydroelectric generating station

21.3 Thermoelectric generating station

21.4 Prime mover

21.5 Substation

22. Class Designation Letters

| A | B | C | D | DS | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| | | | | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | X | Y | Z | X | Y | Z |
IEEE Standard
American National Standard
Canadian Standard

Graphic Symbols for Electrical and Electronics Diagrams
(Including Reference Designation Letters)

Introduction

A1. Scope

A1.1 Purpose

This standard provides a list of graphic symbols and class designation letters for use on electrical and electronics diagrams.

A1.2 Definition and Use

Graphic symbols for electrical engineering are a shorthand used to show graphically the functioning or interconnections of a circuit. A graphic symbol represents the function of a part in the circuit. Graphic symbols are used on single-line (one-line) diagrams, on schematic or elementary diagrams, or, as applicable, on connection or wiring diagrams. Graphic symbols are correlated with parts lists, descriptions, or instructions by means of designations.

The class designation letter portion of a reference designation is for the purpose of identifying an item by category or class, using a class letter as defined in Section 22 of this standard. The assignment of the reference designation should

1 For example, when a lamp is employed as a nonlinear resistor, the nonlinear resistor symbol is used. For reference designation information, see Section 22 of this standard.
be in accordance with American National Standard Reference Designations for Electrical and Electronics Parts and Equipment, Y32.16-1975 (IEEE Std 200-1975).

A2. Arrangement

A2.1 Indexing, Grouping, and Standard Item Names

All terms appear in the Index. In the index, “Item” refers to a numbered paragraph in the list of symbols. Items are arranged sectionally in family groups by general type. Terms in preferred usage and current alternatives are listed. indicates item names from the Federal Item Identification Guide, Cataloging Handbook H6-1 (published by the Defense Supply Agency, Defense Logistics Services Center, Battle Creek, Michigan).

A2.2 Significance of Columnar Placement of Symbols

In the list, graphic symbols appear under their respective family names. Symbols for single-line (one-line) diagrams appear at the left in each column; symbols for complete diagrams appear at the right. Symbols suitable for all types of diagrams appear in the center.

Symbols appearing only at the right may be used on one-line diagrams provided connections are restricted to main signal paths. Symbols appearing at the left may be used for other diagrams provided all connections are shown and adequate notations are included, if needed.

A2.3 IEC Identification

Symbols and buildups using symbols that have been recommended by the International Electrotechnical Commission are indicated by IEC.

A2.4 Alternative Symbols

When alternative symbols are shown, the relative position of the symbols does not imply a preference; however, alternative symbols identified as IEC are recommended.

A3. Application

A3.1 Generation of Symbols Not Shown (Buildups)

An application is an example of a combination of symbols in the list. No attempt has been made to list all possible applications (buildups); typical applications usually have been shown using only one of the possible alternatives. Additional applications may be devised using basic symbols in the list to complete the buildup, provided they are a reasonable and intelligible use of the symbols. If a specific symbol appears in this standard for an item, however, it shall be used in lieu of buildup symbols of the individual elements unless a clarification of the internal operation of the item is necessary.

A3.2 Qualifying Symbols (Section 1)

Qualifying symbols may be added to symbols if the special characteristic is important to the function of the device and aids in the understanding of the over-all function performed. When the special characteristic represented by the qualifying symbol is not important to the over-all function performed, the qualifying symbol may be omitted from the buildup symbols which appear in this standard, provided the absence of the qualifying symbol will not change the identity of the item. For example, see symbol 2.1.12.1.1.
A3.3 Application Data Reference

For application of these symbols on electrical diagrams, see American National Standard Drafting Practices; Electrical and Electronics Diagrams, Y14.15-1966 (R1973).

A3.4 Graphic Symbols and Class Designation Letters Used in Existing Technical Documents

Unless otherwise specified, when revising an existing document use the most recently approved graphic symbols and reference designation class letters for any new symbols to be added to that document. Superseded symbols and reference designations already appearing in the document and in accordance with former additions of this standard may remain.

A3.5 Similar or Identical Graphic Symbols, Letter Combinations, and Notations

Graphic symbols in this document may be similar or identical to symbols with different meanings used (1) in diverse fields within this standard or (2) in standards adopted by other technologies. Only one meaning shall apply to a specific symbol used on a diagram. If symbols having multiple meanings must be used on a diagram the possibility of conflicts and misinterpretations can be minimized by the liberal use of caution notes, asterisks, and flagging techniques; a tabulation listing the intended meanings should be provided. This requirement is especially critical if the graphic symbols used are from different disciplines and therefore represent devices, conductors, or lines of flow that if misinterpreted may result in damage to the equipment or be hazardous to the life of servicing or operating personnel.

A4. Drafting Practices Applicable to Graphic Symbols

A4.1 Definitions

A4.1.1 Single-Line (One-Line) Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

A4.1.2 Schematic or Elementary Diagram: A diagram which shows, by means of graphic symbols, the electrical connections and functions of a specific circuit arrangement. The schematic diagram facilitates tracing the circuit and its functions without regard to the actual physical size, shape, or location of the component device or parts.

A4.1.3 Symbol: A symbol shall be considered as the aggregate of all its parts.

A4.2 Orientation

Except where noted, the orientation of a symbol on a drawing, including a mirror-image presentation, does not alter the meaning of the symbol. Letters and numbers that constitute a part of a symbol shall not be presented in mirror-image form.

A4.3 Line Width

The width of a line does not affect the meaning of the symbol. In specific cases, a wider (heavier) line may be used for emphasis.

A4.4 Enlargement or Reduction

A symbol may be drawn to any proportional size that suits a particular drawing, depending on reduction or enlargement anticipated. If essential for purposes of contrast, some symbols may be drawn relatively smaller than the other symbols on a diagram. It is recommended that only two sizes be used on any one diagram.
A4.5 Relative Symbol Size

The symbols shown in this edition of the standard are in their correct relative size. This relationship shall be maintained as nearly as possible on any particular drawing, regardless of the size of the symbol used.

A4.6 Arrowheads

The arrowhead of a symbol may be closed → or open ← unless otherwise noted in this standard.

A4.7 Terminal Symbols

The standard symbol for a TERMINAL (○) may be added to each point of attachment of connecting lines to any one of the graphic symbols. Such added terminal symbols should not be considered as part of the individual graphic symbol, unless the terminal symbol is included in the symbol shown in this standard.

A4.8 Correlation of Symbol Parts

For simplification of a diagram, parts of a symbol for a device, such as a relay or contactor, may be separated. If this is done, provide suitable designations to show proper correlation of the parts.

A4.9 Angle of Connecting Lines

In general, the angle at which a connecting line is brought to a graphic symbol has no particular significance unless otherwise noted or shown in this standard.

A4.10 Future or Associated Paths and Equipment

Associated or future paths and equipment shall be shown by lines composed of short dashes: - - -. For example:

A4.11 Envelope or Enclosure

A4.11.1

The envelope or enclosure symbol shall be used:

a) If the enclosure has an essential operating function, as in an electron tube, solion, switch in an evacuated envelope, etc.

2The symbols shown in this edition of the standard are larger in size than those shown in the 1967 edition. All of the symbols have been prepared so that the connection points are located at intersections of a modular (incremental) grid.
b) If the device envelope is electrically connected to one of the device elements and this is an essential (not merely incidental) functional property of the device.

A4.11.2

The envelope or enclosure symbol should be used:

a) To emphasize that certain symbols having nonconnected lines are a single assembly (for example, see symbol 8.6.10.5).

b) If it is desired to distinguish a class of devices, such as transistors or semiconductor controlled rectifiers, from other devices (but this should be consistent for all devices of the same class on any one diagram).

c) To associate the parts of symbols having adjacent characteristic qualifiers (for example: t^2, τ, ω, \times).

A4.11.3

The envelope or enclosure symbol may be omitted from a symbol referencing this paragraph, where confusion would not result (but this should be consistently applied to all symbols of the same class in any one diagram).

A4.12 Addition of Supplementary Data

Details of type, impedance, rating, etc, may be added adjacent to any symbol, when required. If used, abbreviations should be from American National Standard Abbreviations for Use on Drawings and in text, Y1.1-1972. For military applications, see Section 23. Letter combinations used as parts of graphic symbols are not abbreviations or designations.

Recommendations for corrections and additions to or deletions from this standard should be sent to the Secretary, IEEE Standards Board, Institute of Electrical and Electronics Engineers, 345 East 47 Street, New York, N.Y. 10017, and should include the following:

1) Requestor (name, address, affiliation)
2) Reason for (and urgency of) request
3) Item name—list all known names for the item, including tradenames (include Federal Item Identification Guide, Handbook H6-1, listing if applicable)
4) Item definition (list source documents)
5) Symbols currently in use or known to be used (single-line/schematic/both)
6) Proposed symbol
7) Reference designation class designation letter
8) Areas of application (military/industry/commercial)
9) Fields of application (computer/power/radio, etc)
10) Circuit application (amplifier/rectifier/flip-flop, etc)
11) Hardware characteristics (microcircuit/conventional, etc)
12) Present and anticipated frequency of use (per circuit/per equipment/in general)
13) Copy of drawing showing use of symbol

1. Qualifying Symbols

1.1 Adjustability

Variability

These recognition symbols shall be drawn at about 45 degrees across the body of symbol to which they are applied. For typical applications, see symbols 2.1.5, 2.2.4, 2.4.4, and 16.2.5.
Use only if essential to indicate special property.

NOTES:

1 — See introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

1.1.1 Adjustability (extrinsic adjustability)

1.1.1.1 General

1.1.1.2 Preset, general

1.1.1.3 Linear (shown applied to 1.1.1.1)

1.1.1.4 Nonlinear (shown applied to 1.1.1.1)

1.1.2 Inherent variability (intrinsic variability)

1.1.2.1 Linear

1.1.2.2 Nonlinear
1.1.3 Special features (shown applied to the general adjustability symbol)

1.1.3.1 Continuous

1.1.3.2 In steps

1.1.4 Special features (shown applied to the general preset symbol)

1.1.4.1 Continuous

1.1.4.2 In steps

1.2 Special-Property Indicators

A special function or property essential to circuit operation shall be indicated by a supplementary symbol placed within the envelope or adjacent to the symbol.

NOTE — 1.2A: Basic symbols (such as resistor, capacitor, inductor, piezoelectric crystal, etc) may be used as qualifying symbols to other symbols for purposes of indicating special properties of the device.

1.2.1 Temperature dependence

1.2.2 Magnetic-field dependence

1.2.3 Storage (Greek letter tau)
1.2.4 Saturable properties (general)

May be drawn between or across two or more windings (see symbol 6.3.1) that are magnetically coupled by a saturable core.

1.2.5 Delay

1.3 Radiation Indicators (electromagnetic and particulate)

Use only if essential to indicate special property.

NOTES:

1.3A — Arrows pointing toward a symbol denote that the device symbolized will respond to incident radiation of the indicated type.

1.3B — Arrows pointing away from a symbol denote the emission of the indicated type of radiation by the device symbolized.

1.3C — Arrows located within a symbol denote a self-contained radiation source.

1.3.1 Radiation, nonionizing, electromagnetic (e.g., radio waves or visible light)

1.3.2 Radiation, ionizing

NOTE — 1.3.2A: If it is necessary to show the specific type of ionizing radiation, the symbol may be augmented by the addition of symbols or letters such as the following IEC:

- Alpha particle \(\alpha \)
- Beta particle \(\beta \)
- Gamma ray \(\gamma \)
- Deuteron \(d \)
- Proton \(p \)
- Neutron \(n \)
- Pion \(\pi \)
- K-meson \(\tau \)
- Muon \(K \)
- X-ray \(X \)
1.4 Physical State Recognition Symbols

NOTE — 1.4A: The rectangle is not part of the symbol.

1.4.1 Gas (air); pneumatic

1.4.2 Liquid

1.4.3 Solid

1.4.4 Showing two or more states

Use only if essential to indicate special condition.

NOTES:

1.4.4A — A combination of physical state recognition symbols indicates a material in more than one state. The relative sizes and locations of the recognition symbols indicate the normal or predominant state of the device.

1.4.4B — Do not rotate or show in mirror-image form.

1.4.4.1 Application: Gaseous liquid

1.4.4.2 Application: Steam (or moist gas)
1.4.5 Electret material

1.5 Test-Point Recognition Symbol
Used if necessary to emphasize test points.

NOTE — 1.5A: If other types of symbols (such as, stars, numbered circles, etc.) are substituted for the test-point recognition symbol, they shall be explained on the diagram or referenced document.

1.5.1 General

1.5.2 Application: test-point recognition for a test jack

1.5.3 Application: test-point recognition for the plate of a triode

1.5.4 Application: test-point recognition for a circuit terminal

1.6 Polarity Markings

1.6.1 Positive
1.6.2 Negative

1.6.3 Instantaneous polarity markings

These polarity marks shall be used only when it is necessary to show the relative polarity of the windings.

NOTES:

1.6.3A — Instantaneous polarity of voltage across windings corresponds at points indicated by polarity marks. Instantaneous direction of current into (or out of) one polarity mark corresponds to current out of (or into) the other polarity mark. If instantaneous currents enter the windings at the marked points, they will produce aiding fluxes.

1.6.3B — The polarity marks shall be placed near one end of each coil or winding symbol. The exact location is immaterial as long as they are unambiguously placed, especially where other windings are drawn nearby. There shall be only one polarity mark per winding, even if the winding is tapped. The following is NOT permitted:

1.6.3.1 Application: instantaneous polarity markings with current transformer shown

1.6.3.2 Application: instantaneous polarity markings with potential transformer shown
1.7 Direction of Flow of Power, Signal, or Information

Avoid conflict with symbols 9.5, 9.5.2, and 9.5.4 if used on the same diagram

1.7.1 One-way

NOTE — 1.7.1A: The lower symbol is used if it is necessary to conserve space. The arrowhead in the lower symbol shall be filled.

1.7.2 Either way (but not simultaneously)

1.7.3 Both ways, simultaneously

Avoid conflict with symbol 9.2 if used on the same diagram

1.7.4 Application: one-way, general

NOTE — 1.7.4A: The “n” is not part of the symbol. A significant waveform, frequency, or frequency range shall be substituted for “n.”
1.7.5 Application: one-way circuit element, general

NOTE — 1.7.5A: In all cases, indicate the type of apparatus by appropriate words or letters in the rectangle.

See Note 1.7.5A

1.8 Kind of Current (General)

NOTE — 1.8A: Use only if necessary for clarity.

1.8.1 Direct current

To be used in cases when other symbol is not suitable

1.8.2 Alternating current

1.8.3 Alternating current, frequency ranges

Use only if necessary to distinguish among different frequency bands.

NOTES:

1.8.3A — The “n” is not part of the symbol. The frequency range shall be substituted for “n.”

1.8.3B — Only one name for the unit of frequency (hertz or cycle per second) should be used on any one diagram.

1.8.3.1 Power frequencies
1.8.3.2 Audio frequencies

\[\text{IEEE Symbol} \]

See Notes 1.8.3A and B

1.8.3.3 Superaudio, carrier, and radio frequencies

\[\text{IEEE Symbol} \]

See Notes 1.8.3A and B

1.8.4 Direct or alternating current (universal)

\[\text{IEEE Symbol} \]

1.8.5 Undulating or rectified current

\[\text{IEEE Symbol} \]

1.9 Connection Symbol

For use adjacent to the symbols; e.g., see symbols 6.4.15.1 and 13.3.

1.9.1 2-phase 3-wire, ungrounded

\[\text{IEEE Symbol} \]

1.9.1.1 2-phase 3-wire, grounded

\[\text{IEEE Symbol} \]

1.9.2 2-phase 4-wire

\[\text{IEEE Symbol} \]

OR

\[\text{IEEE Symbol} \]
1.9.2.1 2-phase 5-wire, grounded

1.9.3 3-phase 3-wire, delta or mesh

1.9.3.1 3-phase 3-wire, delta, grounded

1.9.4 3-phase 4-wire, delta, ungrounded

1.9.4.1 3-phase 4-wire, delta, grounded

1.9.5 3-phase, open-delta

1.9.5.1 3-phase, open-delta, grounded at common point

1.9.5.2 3-phase, open-delta, grounded at middle point of one winding
1.9.6 3-phase, broken-delta

\[\triangle \]

1.9.7 3-phase, wye or star, ungrounded

\[\text{IEC} \quad \text{Δ} \]

1.9.7.1 3-phase, wye, grounded neutral

The direction of the stroke representing the neutral can be chosen arbitrarily.

\[\text{IEC} \quad \text{Δ} \]

1.9.8 3-phase 4-wire, ungrounded

\[\text{IEC} \quad \text{Δ} \]

1.9.9 3-phase, zigzag, ungrounded

\[\text{IEC} \quad \text{Δ} \]

1.9.9.1 3-phase, zigzag, grounded

\[\text{IEC} \quad \text{Δ} \]

1.9.10 3-phase, Scott or T

\[\text{IEC} \quad \text{Δ} \]

1.9.11 6-phase, double-delta

\[\text{IEC} \quad \text{Δ} \]
1.9.12 6-phase, hexagonal (or chordal)

1.9.13 6-phase, star (or diametrical)

1.9.13.1 6-phase, star, with grounded neutral

1.9.14 6-phase, double zigzag with neutral brought out and grounded

1.10 Envelope

Enclosure

The general envelope symbol identifies the envelope or enclosure regardless of evacuation or pressure. When used with electron-tube component symbols, the general envelope symbol indicates a vacuum enclosure unless otherwise specified. A gas-filled device may be indicated by a dot within the envelope symbol.

See paragraph A4.11.1 of the Introduction

NOTE — 1.10A: The shape of the envelope symbol may be modified to approximate the distinctive shape of a device if the shape will aid in recognition of the device, or in depicting the device function, e.g., cathode-ray tube, iconoscope, image orthicon, vidicon, X-ray tube, etc. For typical applications, see symbols 7.3.6.1 and 7.3.6.2.2.

1.10.1 General
1.10.2 Split envelope
If necessary, envelope may be split.

1.10.3 Application: gas-filled envelope
The gas-recognition symbol (dot) may be located as convenient. See symbol 1.4.1

1.10.4 Application: liquid-filled envelope
The liquid-recognition symbol may be located as convenient. See symbol 1.4.2

1.11 Shield
Shielding
Normally used for electric or magnetic shielding.

NOTE — 1.11.1A: If essential to show type of shielding add E for electric and M for magnetic shielding.
When used for other shielding, a note should so indicate. For typical applications see
CAPACITOR (symbol 2.2.3)
TRANSMISSION PATH (symbols 3.1.8.1, 3.1.8.2, and 3.1.8.3)
TRANSFORMER (symbols 6.4.2.2 and 6.4.2.3)

1.11.1 General
These are long dashes.
1.11.2 Optical

1.12 Special Connector or Cable Indicator

NOTES:
1.12A — If it is essential to denote on a system-type interconnection wiring diagram that the connector or cable is furnished with the equipment by the equipment manufacturer the following symbol shall be used.
1.12B — It is recommended that the symbol be drawn using a 0.20 inch diameter circle.

1.13 Electret (shown with electrodes)

NOTE — 1.13A: The longer line represents the positive pole.

Cross References

See also Section 19.

NOTES:
1 — See Introduction for general information (note especially A3.1).
2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.
3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

2. Graphic Symbols for Fundamental Items (not included in other sections)

2.1 Resistor

For resistors with nonlinear characteristics, see also BALLAST LAMP (symbol 11.1.5)

NOTE — 2.1A: The asterisk is not part of the symbol. Always add identification within or adjacent to the rectangle.
2.1.1 General

2.1.2 Tapped resistor

2.1.3 Application: with adjustable contact. See also symbol 14.2.5

2.1.3.1 Application: with adjustable contact and OFF (disconnect) position

2.1.4 Application: adjustable or continuously adjustable (variable) resistor ; rheostat
2.1.5 Nonlinear resistor (intrinsic)

![Nonlinear Resistor Diagram]

*See Note 2.1A

2.1.6 Symmetrical varistor (intrinsic); voltage-sensitive resistor (silicon carbide, etc)

![Symmetrical Varistor Diagram]

*See Note 2.1A

2.1.7 Magnetoresistor (intrinsic) (linear type shown)

![Magnetoresistor Diagram]

2.1.8 Heating resistor

![Heating Resistor Diagram]

*See Note 2.1A

2.1.9 Instrument or relay shunt

Connect instrument or relay to terminals in the rectangle

![Instrument Shunt Diagram]
2.1.10 Shunt resistor

![Shunt Resistor Symbol]

*See Note 2.1A

2.1.11 Resistive termination

Commonly used in coaxial and waveguide diagrams.

![Resistive Termination Symbol]

2.1.11.1 Application: series resistor and path open

![Series Resistor Open Path Symbol]

2.1.11.2 Application: series resistor and path short-circuited

![Series Resistor Short-Circuited Symbol]

2.1.11.3 Bolometer element (— — lines indicate direct-current connections and are not part of the symbol)

![Bolometer Element Symbol]

2.1.12 Thermistor; thermal resistor \[\] ; temperature-sensing element

NOTE — 2.1.12A: Use only if essential to indicate special characteristic.

2.1.12.1 General

![Thermistor Symbol]
2.1.12.1.1 Linear

2.1.12.1.2 Nonlinear

2.1.12.1.3 Positive temperature coefficient

2.1.12.1.4 Negative temperature coefficient

2.1.12.2 With independent integral heater

2.1.12.2.1 Nonlinear

2.1.13 Symmetrical photoconductive transducer (resistive)
2.2 Capacitor

NOTES:

2.2A — Capacitors may be represented by either of two methods. For convenience in referring to the capacitor symbols in this section, they are classified as follows:

Style 1 symbols are drawn with two parallel lines (IEC preferred).

Style 2 symbols are drawn with one straight and one curved line.

2.2B — Where there is only one style shown and reference is made to the general symbol 2.2.1, this indicates that either style may be used, as modified for that particular application.

2.2C — The distance between the plates shall be between one-fifth and one-third of the length of a plate. IEC

2.2.1 General

![General Symbol]

2.2.1.1 With identified electrode

NOTES:

2.2.1.1A — For style 1, if it is necessary to identify the capacitor electrodes, the modified element shall represent the outside or lower potential electrode. IEC

2.2.1.1B — For style 2, if it is necessary to identify the capacitor electrodes, the curved element shall represent:

a) The outside electrode in fixed paper-dielectric and ceramic-dielectric capacitors;

b) The moving element in adjustable and variable capacitors;

c) The low-potential element in feed-through capacitors. IEC

See General Symbols 2.2.1 and Note 2.2B

![Identified Electrode]

See Note 2.2.1.1B

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on June 19,2015 at 16:40:20 UTC from IEEE Xplore. Restrictions apply.
2.2.2 Polarized capacitor

See General Symbols 2.2.1 and Note 2.2B

![Diagram of polarized capacitor]

2.2.3 Shielded capacitor

See General Symbols 2.2.1 and Note 2.2B

![Diagram of shielded capacitor]

2.2.4 Adjustable or variable capacitors

NOTE — 2.2.4A: If it is necessary to identify trimmer capacitors, the letter T should appear adjacent to the symbol.

See General Symbols 2.2.1 and Note 2.2B

2.2.4.1 With moving element indicated

![Diagram of variable capacitor with moving element]

NOTE — 2.2.4.1A: If it is desired to indicate the moving element, the common intersection of the moving element with the symbol for variability and the connecting line is marked with a dot.

See General Symbols 2.2.1 and Note 2.2B

2.2.5 Application: adjustable or variable capacitors with mechanical linkage of units

See General Symbols 2.2.1 and Note 2.2B
2.2.6 Continuously adjustable or variable differential capacitor

The capacitance of one part increases as the capacitance of the other part decreases. See General Symbols 2.2.1 and Note 2.2B

[Diagram of continuously adjustable or variable differential capacitor]

2.2.7 Phase-shifter capacitor

See General Symbols 2.2.1 and Note 2.2B

[Diagram of phase-shifter capacitor]

2.2.8 Split-stator capacitor

The capacitances of both parts increase or decrease simultaneously. See General Symbols 2.2.1 and Note 2.2B

[Diagram of split-stator capacitor]

2.2.9 Feed-through capacitor

Commonly used for bypassing high-frequency currents to chassis.

NOTE — 2.2.9A: For purposes of clarity, terminals may be shown on the feed-through element.

See General Symbols 2.2.1 and Note 2.2B

[Diagram of feed-through capacitor]

2.2.9.1 Application: feed-through capacitor between two inductors with third lead connected to chassis

See General Symbols 2.2.1 and Note 2.2B

[Diagram of feed-through capacitor between two inductors]
2.2.10 Capacitive termination

Commonly used on coaxial and wave-guide diagrams.

2.2.10.1 Application: series capacitor and path open

See General Symbols 2.2.1 and Note 2.2B

-\-\-\-

2.2.10.2 Application: series capacitor and path short-circuited

See General Symbols 2.2.1 and Note 2.2B

-\-\-\-

2.2.11 Shunt capacitor

(Style 2)

2.2.12 Coupling capacitor (for power-line carrier)

NOTE — 2.2.12A: The asterisk is not part of the symbol. If specific identifications is desired, the asterisk is to be replaced by one of the following letter combinations:

- COM Carrier communication
- LC Carrier load control
- REL Carrier relaying
- SUP Carrier supervisory
- TLM Carrier telemetering
- TT Carrier transferred trip

*See Note 2.2.12

2.2.13 Capacitor bushing for circuit breaker or transformer

(Style 2)
2.2.14 Application: capacitor-bushing potential device

2.2.15 Application: carrier-coupling capacitor potential device (used to provide a power-system-frequency voltage and also coupling for carrier signals)

NOTE — 2.2.15A: The dagger is not part of the symbol. If specific indication is desired, the dagger is to be replaced by a letter combination from item 12.1, Note 12.1A.

2.2.16 Application: coupling capacitor potential device (used only to provide a power-system-frequency voltage)

2.3 Antenna

2.3.1 General

Types of functions may be indicated by words or abbreviations adjacent to the symbol.

Qualifying symbols may be added to the antenna symbol to indicate polarization, direction of radiation, or special application.

If required, the general shape of the main lobes of the antenna polar diagrams may be shown adjacent to the symbol. Notes may be added to show the direction and rate of lobe movement.

The stem of the symbol may represent any type of balanced or unbalanced feeder, including a single conductor.
2.3.1.1 Application: turnstile antenna

2.3.2 Dipole

2.3.3 Loop

2.3.4 Antenna counterpoise

2.3.5 Qualifying symbols to indicate polarization

Use only if essential to indicate special property of an antenna.

2.3.5.1 Plane polarization
2.3.5.2 Application: antenna with horizontal polarization

2.3.5.3 Application: antenna with vertical polarization

2.3.5.4 Circular polarization

2.3.5.5 Application: antenna with circular polarization

2.3.6 Qualifying symbols to indicate direction of radiation

Use only if essential to indicate special property of an antenna.

NOTES:
2.3.6A — Any applicable adjustability symbol (item 1.1) may be used to supplement a qualifying symbol.
2.3.6B — Antenna rotation can be accomplished by electromechanical or electronic means.

2.3.6.1 Fixed in azimuth

2.3.6.2 Adjustable in azimuth
2.3.6.3 Fixed in elevation

2.3.6.4 Adjustable in elevation

2.3.6.5 Fixed in azimuth and elevation

2.3.6.6 Direction finder, radio goniometer or beacon

2.3.6.7 Rotation

See symbols 14.2.3, 14.2.4 and 14.2.4.1; see Note 2.3.6B

2.3.7 Application: antenna with qualifying symbols and notes

2.3.7.1 Antenna with direction of radiation fixed in azimuth

2.3.7.2 Antenna with direction of radiation adjustable in azimuth

2.3.7.3 Antenna with direction of radiation fixed in azimuth, horizontal polarization
2.3.7.4 Antenna with adjustable directivity in elevation

![Antenna with adjustable directivity in elevation](image)

2.3.7.5 Direction finding, radio goniometer, or radio beacon antenna

![Direction finding, radio goniometer, or radio beacon antenna](image)

2.3.7.6 Antenna with direction of radiation fixed in azimuth, vertically polarized, with horizontal polar diagram

![Antenna with direction of radiation fixed in azimuth, vertically polarized, with horizontal polar diagram](image)

2.3.7.7 Radar antenna, rotating 4 times per minute in azimuth and reciprocating in elevation, 0° to 57° to 0° in one second

![Radar antenna, rotating 4 times per minute in azimuth and reciprocating in elevation, 0° to 57° to 0° in one second](image)

See Note 2.3.6B

2.4 Attenuator

2.4.1 Fixed attenuator \(\mathcal{F} \); pad (general)

![Fixed attenuator \(\mathcal{F} \); pad (general)](image)

2.4.2 Balanced, general

![Balanced, general](image)
2.4.3 Unbalanced, general

2.4.4 Variable attenuator (general)

2.4.5 Balanced, general

2.4.6 Unbalanced, general

2.5 Battery

The long line is always positive, but polarity may be indicated in addition. Example:

2.5.1 Generalized direct-current source

2.5.2 One cell

2.5.3 Multicell
2.5.4 Multicell battery with 3 taps

2.5.5 Multicell battery with adjustable tap

2.6 Delay Function

Delay Line
Slow-Wave Structure

2.6.1 Delay element, general

NOTES:

2.6.1A — Length of delay may be indicated. Asterisk is not part of symbol.

2.6.1B — The two vertical lines indicate input side.

2.6.2 Tapped delay element

*See Note 2.6.1A
2.6.3 Variable delay element

![Variable delay element diagram]

*See Note 2.6.1A and general symbols 2.6.1

2.6.4 Slow-wave structure

![Slow-wave structure diagram]

*See Note 2.6.1A

2.7 Oscillator
Generalized Alternating-Current Source

![Oscillator symbol]

2.8 Permanent Magnet

![Permanent magnet symbol]

2.9 Pickup
Head

2.9.1 General

![Pickup head symbol]

2.9.2 Writing; recording; head, sound-recorder

![Pickup head symbol]

3 The broken line - — - indicates where line connection to a symbol is made and is not part of the symbol.
2.9.3 Reading; playback; head, sound-reproducer

\[
\begin{array}{c}
\text{IEC} \\
\end{array}
\]

2.9.4 Erasing; magnetic eraser

\[
\begin{array}{c}
\text{IEC} \\
\end{array}
\]

2.9.5 Application: writing, reading, and erasing

\[
\begin{array}{c}
\text{IEC} \\
\end{array}
\]

2.9.6 Stereo

\[
\begin{array}{c}
\end{array}
\]

2.10 Piezoelectric Crystal Unit (including Crystal Unit, Quartz)

\[
\begin{array}{c}
\text{IEC} \\
\end{array}
\]

2.11 Transducer

Accelerometer

Motional Pickup Transducer

Use only if a more specific symbol is not applicable, e.g., tachometer generator, microphone, motor, loudspeaker, etc.

For other measuring transducers, see Hall Generator (8.9) and Thermal Converter (12.1)

2.11.1 General, electrical output

\[
\begin{array}{c}
\end{array}
\]

\[\text{The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.} \]
2.12 Squib, Electric

2.12.1 Explosive

2.12.2 Igniter

2.12.3 Sensing link; fusible link, ambient-temperature operated

Avoid conflict with symbol 3.6.4 if used on the same diagram

2.13 Thermocouple (dissimilar-metals device)

2.13.1 Temperature-measuring

2.13.2 Current-measuring

NOTE — 2.13.2A: Explanatory words and arrows are not part of the symbols shown.

2.13.2.1 With integral heater internally connected

2.13.2.2 With integral insulated heater

See paragraph A4.11 of the introduction
2.13.3 Thermopile

```
\[ W \]
```

2.14 Thermal Element
Thermomechanical Transducer

Actuating device, self-heating or with external heater. (Not operated primarily by ambient temperature.) See item 9.1 for fuses, one-time devices. See item 4.30.5 for thermally operated relay.

```
\[ \text{OR} \]
```

2.15 Spark Gap
Igniter Gap

USE SYMBOL 9.3.1

2.16 Continuous Loop Fire Detector (temperature sensor)

```
\[ \text{IEC} \]
```

2.17 Ignitor Plug

```
\[ \text{IEC} \]
```

Cross References

Semiconductor Thermocouple (item 8.8)

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.
3. Graphic Symbols for Transmission Path

3.1 Transmission Path
Conductor
Cable
Wiring

3.1.1 Guided path, general

A single line represents the entire group of conductors or the transmission path needed to guide the power or signal. For coaxial and waveguide work, the recognition symbol is used at the beginning and end of each kind of transmission path and at intermediate points as needed for clarity. In waveguide work, mode may be indicated. IEC

When required, the length between two significant points may be indicated, e.g., \(\lambda/4 \). IEC

When required, details of structure (e.g., elbow), type, impedance, ratings, etc., may be added adjacent to or within any symbol or in a note. IEC

See also item 3.2.1

3.1.1.1 Bus bar (with connections shown)

Use only if essential to distinguish bus from other circuit paths.

3.1.2 Conductive path or conductor; wire

3.1.2.1 Two conductors or conductive paths

3.1.2.2 Three conductors or conductive paths
3.1.2.3 “n” conductors or conductive paths

NOTE — 3.1.2.3A: The “n” is not part of the symbol. A number representing the actual number of paths shall be substituted for “n”.

See Note 3.1.2.3A

3.1.3 Air or space path

See also symbol 3.2.6

3.1.4 Dielectric path other than air

Commonly used for coaxial and waveguide transmission.

3.1.5 Crossing of paths or conductors not connected

The crossing is not necessarily at a 90-degree angle.

3.1.6 Junction of paths or conductors

3.1.6.1 Junction (if desired)

3.1.6.2 Application: junction of paths, conductors, or cables. If desired, indicate path type, or size
3.1.6.3 Application: junction of connected paths, conductors, or wires

For microwave circuits, the type of coupling, power-division proportions, reflection coefficients, plane of junction, etc., may be indicated if desired.

3.1.6.4 Splice (if desired) of same size cables. Junction of conductors of same size or different size cables. If desired, indicate sizes of conductors

3.1.6.5 Conductor junction (such as hermaphroditic connectors)

3.1.7 Associated conductors

3.1.7.1 General (shown with 3 conductors)

3.1.7.2 Twisted (shown with 2 twisted conductors)

NOTE — 3.1.7.2A: The asterisk is not part of the symbol. Always replace the asterisk by one of the following letters:

P = Pair
T = Triple
3.1.7.3 Quad

3.1.7.4 Shielded (shown with 3 conductors out of 7 within shield)

3.1.8 Assembled conductors; cable
Commonly used in communication diagrams.

3.1.8.1 Shielded single conductor

3.1.8.2 Application: shielded 5-conductor cable
3.1.8.3 Application: shielded 5-conductor cable with conductors separated on the diagram for convenience

![Diagram of shielded 5-conductor cable]

3.1.8.4 Application: shielded 2-conductor cable with shield grounded

![Diagram of shielded 2-conductor cable with shield grounded]

3.1.8.5 2-conductor cable

![Diagram of 2-conductor cable]

3.1.8.6 Application: 5-conductor cable

![Diagram of 5-conductor cable]

3.1.9 Coaxial cable, recognition symbol; coaxial transmission path; radio-frequency cable (coaxial)

NOTES:

3.1.9A — If necessary for clarity, an outer-conductor connection shall be made to the symbol.

3.1.9B — If the coaxial structure is not maintained, the tangential line shall be drawn only on the coaxial side.

3.1.9.1 General

![Diagram of coaxial cable with note]

See Note 3.1.9A

The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.
3.1.9.2 Application: coaxial structure not maintained on the right

3.1.9.3 Two conductors (balanced) with one outer-conductor connection (twinax)

See Note 3.1.9A

3.1.9.4 One conductor with one outer-conductor connection and one shielded connection (triax)

See Note 3.1.9A

3.10 Grouping of leads

3.10.1 General

Bend of line indicates direction in which other ends of path will be found.

3.10.2 Interrupted (on diagram), shown with individual paths at each side of diagrammatic interruption.

The lower symbol consists of long dashes.

6The broken line - — - indicates where line connection to a symbol is made and is not part of the symbol.
3.1.11 Interrupted path

Symbol normally used only when required for complex or special-purpose diagrams.

NOTES:

3.1.11A — To ensure continuity, the interrupted-path break points must be in alignment.

3.1.11B — The asterisk is not part of the symbol. Identifying values, letters, numbers, or marks shall replace the asterisk.

3.1.12 Conductor or cable end, not connected

3.1.12.1 With end especially insulated

3.2 Distribution Lines
Transmission Lines

Commonly used on system diagrams, maps, and charts.

3.2.1 Type of circuit

USE SYMBOL 3.1.1

The following letters may be used to indicate type of transmission:

- F telephony IEC
- S sound (television) IEC
- T telegraphy transmission of data IEC
- V video (television) IEC
3.2.1.1 Application: telephone line

3.2.2 Cable underground; underground line

These are long dashes.
Avoid conflict with symbol 3.2.6 if used on the same diagram.

3.2.3 Submarine line; underwater line

3.2.4 Overhead line
Avoid conflict with symbol 3.6.1 if used on the same diagram.

3.2.5 Loaded line
Avoid conflict with symbol 6.4.18 if used on the same diagram.

3.2.6 Radio link
Use only if essential to distinguish radio links or any radio portion of a circuit.
Avoid conflict with symbol 3.2.2 if used on the same diagram.
These are long dashes.
3.2.6.1 Application: radio link (with antenna shown)

3.2.6.2 Application: radio link carrying television (video with sound) and telephony (with antenna shown)

3.3 Alternative or Conditional Wiring
The arrowheads in this case shall be solid.

NOTE — 3.3A: A note shall explain the connections.

See Note 3.3A

3.3.1 Application: 3 alternative paths

See Note 3.3A

3.4 Associated or Future
See also paragraph A4.10 of the Introduction
These are short dashes.
3.5 Intentional Isolation of Direct-Current Path in Coaxial or Waveguide Applications

3.6 Waveguide

The mode of propagation or other special characteristics may be shown at the side of the waveguide symbol.

3.6.1 Circular, recognition symbol

Avoid conflict with symbol 3.2.4 if used on the same diagram.

3.6.2 Rectangular, recognition symbol

3.6.2.1 Dielectric-filled metallic rectangular waveguide

3.6.2.2 Solid-dielectric rectangular waveguide

3.6.2.3 Gas-filled rectangular waveguide

3.6.3 Coaxial waveguide

See also item 3.1.9
3.6.4 Flexible waveguide

Avoid conflict with symbol 2.12.3 if used on the same diagram.

3.6.5 Twisted waveguide

3.6.6 Ridged waveguide

3.6.7 Goubau line (single-wire transmission line within solid dielectric)

3.7 Strip-Type Transmission Line

3.7.1 Unbalanced stripline

3.7.2 Balanced stripline

3.8 Termination

Commonly used on coaxial and waveguide diagrams.

3.8.1 Open circuit (open). Not a fault.
3.8.2 Short circuit (short). Not a fault.

NOTE — 3.8.2A: Use of the dot is optional.

3.8.3 Application: movable short circuit

3.9 Circuit Return

3.9.1 Ground, general symbol

NOTE — 3.9.1A: Supplementary information may be added to define the status or purpose of the earth if this is not readily apparent.

1) A direct conducting connection to the earth or body of water that is a part thereof.
2) A conducting connection to a structure that serves a function similar to that of an earth ground (that is, a structure such as a frame of an air, space, or land vehicle that is not conductively connected to earth).

3.9.1.1 Low-noise ground (IEC) noiseless, clean earth)

3.9.1.2 Safety or protective ground

NOTE — 3.9.1.2A: This symbol may be used in place of symbol 3.9.1 to indicate a ground connection having a specified protective function (e.g., for protection against electrical shock in case of a fault).

3.9.2 Chassis or frame connection; equivalent chassis connection (of printed-wiring boards)

A conducting connection to a chassis or frame, or equivalent chassis connection of a printed-wiring board. The chassis or frame (or equivalent chassis connection of a printed-wiring board) may be at substantial potential with respect to the earth or structure in which this chassis or frame (or printed-wiring board) is mounted.
3.9.3 Common connections

Conducting connections made to one another.

All like-designated points are connected.

NOTE — 3.9.3A: The asterisk is not part of the symbol. Identifying values, letters, numbers, or marks shall replace the asterisk.

For the triangular symbol, this identification shall be placed within the triangle or, if essential for legibility, adjacent to the triangle.

3.9.3.1 Specific potential difference

To be used when there is a specific potential difference with respect to a potential reference level.

\[
\text{\textbullet} \quad \text{*See Note 3.9.3A}
\]

3.9.3.2 Potential level not specified by a numerical value

To be used when identically annotated common-return connections are at the same potential level.

\[
\text{\textbullet} \quad \text{*See Note 3.9.3A}
\]

3.10 Pressure Tight Bulkhead Cable Gland
Cable Sealing End

NOTE — 3.10A: The high pressure side is to the right of the trapezoid, thus retaining gland.

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.
4. Graphic Symbols for Contacts, Switches, Contactors, and Relays

4.1 Switching Function

NOTE — 4.1A: Switching function symbols are suitable for use on “detached contact” diagrams, but may be used in other applications.

4.1.1 Conducting, closed contact (break)

4.1.2 Nonconducting, open contact (make)

4.1.3 Application: transfer

4.2 Electrical Contact

For buildups or forms using electrical contacts, see applications under 5.3.5 and 5.3.6.

See paragraph A4.6 of the Introduction

4.2.1 Fixed contact

4.2.1.1 Fixed contact for jack, key, relay, switch, etc

See also symbol 4.2.1.2

4.2.1.2 Fixed contact with momentary contact (automatic return)

NOTE — 4.2.1.2A: When this symbol (representing a contact with automatic return) is used on a diagram for international use, the convention should be so noted on the diagram or associated documentation. IEC

See also 4.9 and 4.11

See also 4.9 and 4.11
4.2.1.3 Sleeve

4.2.2 Moving Contact

4.2.2.1 Adjustable or sliding contact for resistor, inductor, etc

4.2.2.2 Locking

4.2.2.3 Nonlocking

4.2.2.4 Segment; bridging contact
See also items 4.13.3 and 4.13.4

4.2.2.5 Vibrator reed

4.2.2.6 Vibrator split reed

4.2.2.7 Rotating contact (slip ring) and brush

7The broken line - — - indicates where line connection to a symbol is made and is not part of the symbol.
4.3 Basic Contact Assemblies

The standard method of showing a contact is by a symbol indicating the circuit condition it produces when the actuating device is in the deenergized or nonoperated position. The actuating device may be of a mechanical, electrical, or other nature, and a clarifying note may be necessary with the symbol to explain the proper point at which the contact functions; for example, the point where a contact closes or opens as a function of changing pressure, level, flow, voltage, current, etc. In cases where it is desirable to show contacts in the energized or operated condition and where confusion may result, a clarifying note shall be added to the drawing.

Auxiliary switches or contacts for circuit breakers, etc, may be designated as follows:

a) Closed when device is energized or operated position.

b) Closed when device is in deenergized or nonoperated position.

 aa) Closed when operating mechanism of main device is in energized or operated position.
 bb) Closed when operated mechanism of main device is in deenergized or nonoperated position.

See American national Standard Manual and Automatic Station Control, Supervisory, and Associated Telemetering Equipment, C37.2-1970, for further details.

In the parallel-line contact symbols shown below, the length of the parallel lines shall be approximately $1\frac{1}{4}$ times the width of the gap (except for symbol 4.3.7).

4.3.1 Closed contact (break)

4.3.2 Open contact (make)
4.3.3 Transfer

4.3.4 Make-before-break

4.3.5 Application: open contact with time closing (TC) or time-delay closing (TDC) feature

4.3.6 Application: closed contact with time opening (TO) or time-delay opening (TDO) feature
4.3.7 Time sequential closing

![Time sequential closing diagram]

4.3.8 Multiway transfer switch

4.3.8.1 Two-position switch (90° step)

![Two-position switch diagram]

4.3.8.2 Three-position switch (120° step)

![Three-position switch diagram]

4.3.8.3 Four-position switch (45° step)

![Four-position switch diagram]
4.4 Magnetic Blowout Coil

4.5 Operating Coil

Relay Coil

See also INDUCTOR; WINDING; etc (item 6.2)

NOTE — 4.5A: The asterisk is not part of the symbol. Always replace the asterisk by a device designation. See, for example, ANSI C37.2-1970.

4.5.1 Semicircular dot indicates inner end of winding

4.5.2 Application: multiwinding coil (2 windings shown)

NOTE — 4.5.2A: The ends of a given winding shall be shown directly opposite each other on opposite sides of the core, or adjacent to each other on the same side of the core.

8 The broken line - — - indicates where line connection to a symbol is made and is not part of the symbol.
4.5.3 Electromagnetic actuator \(\square \) (solenoid), with mechanical linkage shown

NOTE — 4.5.3A: The mechanical linkage may be omitted if the intent is clear.

4.6 Switch

See also FUSE (item 9.1); and paragraphs A4.7 and A4.9 of the Introduction

Fundamentals symbols for contacts, mechanical connections, etc, may be used for switch symbols.

The standard method of showing switches is in a position with no operating force applied. For switches that may be in any of two or more positions with no operating force applied, and for switches actuated by some mechanical device (as in air-pressure, liquid-level, rate-of-flow, etc, switches), a clarifying note may be necessary to explain the point at which the switch functions.

When the basic switch symbols in items 4.6.1 through 4.6.3 are shown in the closed position on a diagram, terminals must be added for clarity.

4.6.1 Single-throw, general

4.6.2 Double-throw, general

4.6.2.1 Application: 2-pole double-throw switch with terminals shown
4.6.3 Knife switch, general

4.6.4 Application: 3-pole double-throw knife switch with auxiliary contacts and terminals

4.6.5 Application: 2-pole field-discharge knife switch with terminals and discharge resistor

NOTE — 4.6.5A: The asterisk is not part of the symbol. Always add identification within or adjacent to the rectangle.

*See Note 4.6.5A

4.6.6 Switch with horn gap

4.6.7 Sector switch

4.7 Pushbutton, Momentary or Spring-Return

4.7.1 Circuit closing (make)
4.7.2 Circuit opening (break)

4.7.3 Two-circuit

4.8 Two-circuit, Maintained or Not Spring-Return

4.9 Nonlocking Switch, Momentary or Spring-Return

The symbols to the left are commonly used for spring buildups in key switches, relays, and jacks.

The symbols to the right are commonly used for toggle switches.

4.9.1 Circuit closing (make)

4.9.2 Circuit opening (break)

4.9.3 Two-circuit

See Note 14.1.1A
4.9.4 Transfer

![Transfer Diagram]

4.9.5 Make-before-break

![Make-before-break Diagram]

4.10 Locking Switch

The symbols to the left are commonly used for spring buildups in key switches and jacks.

The symbols to the right are commonly used for toggle switches.

4.10.1 Circuit closing (make)

![Circuit closing (make) Diagram]

4.10.2 Circuit opening (break)

![Circuit opening (break) Diagram]

4.10.3 Transfer, 2-position

![Transfer, 2-position Diagram]

4.10.4 Transfer, 3-position

![Transfer, 3-position Diagram]

4.10.5 Make-before-break

![Make-before-break Diagram]
4.11 Combination Locking and Nonlocking Switch

Commonly used for toggle switches

4.11.1 3-position, 1-pole: circuit closing (make), off, momentary circuit closing (make)

4.11.2 3-position, 2-pole: circuit closing (make), off, momentary circuit closing (make)

4.12 Key-Type Switch

Lever Switch

4.12.1 2-position with locking transfer and break contacts

4.12.2 3-position with nonlocking transfer and locking break contacts
4.12.3 3-position, multicontact combination

4.12.4 2-position, half of key switch normally operated, multicontact combination

4.13 Selector or Multiposition Switch

The position in which the switch is shown may be indicated by a note or designation of switch position.

4.13.1 General (for power and control diagrams)

Any number of transmission paths may be shown.
4.13.2 Break-before-make, nonshorting (nonbridging) during contact transfer

4.13.3 Make-before-break, shorting (bridging) during contact transfer

4.13.4 Segmental contact

4.13.5 22-point selector switch

4.13.6 10-point selector switch with fixed segment

4.13.7 Rotary (section-, deck-, or wafer-type)

Viewed from end opposite control knob or actuator unless otherwise indicated. For more than one section, the first section is the one nearest control knob or actuator. When contacts are on both sides, front contacts are nearest control knob.
4.13.8 Slide switch, typical ladder-type interlock

In the example, one slide is shown operated.

Slides are shown in released position unless otherwise noted.

4.13.9 Master or control switch

A table of contact operation must be shown on the diagram. A typical table is shown below.

4.13.10 Master or control switch (cam-operated contact assembly), 6-circuit 3-point reversing switch

A table of contact operation must be shown on the diagram. A typical table is shown below. Tabulate special features in note.
4.13.11 Drum switch, sliding-contact type, typical example

4.14 Limit Switch
Sensitive Switch

NOTE — 4.14A: Identify by LS or other suitable note.

4.14.1 Track-type, circuit-closing contact

See Note 4.14A

4.14.2 Track-type, circuit-opening contact

See Note 4.14A

4.14.3 Lead-screw type, circuit-opening contacts

See Note 4.14A
4.14.4 Rotary-type

4.14.5 Limit switch, directly actuated, spring returned

4.14.5.1 Normally open

4.14.5.2 Normally open—held closed

4.14.5.3 Normally closed

4.14.5.4 Normally closed—held open

4.15 Safety Interlock

If specific type identification is not required, use applicable standard symbol.

4.15.1 If specific type identification is required: circuit opening

4.15.2 If specific type identification is required: circuit closing
4.16 Switches with Time-Delay Feature

NOTE — 4.16A: The point of the arrow indicates the direction of switch operation in which contact action is delayed.

4.16.1 Open switch with time-delay closing (TDC) feature

4.16.2 Closed switch with time-delay opening (TDO) feature

4.16.3 Open switch with time-delay opening (TDO) feature

4.16.4 Closed switch with time-delay closing (TDC) feature
4.17 Flow-Actuated Switch

4.17.1 Closes on increase in flow.

4.17.2 Opens on increase in flow

4.18 Liquid-Level-Actuated Switch

4.18.1 Closes on rising level

4.18.2 Opens on rising level

4.19 Pressure- or Vacuum-Actuated Switch

4.19.1 Closes on rising pressure

4.19.2 Opens on rising pressure
4.20 Temperature-Actuated Switch

4.20.1 Closes on rising temperature

4.20.2 Opens on rising temperature

4.21 Thermostat

NOTES:

4.21A — The t° symbol shall be shown or be replaced by data giving the nominal or specific operating temperature of the device.

4.21B — If clarification of direction of contact operation is needed, a directional arrow may be added. The arrowhead shall point in the direction of rising temperature operation. A directional arrow shall always be shown for central-off (neutral) position devices.

4.21.1 Closes on rising temperature

See Note 4.21A

4.21.1.1 With contact-motion direction clarified

See Note 4.21B

4.21.2 Opens on rising temperature

See Note 4.21A
4.21.3 Transfers on rising temperature

4.21.4 Transfer, with intended central-off (neutral) position

4.21.5 Application: multifunction, typical

4.21.6 With integral heater and transfer contacts

Use only if essential to indicate integral heater details.

4.21.7 Application: with operating temperatures indicated

4.22 Flasher
Self-Interrupting Switch
4.23 Foot-Operated Switch
Foot Switch

4.23.1 Opens by foot pressure

4.23.2 Closes by foot pressure

4.24 Switch Operated by Shaft Rotation and Responsive to Speed or Direction

See also item 4.27

4.24.1 Speed

4.24.2 Plugging: to stop drive after it has come practically to rest

4.24.3 Anti-plugging: to prevent plugging of drive

4.24.4 Centrifugal switch (opening on increasing speed)

See also symbol 14.2.6
4.25 Switches with Specific Features

4.25.1 Hook switch

4.25.2 Telephone dial (switch)

4.25.3 Switch in evacuated envelope, 1-pole double-throw

4.25.4 Mushroom-head safety feature

Application to 2-circuit pushbutton switch.

4.25.5 Key-operated lock switch

Use appropriate standard symbol and add key designation or other information in note.

4.26 Telegraph Key

4.26.1 Simple
4.26.2 Simple with shorting switch

4.26.3 Open-circuit or pole-changing

4.27 Governor (Contact-making)
Speed Regulator

Contacts open or closed as required (shown here as closed).

4.28 Vibrator, Interrupter

4.28.1 Typical shunt drive (with terminals shown)
Show contacts as required.

4.28.2 Typical separate drive (with terminals shown)
Show contacts as required.

4.29 Contactor

See also CIRCUIT BREAKER (item 9.4)
Fundamental symbols for contacts, coils, mechanical connections, etc., are the basis of contactor symbols and should be used to represent contactors on complete diagrams. Complete diagrams of contactors consist of combinations of fundamental symbols for control coils, mechanical connections, etc., in such configurations as to represent the actual device. Mechanical interlocking should be indicated by notes.

4.29.1 Manually operated 3-pole contactor

4.29.2 Electrically operated 1-pole contactor with series blowout coil

4.29.3 Electrically operated 3-pole contactor with series blowout coils; 2 open and 1 closed auxiliary contacts (shown smaller than the main contacts)

4.29.4 Electrically operated 1-pole contactor with shunt blowout coil

* See Note 4.5A
4.30 Relay

See OPERATING COIL; RELAY COIL (item 4.5)

Fundamental symbols for contacts, mechanical connections, coils, etc, are the basis of relay symbols and should be used to represent relays on complete diagrams.

The following letter combinations or symbol elements may be used with relay symbols. The requisite number of these letters or symbol elements may be used to show what special features a relay possesses.

The terms “slow” and “fast” are relative, and the degree is not to be noted by a multiplicity of the same relay symbol on a diagram. Relays that are direct-current operated are not marked to indicate dc operation.

<table>
<thead>
<tr>
<th>IEC</th>
<th>AC</th>
<th>Alternating-current or ringing relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC</td>
<td>DB</td>
<td>Double-biased (biased in both directions)</td>
</tr>
<tr>
<td>IEC</td>
<td>DP</td>
<td>Dashpot</td>
</tr>
<tr>
<td>IEC</td>
<td>EP</td>
<td>Electrically polarized</td>
</tr>
<tr>
<td>IEC</td>
<td>FO</td>
<td>Fast-operate</td>
</tr>
<tr>
<td>IEC</td>
<td>FR</td>
<td>Fast-release</td>
</tr>
<tr>
<td>IEC</td>
<td>L</td>
<td>Latching</td>
</tr>
<tr>
<td>IEC</td>
<td>MG</td>
<td>Marginal</td>
</tr>
<tr>
<td>IEC</td>
<td>ML</td>
<td>Magnetic-latching (remanent)</td>
</tr>
<tr>
<td>IEC</td>
<td>NB</td>
<td>No bias</td>
</tr>
<tr>
<td>IEC</td>
<td>NR</td>
<td>Nonreactive</td>
</tr>
<tr>
<td>IEC</td>
<td>P</td>
<td>Magnetically polarized using biasing spring, or having magnet bias</td>
</tr>
<tr>
<td>IEC</td>
<td>SA</td>
<td>Slow-operate and slow-release</td>
</tr>
</tbody>
</table>

The proper poling for a polarized relay shall be shown by the use of + and - designations applied to the winding leads. The interpretation of this shall be that a voltage applied with the polarity as indicated shall cause the armature to move toward the contact shown nearer the coil on the diagram. If the relay is equipped with numbered terminals, the proper terminal numbers shall also be shown.

4.30.1 Basic
4.30.2 Application: relay with transfer contacts

![Relay Diagram](image1)

See Note 4.5A

4.30.3 Application: polarized relay with transfer contacts (two typical types shown)

![Polarized Relay Diagram](image2)

4.30.4 Application: polarized (no bias) marginal relay with transfer contacts

![Marginal Relay Diagram](image3)

4.30.5 Relay, thermally operated

4.30.5.1 Activating device for thermally operated relay

Time of delay may be shown.

Contacts may be shown separately from the operating device.

See also item 2.14
4.30.5.2 With normally open contacts shown (two typical types)

4.30.5.3 With transfer contacts shown

4.30.6 Thermal relay, one-time type, not reusable

Normally open contact type shown.

4.31 Inertia Switch (operated by sudden deceleration)

NOTE — 4.31A: This symbol is commonly used on diagrams for aerospace applications.

4.32 Mercury Switch

4.32.1 Leveling

4.32.1.1 Three terminal

4.32.1.2 Four terminal
4.32.2 With acceleration cutoff (four terminal)

4.33 Aneroid Capsule (air pressure) Operated Switch

Cross References

Protective Relay (item 9.5)

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

5. Graphic Symbols for Terminals and Connectors

5.1 Terminals

5.1.1 Circuit terminal

5.1.1.1 Terminal board or terminal strip, with 4 terminals shown; group of 4 terminals

Number and arrangement as convenient.

NOTE — 5.1.1.1A: Internal lines and terminals may be omitted if terminal identifications are shown within the symbol.
See Note 5.1.1.1A

5.1.2 Terminals for electron tubes, semiconductor devices, etc

Used primarily in application-data terminal diagrams for electron tubes, semiconductor devices, and other devices having terminations of similar type.

NOTES:

5.1.2A — Explanatory words and arrows are not part of the symbol.

5.1.2B — The following letter combinations, if shown adjacent to terminal symbols requiring special attention, shall signify the following:

- **S** Connection to an external shield integral with a device (including metal tube shell, base sleeve or shell; external conductive coating or casing). Not to be used if the external conductive coating serves as one side of a capacitor (as in cathode-ray tubes) and is not designed to function as an electrostatic shield.
- **IC** Internal connection: not intended to be used for circuit connection.
- **IS** Internal shield not depicted in terminal diagram.

5.1.2.1 Base-pin terminals (electron tubes, etc); pin terminals (semiconductor devices, etc)

See Note 5.1.2A

5.1.2.2 Envelope terminals

See Note 5.1.2A

The rigid-terminal symbol is used to indicate customary rigid terminals (caps, rods, rings, etc) as well as to indicate:

1. Any metallic envelope or external conductive coating or casing that has a contact area (as in cathode-ray tubes, disc-seal tubes, pencil tubes, etc).
2. Mounting flange or stud when it serves as a terminal.
5.1.2.3 Device with base-orientation key

See Note 5.1.2A

5.1.2.4 Devices with reference point (such as a boss, colored dot, index pin, index tab, or bayonet pin)

5.1.2.5 Terminals connected to metallic envelope or enclosure

5.2 Cable Termination

Line shown on left of symbol indicates cable.

5.3 Connector

5.3.1 Female contact

5.3.2 Male contact
5.3.3 Connector assembly, movable or stationary portion; jack, plug, or receptacle

NOTE — 5.3.3A: Use appropriate number of contact symbols.

5.3.3.1 Receptacle or jack (usually stationary)

NOTE — 5.3.3.1A: The asterisk is not part of the symbol. If desired, indicate the type of contacts: male (→) or female (→→).

5.3.3.2 Plug (usually movable)

5.3.4 Separable connectors (engaged)

5.3.4.1 Application: engaged 4-conductors (female plug male receptacle shown)
5.3.4.2 Application: engaged 4-conductor connectors; the plug has 1 male and 3 female contacts with individual contact designations shown in the complete-symbol column

5.3.5 Communication switchboard-type connector
See also symbol 4.2.1.4

5.3.5.1 2-conductor (jack)

5.3.5.2 2-conductor (plug)

5.3.5.3 3-conductor (jack) with 2 break contacts (normals) and 1 auxiliary make contact

5.3.5.4 3-conductor (plug)

5.3.6 Communication switchboard-type connector with circuit normalled through “Normalled” indicates that a through circuit may be interrupted by an inserted connector. As shown here, the inserted connector opens the through circuit and connects to the circuit towards the left.

Items 5.3.6.1 through 5.3.6.4 show 2-conductor jacks. The “normal” symbol is applicable to other types of connectors.

See also symbol 4.2.1.3

9 The broken line - — - indicates where line connection to a symbol is made and is not part of the symbol.
5.3.6.1 Jacks with circuit normalled through one way

5.3.6.2 Jacks with circuit normalled through both ways

5.3.6.3 Jacks in multiple, one set with circuit normalled through both ways

5.3.6.4 Jacks with auxiliary contacts, with circuit normalled through both ways

See also symbols 5.3.3.1 and 5.3.3.2

The following symbols are primarily for applications where the type of connector must be indicated semipictorially.

Contacts and contact arrangements shall be shown in simplified form as viewed from the mating face, approximately in proportion to the arrangement in the physical item. A simplified-shape outline shall surround the contact symbols.

5.4.1 Male contact

Filled outline, approximating contact end-view (3 typical forms are shown)
5.4.2 Female contact

Open outline, approximating limiting shape of mating male contact (3 typical forms are shown)

5.4.3 Application: 2-conductor nonpolarized connector with male contacts (3 typical forms are shown)

5.4.4 Application: 2-conductor nonpolarized connector with female contacts (3 typical forms are shown)

5.4.5 Application: 2-conductor polarized connector (2 typical forms with female contacts are shown)

5.4.6 Application: 3-conductor polarized connector (5 typical forms with female contacts are shown)

5.4.7 Application: 4-conductor polarized connector (2 typical forms with female contacts are shown)
5.5 Test Block

5.5.1 Female portion with short-circuiting bar (with terminals shown)

5.5.2 Male portion (with terminals shown)

5.6 Coaxial Connector

Coaxial Junction

5.6.1 Engaged coaxial connectors

Coaxial recognition symbol may be added if necessary. See COAXIAL TRANSMISSION PATH (item 3.1.9)

5.6.2 Application: coaxial with the outside conductor shown carried through

5.6.3 Application: coaxial with center conductor shown carried through; with outside conductor terminated on chassis

5.6.4 Application: coaxial with center conductor shown carried through; outside conductor not carried through

5.6.5 Application: T or Y adapter with outer conductor carried through
5.7 Waveguide Flanges

Waveguide Junction

5.7.1 Mated pair of symmetrical waveguide connectors

5.7.2 Mated pair of asymmetrical waveguide connectors

The line is not interrupted at the junction whether or not it is a plain-type or choke-type connection.

5.7.3 Plain (rectangular waveguide)

5.7.4 Choke (rectangular waveguide)

5.7.5 Application: rectangular waveguide with mated plain and choke flanges with direct-current isolation (insulation) between sections of waveguide

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.
6. Graphic Symbols for Transformers, Inductors, and Windings

6.1 Core

6.1.1 General or air core

If it is necessary to identify an air core, a note should appear adjacent to the symbol of the inductor or transformer

NO SYMBOL

6.1.2 Magnetic core of inductor or transformer

Not to be used unless it is necessary to identify a magnetic core.

6.1.3 Core of magnet

For use if representation of the core is necessary. See PERMANENT MAGNET (item 2.8)

6.1.4 Magnetic-memory core

Commonly used in magnetic-memory and magnetic channel-selector devices.

See also item 15.18.

6.1.4.1 Single-aperture type with windings shown

6.1.4.2 Application: in an array having four windings—two WRITE-READ windings, one INHIBIT winding, and one SENSE winding

NOTE — 6.1.4.2A: Words are for explanation and are not part of the symbol.
6.2 Inductor
Winding (machine or transformer)
Reactor Radio-Frequency Coil
Telephone Retardation Coil

See also OPERATING COIL (item 4.5) For polarity markings see item 1.6.3

6.2.1 General

NOTE — 6.2.1A: This symbol is deprecated and should not be used on new schematics.

6.2.2 Magnetic-core inductor
Telephone loading coil

If necessary to show a magnetic core.

6.2.3 Tapped

6.2.4 Adjustable inductor

6.2.5 Adjustable or continuously adjustable inductor

6.2.6 Shunt inductor

6.2.7 Inductive termination

Commonly used in coaxial and waveguide diagrams.
6.2.7.1 Application: series inductor and path open

6.2.7.2 Application: series inductor and path short-circuited

6.2.8 Carrier line trap (carrier elimination filter)

6.2.8.1 General

NOTE — 6.2.8.1A: If it is essential to indicate the following characteristics, the specified letter or letters may be inserted within or placed adjacent to the symbol.

- 2f Two frequency
- WB Wide band
- NB Narrow band

6.2.9 Coil operated flag indicator

6.3 Transductor

Saturable-Core Inductor
Saturable-Core Reactor

NOTES:

6.3A — If essential for clarity, the magnetic core symbol, 6.1.2, may be added where applicable.

6.3B — Power windings are drawn with three scallops or loops, control windings with five.

6.3C — The saturable-properties indicator, symbol 1.2.4, may also be used to indicate two or more windings.

6.3.1 Transductor element, assembled

When windings are separated on a drawing, suitable indication shall be provided to show that they are on the same core.
6.3.2 Application: single-phase series transductor with winding-polarity and kind-of-current markings shown

NOTE — 6.3.2A: An increase of current entering the end of the control winding marked with a dot causes an increase in the power output.

See Notes 6.3B and C

6.3.3 Application: single-phase parallel transductor with winding-polarity and kind-of-current markings shown

See Notes 6.3B, 6.3C, and 6.3.2A

6.3.4 Application: self-exciting transductor with two control circuits and kind-of-current markings shown

See Note 6.3B

6.3.5 Application: transductor with direct-current output and kind-of-current markings shown

See Note 6.3B
6.4 Transformer
Telephone Induction Coil
Telephone Repeating Coil

6.4.1 General

Additional windings may be shown or indicated by a note.

For polarity markings on current and potential transformers, see symbol 1.6.3.

In coaxial and waveguide circuits, this symbol represents a taper or step transformer without mode change.

NOTE — 6.4.1A: This symbol is the preferred symbol from IEC Publication 117, Recommended Graphical Symbols. It should be used on schematics for equipments having international usage, especially when the equipment will be marked using this symbol (in accordance with IEC Publication 417, Graphical Symbols for Use on Equipment).

6.4.1.1 Application: transformer with direct-current connections and mode suppression between two rectangular waveguides

6.4.2 Magnetic-core transformer

If necessary to show a magnetic core.

6.4.2.1 Nonsaturating

6.4.2.2 Application: shielded transformer with magnetic core shown
6.4.2.3 Application: transformer with magnetic core shown and with an electrostatic shield between windings. The shield is shown connected to the frame.

6.4.3 Saturating transformer

See SATURABLE-PROPERTIES INDICATOR (symbol 1.2.4)

6.4.4 One winding with adjustable inductance

6.4.5 Each winding with separately adjustable inductance
6.4.6 Adjustable mutual inductor; constant-current transformer

6.4.7 With taps, 1-phase

6.4.8 Autotransformer, 1-phase

6.4.9 Adjustable

6.4.10 Step-voltage regulator or load-ratio control autotransformer
6.4.10.1 Step-voltage regulator

6.4.10.2 Load-ratio control auto-transformer

6.4.11 Load-ratio control transformer with taps

6.4.12 1-phase induction voltage regulator(s)

Number of regulators may be written adjacent to the symbol.

See Note 6.4.1A
6.4.13 Triplex induction voltage regulator

6.4.14 3-phase induction voltage regulator

6.4.15 1-phase, 2-winding transformer
6.4.15.1 Application: 3-phase bank of 1-phase, 2-winding transformers with wye-delta connections

![Diagram of 3-phase bank of 1-phase, 2-winding transformers with wye-delta connections]

6.4.15.2 Three phase transformer with 4 taps with wye-wye connections

![Diagram of three phase transformer with 4 taps with wye-wye connections]
6.4.16 Polyphase transformer

6.4.17 1-phase, 3-winding transformer
6.4.18 Current transformer(s)

Avoid conflict with symbol 3.2.5 if used on the same diagram.

6.4.19 10 Bushing-type current transformer

6.4.20 Potential transformer(s)

6.4.21 Outdoor metering device

10The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.
6.5 Linear Coupler

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

7. Graphic Symbols for Electron Tubes and Related Devices

7.1 Electron Tube

See also ENVELOPE; ENCLOSURE (item 1.10) and TERMINALS FOR ELECTRON TUBES, SEMICONDUCTOR DEVICES, ETC (item 5.1.2)

Tube-component symbols are shown first. These are followed by typical applications showing the use of these specific symbols in the various classes of devices such as thermionic, cold-cathode, and photoemissive tubes of varying structures and combinations of elements (triodes, cathode-ray tubes, etc).

Lines outside of the envelope are not part of the symbol but are electrical connections thereto.

Connections between the external circuit and electron-tube symbols within the envelope may be located as required to simplify the diagram.

7.1.1 Emitting electrode

7.1.1.1 Directly heated (filamentary) cathode

NOTE — 7.1.1.1A: Leads may be connected in any convenient manner to ends of the \(\wedge \) provided the identity of the \(\wedge \) is retained.

7.1.1.2 Indirectly heated cathode

Lead may be connected to either extreme end of the \(\wedge \) or, if required, to both ends, in any convenient manner.

\[^{11} \text{The broken line} - \ldots \text{- indicates where line connection to a symbol is made and is not part of the symbol.} \]

100
7.1.1.3 Cold cathode (including ionically heated cathode)

7.1.1.4 Photocathode

7.1.1.5 Pool cathode

7.1.1.6 Ionically heated cathode with provision for supplementary heating

See Note 7.1.1A

7.1.2 Controlling electrode

7.1.2.1 Grid (including beam-confining or beam-forming electrodes)

7.1.2.2 Deflecting electrodes (used in pairs); reflecting or repelling electrode (used in velocity-modulated tubes)

7.1.2.3 Ignitor (in pool tubes) (should extend into pool); starter (in gas tubes)

7.1.2.4 Excitor (contactor type)
7.1.3 Collecting electrode

7.1.3.1 Anode or plate

7.1.3.2 Target or x-ray anode
Drawn at about a 45-degree angle.

7.1.3.3 Fluorescent target
Drawn at about a 45-degree angle.

7.1.3.4 Collector

7.1.4 Collecting and emitting electrode

7.1.4.1 Dynode

7.1.4.2 Alternately collecting and emitting electrode

7.1.4.2.1 Composite anode-photocathode

7.1.4.2.2 Composite anode-cold cathode
7.1.4.2.3 Composite anode-ionically heated cathode with provision for supplementary heating

```
\[\text{See Note 7.1.1A}\]
```

7.1.5 Heater

```
\[\text{See Note 7.1.1A}\]
```

7.1.6 Shield

See symbol 7.2.10

This is understood to shield against electric fields unless otherwise noted.

7.1.6.1 Any shield against electric fields that is within the envelope and that is connected to an independent terminal

```
\[\text{See Note 7.1.1A}\]
```

7.1.6.2 Outside envelope of x-ray tube

7.1.7 Coupling

See COUPLING (item 15.2), COAXIAL TRANSMISSION PATH (item 3.1.9), and WAVEGUIDE (item 3.6)

7.1.7.1 Coupling by loop (electromagnetic type)

Coupling loop may be shown inside or outside envelope as desired.

7.1.8 Ion-diffusion barrier, shown with envelope

Commonly used with liquid-filled tubes.

12The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.
7.2 General Notes

7.2.1 If new symbols are necessary, they should be formed where possible from component symbols. For example, see DYNODE (item 7.1.4.1), which combines the anode and photocathode conventions.

7.2.2 A connection to anode, dynode, pool cathode, photocathode, deflecting electrode, composite anode-photocathode, and composite anode-cold cathode shall be to the center of that symbol. Connection to any other electrode may be shown at either end or both ends of the electrode symbol.

7.2.3 A diagram for a tube having more than one heater or filament shall show only one heater or filament symbol unless they have entirely separate connections. If a heater or filament tap is made, either brought out to a terminal or internally connected to another element, it shall be connected at the vertex of the symbol, regardless of the actual division of voltage across the heater or filament.

7.2.4 Standard symbols, such as the inclined arrow for tunability and connecting dotted lines for ganged components, may be added to a tube symbol to extend the meaning of the tube symbol, provided such added feature or component is integral with the tube.

7.2.5 Electric components, such as resistors, capacitors, or inductors, which are integral parts of the tube and are important to its functional operation, shall be shown in the standard manner.

7.2.6 Multiple equipotential cathodes that are directly connected inside the tube shall be shown as a single cathode.

7.2.7 A tube having two or more grids tied internally shall be shown with symbols for each grid, except when the grids are adjacent in the tube structure. Thus, the diagram for a twin pentode having a common screen-grid connection for each section and for a converter tube having the No. 3 and No. 5 grids connected internally would show separate symbols for each grid. A triode where the control grid is physically in the form of two grid windings, however, would show only one grid.

7.2.8 A tube having a grid adjacent to a plate but internally connected to the plate to form a portion of it shall be shown as having a plate only.

7.2.9 Associated parts of a circuit, such as focusing coils, deflecting coils, field coils, etc, are not part of the tube symbol but may be added to the circuit in the form of standard symbols. For example, a resonant-type magnetron with permanent magnet may be shown as follows (see symbol 15.11.1):

7.2.10 External and internal shields, whether integral parts of tubes or not, shall be omitted from the circuit diagram unless the circuit diagram requires their inclusion.
7.2.11 In line with standard drafting practice, straight-line crossovers are recommended.

7.3 Typical Applications

7.3.1 Triode with directly heated filamentary cathode and envelope connection to base terminal

7.3.2 Equipotential-cathode pentode showing use of elongated envelope

7.3.3 Equipotential-cathode twin triode showing use of elongated envelope and rule of item 7.2.3.

7.3.4 Cold-cathode gas-filled tube

7.3.4.1 Rectifier; voltage regulator for direct-current operation

See also symbol 11.1.3.2

7.3.5 Phototube

7.3.5.1 Single-unit, vacuum-type
7.3.5.2 Multiplier-type

7.3.6 Cathode-ray tube

See Note 1.10A

7.3.6.1 With electric-field (electrostatic) deflection

7.3.6.2 For electromagnetic deflection

7.3.6.2.1 Single-gun
7.3.6.2.2 Multiple-gun (three-gun shown)

7.3.7 Mercury-pool tube

7.3.7.1 With ignitor and control grid

7.3.7.2 With excitor, control grid, and holding anode

7.3.7.3 Single-anode pool-type vapor rectifier with ignitor

7.3.7.4 6-anode metallic-tank pool-type vapor rectifier with excitor, showing rigid-terminal symbol for control connection to tank (pool cathode is insulated from tank)

Anode symbols are located as convenient.
7.3.7.5 Pool-type cathode power rectifier

7.3.8 X-ray tube

7.3.8.1 With filamentary cathode and focusing grid (cup)

The anode may be cooled by fluid or radiation.

7.3.8.2 With control grid, filamentary cathode, and focusing cup

7.3.8.3 With grounded electrostatic shield

7.3.8.4 Double focus with rotating anode

See item 7.2.9

7.3.8.5 With multiple accelerating electrode electrostatically and electromagnetically focused

See item 7.2.9
7.3.9 Thyatron
See also symbol 8.11

7.3.9.1 With indirectly heated cathode

7.4 Solion
Ion-Diffusion Device

7.4.1 Diode solion

7.4.2 Tetrode solion

NOTE — 7.4.2A: Letters in parentheses are not part of the symbol.

I	Input
S	Shield
R	Readout
C	Common

See Note 7.4.2A
7.5 Coulomb Accumulator
Electrochemical Step-Function Device

NOTE — 7.5A: Letters in parentheses are not part of the symbol, but are for explanation only. For a precharged cell, with + polarity applied to P, the cell internal resistance and voltage drop will remain low until the designed coulomb quantity has passed; then the internal resistance will rise to its high value.

7.6 Conductivity Cell

7.7 Nuclear-Radiation Detector (gas-filled)
Ionization Chamber
Proportional Counter Tube
Geiger-Müller Counter Tube

NOTE — 7.7A: For other types of radiation-sensitivity indicators, see item 1.3.

7.7.1 General

7.7.2 Application: metal enclosure, having one collector connected to the enclosure
Cross References

Magnetron (item 15.11)

Resonator (cavity-type) Tube (item 15.10)

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

8. Graphic Symbols for Semiconductor Devices

8.1 Semiconductor Device
Transistor
Diode

See paragraph A4.11 of the Introduction

NOTES:

8.1A — Some semiconductor devices may be represented by either of two methods.

For convenience in referring to semiconductor symbols in this section, they are classified as follows (Symbols not otherwise identified are Style 1):

Style 1 symbols are composed of basic element symbols depicting the internal buildup of the device.

Style 2 symbols (primarily diode devices) incorporate special-property symbols into the basic-element symbol, rather than by showing the special-property symbol adjacent to the Style 1 symbols.

Style 3 symbols are composed of symbol elements representing functions of the device without regard to the method by which the function is performed within the device.

8.1B — Numbers and letters in parentheses are to correlate illustrations in the standard and are not intended to represent terminal identification.

8.1C — In general, the angle at which a lead is brought to a symbol element has no significance. IEC
8.1D — Orientation, including a mirror-image presentation, does not change the meaning of a symbol. IEC For exceptions to this rule, see item 8.3.

8.1E — The elements of the symbol must be drawn in such an order as to show clearly the operating function of the device. IEC

8.2 Element Symbols

8.2.1 Semiconductor region with one ohmic connection

As shown, the horizontal line is the semiconductor region and the vertical line is an ohmic connection.
The line representing the ohmic connection shall not be drawn at the very end of the line representing the semiconductor region.

8.2.1.1 Semiconductor region with a plurality of ohmic connections

Examples show 2 ohmic connections.

8.2.2 Rectifying junction or junction which influences a depletion layer

Arrowheads () shall be half the length of the arrow away from the semiconductor base region.

See item 8.6

The equilateral () triangle shall be filled and shall touch the semiconductor base-region symbol.

NOTE — 8.2.2A: The triangle points in the direction of the forward (easy) current as indicated by a direct-current ammeter, unless otherwise noted adjacent to the symbol. Electron flow is in the opposite direction.

8.2.2.1 P region N region

8.2.2.2 N region on P region
8.2.3 Enhancement-type semiconductor region with plurality of ohmic connections and a rectifying junction

Portions of the interrupted channel line having ohmic contacts shall be of equal length and drawn significantly longer than the center-channel section. Channel gaps shall be of equal length and approximately equal to the center-channel length.

8.2.4 Emitter on region of dissimilar-conductivity type

As shown, the slant line with arrow represents the emitter. Arrowheads on both the N and P emitter symbols shall be half the length of the arrow away from the semiconductor base-region symbol. IEC

Emitter element symbols shall be drawn at an angle of approximately 60 degrees to the semiconductor base-region symbol. IEC

8.2.4.1 P emitter on N region

8.2.4.1.1 Plurality of P emitters N on region

8.2.4.2 N emitter on P region

8.2.4.2.1 Plurality of N emitters on P region

8.2.5 Collector on region of dissimilar-conductivity type

As shown, the slant line represents the collector.

Collector element symbols shall be drawn at an angle of approximately 60 degrees to the semiconductor base-region symbol. IEC
8.2.5.1 Plurality of collectors on region of dissimilar-conductivity type

8.2.6 Transition between regions of dissimilar-conductivity types, either P to N or N to P.

The short slant line indicates point of change along the horizontal line from P to N or N to P. No connections shall be made to the short slant line. IEC

Transition-line element symbols shall be drawn at an angle of approximately 60 degrees to the semiconductor base-region symbol. IEC

The short lines used in transition symbols shall be appreciably shorter than collector or emitter symbols. IEC

8.2.7 Intrinsic region between 2 regions

The intrinsic region lies between the linked slant lines. IEC

8.2.7.1 Between regions of dissimilar-conductivity type, either PIN or NIP

8.2.7.2 Between regions of similar-conductivity type, either PIP or NIN

8.2.7.3 Between a collector and a region of dissimilar-conductivity type, either PIN or NIP

The connection to the collector is made to the long slant line. IEC

8.2.7.4 Between a collector and a region of similar conductivity type, either PIP or NIN

The connection to the collector is made to the long slant line. IEC
8.2.8 Insulated gate

The L-shaped insulated-gate element shall be drawn with one side spaced from, and parallel to, the channel between ohmic contacts. The corner of the gate element shall be drawn opposite the preferred-source ohmic contact.

8.2.8.1 One gate

For an application, see symbol 8.6.10.2

8.2.8.2 Multiple gate (2 gates shown)

For an application, see symbol 8.6.10.4.1

Insulated-gate elements are drawn as long as necessary to show each gate.

The insulated-gate element drawn opposite the preferred source is designated as the primary gate. Additional gates are secondary gates.

8.2.9 Gate; control electrode

Applicable only to Style 3 symbols.

NOTE — 8.2.9A: The gate symbol shall be drawn at an angle of approximately 30° to the axis of the basic diode symbol, and shall touch the cathode (or anode) symbol at a point approximately halfway between the center line of the symbol and the extremity of the cathode (or anode) symbol.

8.2.9.1 Gate (external connection)

8.2.9.1.1 General

For application, see symbol 8.6.12.1

See Note 8.2.9A

8.2.9.1.2 Having turn-off feature

For application, see symbol 8.2.12.2

This special feature shall be indicated by a short line crossing the gate lead.
See Note 8.2.9A

8.2.9.2 Gate (no external connection)

For application, see symbol 8.5.9

Because there is no external connection to the gate, this lead shall not extend to the envelope symbol, if any.

See Note 8.2.9A

8.3 Special-Property Indicators

See Note 8.1A

See also item 1.2

If necessary, a special function or property essential for circuit operation shall be indicated (a) by a supplementary symbol placed within the envelope or adjacent to the symbol, as shown in Style 1 symbols, or (b) included as part of the symbol, as shown in Style 2 symbols in item 8.5.

The orientation of the Style 1 special-property indicators with respect to the basic symbol is critical. See the applications in item 8.5.

8.3.1 Breakdown

Do not rotate or show in mirror-image form.

8.3.2 Tunneling

8.3.3 Backward

8.3.4 Capacitive
8.4 Rules for Drawing Style 1 Symbols

To draw a device symbol, start at an electrode whose polarity is known (usually an emitter) and proceed along the device, showing all of its regions individually. Finally, indicate ohmic connections where required.

NOTE — 8.4A: Numbers, letters, and words in parentheses are to correlate illustrations in the standard; they are not intended to represent device terminal numbering or identification and are not part of the symbol as shown in items 8.5, 8.6, 8.10, and 8.11.

<table>
<thead>
<tr>
<th>Name of Terminal</th>
<th>Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td>A</td>
</tr>
<tr>
<td>Base</td>
<td>B</td>
</tr>
<tr>
<td>Collector</td>
<td>C</td>
</tr>
<tr>
<td>Drain</td>
<td>D</td>
</tr>
<tr>
<td>Emitter</td>
<td>E</td>
</tr>
<tr>
<td>Gate</td>
<td>G</td>
</tr>
<tr>
<td>Cathode</td>
<td>K</td>
</tr>
<tr>
<td>Source</td>
<td>S</td>
</tr>
<tr>
<td>Main terminal*</td>
<td>T</td>
</tr>
<tr>
<td>Substrate (bulk)</td>
<td>U</td>
</tr>
</tbody>
</table>

*Used with bidirectional thyristors. The terminals are differentiated by numerical subscripts 1 and 2, T₁ being the terminal to which the gate trigger signal is referenced, if applicable.

8.4.1 PNP transistor (example of a three-element device)

Construction of symbol by successively using symbols 8.2.4.1, 8.2.5, and 8.2.1.
8.4.2 PNINIP device (example of a complex device with multiple emitters and bases)

Construction of symbol by successively using symbols 8.2.4.1.1, 8.2.7.2, 8.2.7.3, and 8.2.1.1.

8.5 Typical Applications, Two-Terminal Devices

See paragraph A4.11 of the Introduction

See Note 8.4A

8.5.1 Semiconductor diode; semiconductor rectifier diode; metallic rectifier

8.5.2 Capacitive diode (varactor)

8.5.3 Temperature-dependent diode

8.5.4 Photodiode

See item 1.3
8.5.4.1 Photosensitive type

8.5.4.2 Photoemissive type
See also item 11.1.1

8.5.4.3 Bidirectional photodiode; photo-duo-diode (photosensitive type)

8.5.4.3.1 NPN-type

8.5.4.3.2 PNP-type

8.5.4.4 Photosensitive type: 2-segment, with common cathode lead

8.5.4.5 Photosensitive type: 4-quadrant, with common cathode lead
8.5.5 Storage diode

8.5.6 Breakdown diode; overvoltage absorber
See also item 9.3

8.5.6.1 Unidirectional diode; voltage regulator

8.5.6.2 Bidirectional diode

8.5.6.3 Unidirectional negative resistance breakdown diode; trigger diac

8.5.6.3.1 NPN-type

8.5.6.3.2 PNP-type
8.5.6.4 Bidirectional negative-resistance breakdown diode; trigger diac

8.5.6.4.1 NPN-type

8.5.6.4.2 PNP-type

8.5.7 Tunnel and backward diodes

8.5.7.1 Tunnel diode

For this application, Note 8.2.2A does not apply.

8.5.7.2 Backward diode; tunnel rectifier

For this application, Note 8.2.2A does not apply.
8.5.8 Thyristor, reverse-blocking diode-type

8.5.8.1 General

8.5.8.2 Light-activated type

8.5.9 Thyristor, bidirectional diode type; bi-switch

See also symbol 8.6.15

8.5.10 Phototransistor (NPN-type) (without external base connection)

See also symbol 8.6.16, for 3-terminal device
8.5.11 Current regulator

8.5.12 PIN-type diode

NOTE — 8.5.12A: Use symbol 8.5.1 unless essential to show intrinsic region.

8.5.13 Step recovery diode

8.6 Typical Applications, Three- (or more) Terminal Devices

8.6.1 PNP transistor (also PNIP transistor, if omitting the intrinsic region will not result in ambiguity)

See paragraph A4.11 of the Introduction

8.6.1.1 Application: PNP transistor with one electrode connected to envelope (in this case, the collector electrode)

8.6.2 NPN transistor (also NPN transistor, if omitting the intrinsic region will not result in ambiguity)

See paragraph A4.11 of the Introduction
8.6.2.1 Application: NPN transistor with multiple emitters (with 4 emitters shown)

8.6.3 NPN transistor with transverse-biased base
See paragraph A4.11 of the Introduction

8.6.4 PNIP transistor with ohmic connection to the intrinsic region
See paragraph A4.11 of the Introduction

8.6.5 NPIN transistor with ohmic connection to the intrinsic region
See paragraph A4.11 of the Introduction

8.6.6 PNIN transistor with ohmic connection to the intrinsic region
See paragraph A4.11 of the Introduction
8.6.7 NPIP transistor with ohmic connection to the intrinsic region

See paragraph A4.11 of the Introduction

8.6.8 Unijunction transistor with N-type base

See paragraph A4.11 of the Introduction

8.6.9 Unijunction transistor with P-type base

See paragraph A4.11 of the Introduction

8.6.10 Field-effect transistor with N-channel (junction gate and insulated gate)

8.6.10.1 N-channel junction gate

If desired, the junction-gate symbol element may be drawn opposite the preferred source.

See paragraph A4.11 of the Introduction

8.6.10.2 N-channel insulated-gate, depletion-type, single-gate, passive-bulk (substrate) three-terminal device
8.6.10.3 N-channel insulated-gate, depletion-type, single-gate, active-bulk (substrate) internally terminated to source, three-terminal device

8.6.10.4 N-channel insulated-gate, depletion-type, single-gate, active-bulk (substrate) externally terminated, four-terminal device

8.6.10.4.1 Application: N-channel insulated-gate, depletion-type, two-gate, five-terminal device

8.6.10.5 N-channel insulated-gate, enhancement-type, single-gate, active-bulk (substrate) externally terminated, four-terminal device

8.6.10.5.1 Application: N-channel insulated-gate, enhancement-type, two-gate, five-terminal device

8.6.11 Field-effect transistor with P-channel (junction gate and insulated gate)

8.6.11.1 P-channel junction gate

See paragraph A4.11 of the Introduction
8.6.11.2 P-channel insulated-gate, depletion-type, single-gate, passive-bulk (substrate) three-terminal device

8.6.11.3 P-channel insulated-gate, depletion-type, single-gate, active-bulk (substrate) internally terminated to source, three-terminal device

8.6.11.4 P-channel insulated-gate, depletion-type, single-gate, active-bulk (substrate) externally terminated, four-terminal device

8.6.11.4.1 Application: P-channel insulated-gate, depletion-type, two-gate, five-terminal device

8.6.11.5 P-channel insulated-gate, enhancement-type, single-gate, active-bulk (substrate) externally terminated, four-terminal device

8.6.11.5.1 Application: P-channel insulated-gate, enhancement-type, two-gate, five-terminal device

8.6.12 Thyristor, reverse-blocking triode-type, N-type gate; semiconductor controlled rectifier, N-type gate

See paragraph A4.11 of the Introduction
8.6.12.1 General

8.6.12.2 Gate turn-off type

8.6.13 Thyristor, reverse-blocking triode-type, P-type gate; semiconductor controlled rectifier, P-type gate

See paragraph A4.11 of the Introduction

8.6.13.1 General

8.6.13.2 Gate turn-off type
8.6.14 Thyristor, reverse-blocking tetrode-type; semiconductor controlled switch

![Thyristor symbol]

8.6.15 Thyristor, bidirectional triode-type; triac; gated switch

See also symbol 8.5.9

![Triac symbol]

8.6.16 Phototransistor (PNP-type) See also symbol 8.5.10, for 2-terminal device

![Phototransistor symbol]

8.6.17 Darlington transistor (NPN-type)

![Darlington transistor symbol]

8.7 Photosensitive Cell

See paragraph A4.11 of the Introduction

8.7.1 Asymmetrical photoconductive transducer

USE SYMBOL 8.5.4.1

8.7.2 Symmetrical photoconductive transducer (resistive)

USE SYMBOL 2.1.13
8.7.3 Photovoltaic transducer; barrier photocell; blocking-layer cell; solar cell

8.8 Semiconductor Thermocouple

8.8.1 Temperature-measuring

See paragraph A4.11 of the Introduction

8.8.2 Current-measuring

8.9 Hall Element
Hall Generator

See paragraph A4.11 of the Introduction

NOTE — 8.9A: W and X are the current terminals; Y and Z are the voltage output terminals. Letters are for explanation and are not part of the symbol.

If polarity markings (symbol 1.6) are shown, the direction of the magnetic field must be defined.

See Note 8.9A

8.10 Photon-Coupled Isolator

See also symbol 15.8.1

NOTE — 8.10A: T is the transmitter; R is the receiver. The letters are for explanation and are not part of the symbol. Explanatory information should be added to explain circuit operation.
8.10.1 General

See Note 8.10A

8.10.2 Complete isolator (single-package type)

See Note 8.2.9A

8.10.3 Application: Incandescent lamp and symmetrical photoconductive transducer

8.10.4 Application: Photoemissive diode and phototransistor

8.11 Solid-State Thyratron (replacement type)

See symbol 7.3.9

NOTE — 8.11A: If the thyratron replacement has only one cathode lead, see symbol 8.6.13.1, Style 3.

8.11.1 Balanced

8.11.2 Unbalanced
Cross References

Bridge-Type Rectifier

(item 16.3.3)

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

9. Graphic Symbols for Circuit Protectors

9.1 Fuse (one-time thermal current-overload device)

9.1.1 General

9.1.1.1 Fuse, supply side indicated by a thick line

9.1.2 Fuse with alarm contact

NOTE — 9.1.2A: When fuse blows, alarm bus A is connected to power supply bus S. The letters S (supply), L (load), and A (alarm circuit) are for explanation only, and are not part of the symbol.
9.1.3 Isolating fuse-switch; high-voltage primary fuse cutout, dry

9.1.4 High-voltage primary fuse cutout, oil

9.1.5 Isolating fuse-switch for on-load switching

9.1.6 Temperature-sensitive fuse (ambient-temperature operated)

USE SYMBOL 2.12.3

9.2 Current Limiter (for power cable)

The arrowheads in this case are filled.

NOTE — 9.2A: Use appropriate number of single-line diagram symbols.

See Note 9.2A

Avoid conflict with symbol 1.7.3 if used on the same diagram.
9.3 Lightning Arrester
Arrester (electric surge, etc)
Gap

See also symbol 8.5.6

9.3.1 General

9.3.2 Carbon block; telephone protector block

The sides of the rectangle shall be approximately in the ratio of 1 to 2 and the space between rectangles shall be approximately equal to the width of a rectangle.

9.3.3 Electrolytic or aluminum cell

This symbol is not composed of arrowheads.

9.3.4 Horn gap

9.3.5 Protective gap

These triangles shall not be filled.

9.3.6 Sphere gap

9.3.7 Valve or film element
9.3.8 Multigap, general

9.3.9 Application: gap plus valve plus ground, 2-pole

9.4 Circuit Breaker

If it is desired to show the condition causing the breaker to trip, the relay protective-function symbols in item 9.5.1 may be used alongside the breaker symbol.

9.4.1 General

9.4.2 Air circuit breaker, if distinction is needed; for alternating-current circuit breakers rated at 1,500 volts or less and for all direct-current circuit breakers

9.4.3 Network protector

9.4.4 Circuit breaker, other than covered by symbol 9.4.1

The symbol in the right column is for a 3-pole breaker.

NOTE — 9.4.4A: On a power diagram, the symbol may be used without other identification. On a composite drawing where confusion with the general circuit element symbol (item 16.1) may result, add the identifying letters CB inside or adjacent to the square.
9.4.5 Application: 3-pole circuit breaker with thermal-overload device in all 3 poles

9.4.6 Application: 3-pole circuit breaker with magnetic-overload device in all 3 poles

9.4.7 Application: 3-pole circuit breaker, drawout type

9.5 Protective Relay

Fundamental symbols for contacts, coils, mechanical connections, etc, are the basis of relay symbols and should be used to represent relays on complete diagrams.

See RELAY COIL; OPERATING COIL (item 4.5) and RELAY (item 4.30)
9.5.1 Relay protective functions

The following symbols may be used to indicate protective functions, or device-function numbers may be placed in the circle or adjacent to the basic symbol (see American National Standard for Manual and Automatic Station Control, Supervisory, and Associated Telemetering Equipments, C37.2-1970).

NOTE — 9.5.1A: An operating-quantity symbol must be added to the general symbols 9.5.2 through 9.5.6 in accordance with the rules of 9.5.9.

9.5.2 Over, general

[Diagram: Double horizontal line]

9.5.3 Under, general

[Diagram: Single horizontal line with arrow]

9.5.4 Direction, general; directional over

[Diagram: Double horizontal line with arrow]

9.5.5 Balance, general

[Diagram: Double horizontal line with arrow, followed by a triangle]

9.5.6 Differential, general

[Diagram: Double horizontal line with cross]

9.5.7 Pilot wire, general

[Diagram: Line with PW]

9.5.8 Carrier current, general

[Diagram: Line with CC]

9.5.9 Operating quantity

The operating quantity is indicated by the following letters or symbols placed either on or immediately above the relay protective-function symbols shown above.

C Current\(^\text{13}\)

\(^\text{13}\)The use of the letter may be omitted in the case of current, and the absence of such letter presupposes that the relay operates on current.
9.5.10 Ground relays

Relays operative on residual current only are so designated by attaching the ground symbol

\[\text{to the relay protective-function symbol. Note that the zero phase-sequence designation given below may be used instead when desirable.} \]

9.5.11 Phase-sequence quantities

Operations on phase-sequence quantities may be indicated by the use of the conventional subscripts 0, 1, and 2 after the letter indicating the operating quantity.

9.5.12 Applications

9.5.12.1 Overcurrent

9.5.12.2 Directional overcurrent

9.5.12.3 Directional residual overcurrent

9.5.12.4 Undervoltage

9.5.12.5 Power directional
9.5.12.6 Balanced current

9.5.12.7 Differential current

9.5.12.8 Distance

9.5.12.9 Directional distance

9.5.12.10 Overfrequency

9.5.12.11 Overtemperature

9.5.12.12 Phase balance

9.5.12.13 Phase sequence

9.5.12.14 Pilot wire, differential-current
9.5.12.15 Pilot wire, directional-comparison

\[\text{PW} \]

9.5.12.16 Carrier pilot

\[\text{cc} \]

9.5.12.17 Positive phase-sequence undervoltage

\[\text{V} \]

9.5.12.18 Negative phase-sequence overcurrent

\[\text{C}_2 \]

9.5.12.19 Gas-pressure (Buchholz)

\[\text{GP} \]

9.5.12.20 Out-of-step

\[\text{S} \]

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

10. Graphic Symbols for Acoustic Devices

10.1 Audible-Signaling Device

10.1.1 Bell, electrical \[\text{F} \]; telephone ringer \[\text{F} \]

NOTE — 10.1.1A: If specific identification is required, the abbreviation AC (or symbol 1.8.2) or DC (or lower symbol 1.8.1) may be added within or adjacent to the symbol.
10.1.1.1 Single-stroke

10.1.2 Buzzer

10.1.3 Loudspeaker

Horn, Electrical

Siren

Underwater Sound Transducer (with acoustic output)

Sound Reproducer

10.1.3.1 General

10.1.3.2 Application: specific types

If specific identification of loudspeaker types is required, the following letter combinations may be added in the symbol at the locations indicated by the * and the ‡:

* HN Horn, electrical
* HW Howler
* LS Loudspeaker
* SN Siren
‡ EM Electromagnetic with moving coil (moving-coil leads should be identified)
‡ EMN Electromagnetic with moving coil and neutralizing winding (moving-coil leads should be identified)
‡ MG Magnetic armature
‡ PM Permanent magnet with moving coil
10.1.3.3 Loudspeaker-microphone; underwater sound transducer, two-way

10.1.4 Telegraph sounder

10.2 Microphone

Telephone Transmitter

10.2.1 General

10.3 Handset

Operator's Set

10.3.1 General
10.3.2 With push-to-talk switch

10.3.3 3-conductor handset

10.3.4 4-conductor handset

10.3.5 4-conductor handset with push-to-talk switch

10.3.6 Operator’s set

10.4 Telephone Receiver

10.4.1 General

10.4.2 Headset, double
10.4.3 Headset, single

![Headset symbol]

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

11. Graphic Symbols for Lamps and Visual-Signaling Devices

11.1 Lamp

See also item 8.5.4.2

11.1.1 Lamp, general; high source, general

See also item 11.2.7

![Lamp symbol]

NOTES:

11.1.1A — This symbol may be used to represent one or more lamps with or without operating auxiliaries.

11.1.1B — If it is essential to indicate the following characteristics, the specified letter or letters may be inserted within or placed adjacent to the symbol.

A	Amber
B	Blue
C	Clear
G	Green
O	Orange
OP	Opalescent
P	Purple
R	Red
W	White
Y	Yellow
ARC	Arc
EL	Electroluminescent
FL	Fluorescent
HG	Mercury vapor
IN Incandescent
IR Infrared
NA Sodium vapor
NE Neon
UV Ultraviolet
XE Xenon
LED Light-emitting diode

11.1.1C — For polarity-sensitive devices, identify the appropriate lead with the (+) polarity mark.

11.1.2 Fluorescent lamp

11.1.2.1 2-terminal

11.1.2.2 4-terminal

11.1.3 Glow lamp , cold-cathode lamp; neon lamp

11.1.3.1 Alternating-current type

11.1.3.2 Direct-current type

See also ELECTRON TUBE (symbol 7.3.4.1)

11.1.4 Incandescent lamp (incandescent-filament illuminating lamp)

11.1.5 Ballast lamp; ballast tube

The primary characteristic of the element within the circle is designed to vary non-linearly with the temperature of the element.

See paragraph A4.11 of the Introduction
11.1.6 Electronic flash tube (lamp)

11.2 Visual-Signaling Device

11.2.1 Annunciator (general)

11.2.2 Annunciator drop or signal, shutter or grid type

11.2.3 Annunciator drop or signal, ball type

11.2.4 Manually restored drop

11.2.5 Electrically restored drop
11.2.6 Communication switchboard-type lamp; indicating lamp

11.2.7 Indicating, pilot, signaling, or switchboard light; indicator light; signal light

NOTE — 11.2.7A: The asterisk is not part of the circular symbol. Always add the letter or letters for colors specified in Note 11.1.1B within or adjacent to the circle. To avoid confusion with meter or basic relay symbols, add suffix L or IL to the letter or letters, for example, RL or RIL placed within or adjacent to the circle.

If confusion with other circular symbols may occur, the D-shaped symbol should be used.

Avoid conflict with symbols 4.5, 12.1.1, and 13.1.2 if used on the same diagram.

11.2.7.1 Application: green signal light

11.2.8 Jeweled signal light

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.
12. Graphic Symbols for Readout Devices

12.1 Meter

Instrument

NOTE — 12.1A: The asterisk is not part of the symbol. Always replace the asterisk by one of the following letter combinations, depending on the function of the meter or instrument, unless some other identification is provided in the circle and explained on the diagram.

- A Ammeter
- AH Ampere-hour meter
- C Coulombmeter
- CMA Contact-making (or breaking) ammeter
- CMC Contact-making (or breaking) clock
- CMV Contact-making (or breaking) voltmeter
- CRO Oscilloscope
 - Cathode-ray oscillograph
- DB DB (decibel) meter
 - Audio level/meter
- DBM DBM (decibels referred to 1 milliwatt) meter
- DM Demand meter
- DTR Demand-totalizing relay
- F Frequency meter
- GD Ground detector
- I Indicating meter
- INT Integrating meter
- μA or UA Microammeter
- MA Milliammeter
- NM Noise meter
- OHM Ohmmeter
- OP Oil pressure meter
- OSCG Oscillograph, string
- PF Power factor meter
- PH Phasemeter
- PI Position indicator
- RD Recording demand meter
- REC Recording meter
- RF Reactive factor meter
- SY Synchroscope
- t° Temperature meter
- THC Thermal converter
- TLM Telemeter
- TT Total time meter
 - Elapsed time meter
- V Voltmeter
 - Volt-ammeter
 - Voltmeter
- VA Volt-ammeter
12.1.1 Galvanometer

Avoid conflict with symbols 4.5 and 13.1.2 if used on the same diagram.

12.2 Electromagnetically Operated Counter

Message Register

12.2.1 General

12.2.2 With make contact

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.
13. Graphic Symbols for Rotating Machinery

13.1 Rotating Machine

13.1.1 Basic

13.1.2 Generator (general)

Avoid conflict with symbols 12.1.1 and 21.5.1 if used on the same diagram.

13.1.2.1 Generator, direct-current

13.1.2.2 Generator, alternating-current

13.1.2.3 Generator, synchronous

13.1.3 Motor (general)
13.1.3.1 Motor, direct-current

IEC M

13.1.3.2 Motor, alternating-current

IEC M

13.1.3.3 Motor, synchronous

IEC MS

13.1.4 Motor, multispeed

USE SYMBOLS 13.1.3 AND NOTE SPEEDS

13.1.5 Rotating armature with commutator and brushes

13.1.6 Hand generator

IEC G

13.2 Field, Generator or Motor

Either symbol of item 6.2.1 may be used in the following items.

13.2.1 Compensating or commutating

IEC

13.2.2 Series

IEC

14 The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.
13.2.3 Shunt, or separately excited

13.2.4 Permanent magnet

USE SYMBOL 2.8

13.3 Winding Connection Symbols

Motor and generator winding connection symbols may be shown in the basic circle using the following representations.

13.3.1 1-phase

13.3.2 2-phase

13.3.3 3-phase wye (ungrounded)

13.3.4 3-phase wye (ungrounded)

13.3.5 3-phase delta

13.3.6 6-phase diametrical
13.3.7 6-phase double-delta

13.4 Applications: Direct-Current Machines

13.4.1 Separately excited direct-current generator or motor

13.4.2 Separately excited direct-current generator or motor; with commutating or compensating field winding, or both

13.4.3 Compositely excited direct-current generator or motor; with commutating or compensating field winding, or both

13.4.4 Direct-current series motor or 2-wire generator

The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.
13.4.5 16 Direct-current series motor or 2-wire generator; with commutating or compensating field winding, or both

13.4.6 16 Direct-current shunt motor or 2-wire generator

13.4.7 16 Direct-current shunt motor or 2-wire generator; with commutating or compensating field winding, or both

13.4.8 16 Direct-current permanent-magnet-field generator or motor

13.4.9 16 Direct-current compound motor or 2-wire generator or stabilized shunt motor

16 The broken line — — - indicates where line connection to a symbol is made and is not part of the symbol.
13.4.10 17 Direct-current compound motor or 2-wire generator or stabilized shunt motor; with commutating or compensating field winding, or both

13.4.11 17 Direct-current 3-wire shunt generator

13.4.12 17 Direct-current 3-wire shunt generator; with commutating or compensating field winding, or both

13.4.13 17 Direct-current 3-wire compound generator

13.4.14 17 Direct-current 3-wire compound generator; with commutating or compensating field winding, or both

17 The broken line - — - indicates where line connection to a symbol is made and is not part of the symbol.
13.4.15 18 Direct-current balancer, shunt wound

13.4.16 18 Direct-current balancer, compound wound

13.4.17 18 Dynamotor

13.4.18 18 Double-current generator

13.4.19 18 Acyclic generator, separately excited

18The broken line - --- indicates where line connection to a symbol is made and is not part of the symbol.
13.4.20 Regulating generator (rotary amplifier), shunt wound with short-circuited brushes

13.4.21 Regulating generator (rotary amplifier), shunt wound without short-circuited brushes

13.4.22 Regulating generator (rotary amplifier), shunt wound with compensating field winding and short-circuited brushes

13.4.23 Regulating generator (rotary amplifier), shunt wound with compensating field winding, without short-circuited brushes

13.4.24 DC-to-dc rotary converter with common permanent magnetic field

13.4.25 DC-to-dc rotary converter with common field winding

19 The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.
13.5 Applications: Alternating-Current Machines

13.5.1 20 Squirrel-cage induction motor or generator, split-phase induction motor or generator, rotary phase converter, or repulsion motor

13.5.2 20 Wound-rotor induction motor, synchronous induction motor, induction generator, or induction frequency converter

13.5.3 20 Alternating-current series motor

13.5.4 20 Alternating-current series motor, with commutating or compensating field winding, or both

13.5.5 20 1-phase shaded-pole motor

13.5.6 20 1-phase repulsion-start induction motor

20The broken line - --- - indicates where line connection to a symbol is made and is not part of the symbol.
13.5.7
1-phase hysteresis motor

13.5.8
Reluctance motor

13.5.9
1-phase subsynchronous reluctance motor

13.5.10
Magnetoelectric generator, 1-phase; telephone magneto

13.5.11
Shunt-characteristic brush-shifting motor

13.5.12
Series-characteristic brush-shifting motor with 3-phase rotor

13.5.13
Series-characteristic brush-shifting motor with 6- or 8-phase rotor

21 The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.
13.5.14 Ohmic-drop exciter with 3- or 6-phase input

13.5.15 Ohmic-drop exciter with 3- or 6-phase input, with output leads

13.5.16 3-phase regulating machine

13.5.17 Phase shifter with 1-phase output

See PHASE SHIFTER (item 16.6) and TRANSFORMER (item 6.4)

13.5.18 Phase shifter with 3-phase output

See PHASE SHIFTER (item 16.6) and TRANSFORMER (item 6.4)
13.6 Applications: Alternating-Current Machines with Direct-Current Field Excitation

13.6.1 22 Synchronous motor, generator, or condenser

13.6.2 22 Synchronous motor, generator, or condenser with neutral brought out

13.6.3 22 Synchronous motor, generator, or condenser with both ends of each phase brought out

13.6.4 22 Double-winding synchronous generator, motor, or condenser

13.6.5 22 Synchronous-synchronous frequency changer

22 The broken line - - - indicates where line connection to a symbol is made and is not part of the symbol.
13.6.6 23 Synchronous-induction frequency changer

13.7 Applications: Alternating- and Direct-Current Composite

13.7.1 23 Synchronous or regulating-pole converter

13.7.2 23 Synchronous booster or regulating-pole converter; with commutating or compensating field windings, or both

13.7.3 23 Synchronous converter, shunt-wound with commutating or compensating field windings, or both

23 The broken line — — - indicates where line connection to a symbol is made and is not part of the symbol.
13.7.4 Synchronous converter, compound-wound with commutating or compensating field windings, or both

13.7.5 Motor converter

13.8 Synchro

If identification is required, a letter combination from the following list shall be placed adjacent to the symbol to indicate the type of synchro.

- **CDX** Control-differential transmitter
- **CT** Control transformer
- **CX** Control transmitter
- **TDR** Torque-differential receiver
- **TDX** Torque-differential transmitter
- **TR** Torque receiver
- **TX** Torque transmitter
- **RS** Resolver

If the outer winding is rotatable in bearings, the suffix B shall be added to the above letter combinations.

13.8.1 General

Complete symbols may also be formed by using the winding symbol 6.2.1.

The broken line - - - - indicates where line connection to a symbol is made and is not part of the symbol.
13.8.2 Synchro, control transformer; synchro, receiver \[\text{\includegraphics[width=0.1\textwidth]{synchro.png}}\] synchro, transmitter \[\text{\includegraphics[width=0.1\textwidth]{synchro.png}}\]

13.8.3 Synchro, differential receiver; synchro, differential transmitter \[\text{\includegraphics[width=0.1\textwidth]{synchro.png}}\]

13.8.4 Synchro, resolver \[\text{\includegraphics[width=0.1\textwidth]{synchro.png}}\]

Type shown: 2-phase rotor and 2-phase stator

Cross References

14. Graphic Symbols for Mechanical Functions

14.1 Mechanical Connection

Mechanical Interlock

The preferred location of the mechanical connection is as shown in the various applications, but other locations may be equally acceptable.

14.1.1 Mechanical connection

The top symbol consists of short dashes.

NOTE — 14.1.1A: The short parallel lines should be used only where there is insufficient space for the short dashes in series. See symbol 4.9.3 for application.
14.1.2 Mechanical connection or interlock with fulcrum

These are short dashes.

14.1.3 Mechanical interlock, other

INDICATE BY A NOTE

14.2 Mechanical Motion

14.2.1 Translation, one direction

14.2.2 Translation, both directions

14.2.3 Rotation, one direction

14.2.3.1 Application: angular motion, applied to open contact (make), symbol 4.3.2

NOTE — 14.2.3.1A: The asterisk is not part of the symbol. Explanatory information (similar to type shown) may be added if necessary to explain circuit operation.

14.2.4 Rotation, both directions

14.2.4.1 Alternating or reciprocating

For application see symbol 2.3.7.7
14.2.5 Rotation designation (applied to a resistor)

CW indicates position of adjustable contact at the limit of clockwise travel viewed from knob or actuator end unless otherwise indicated.

NOTE — 14.2.5A: The asterisk is not part of the symbol. Always add identification within or adjacent to the rectangle.

14.2.6 Rotational speed or angular velocity dependence, shown with rotational arrow

See symbol 4.24.4 for application

14.3 Clutch
Brake

14.3.1 Clutch disengaged when operating means (not shown) is deenergized or nonoperated

14.3.2 Clutch engaged when operating means (not shown) is deenergized or nonoperated
14.3.3 Brake applied when operating means (not shown) is energized

14.3.4 Brake released when operating means (not shown) is energized

14.4 Manual Control

14.4.1 General

14.4.2 Operated by pushing

14.4.3 Operated by pushing and pulling (push-pull)

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.
15. Graphic Symbols Commonly Used in Connection with VHF, UHF, SHF Circuits

15.1 Discontinuity (Introducing intentional wave reflection)

A component that exhibits throughout the frequency range of interest the properties of the type of circuit element indicated by the symbol within the triangle.

Commonly used for coaxial and waveguide transmission.

15.1.1 General

15.1.1.1 Terminal discontinuity (one-port)

15.1.1.2 Discontinuity (two-port)

15.1.2 Equivalent series element, general, in series with guided transmission path

15.1.2.1 Capacitive reactance

The broken line - --- indicates where line connection to a symbol is made and is not part of the symbol.
15.1.2.2 Inductive reactance

15.1.2.3 Resistance

15.1.2.4 Inductance-capacitance circuit with zero reactance at resonance

15.1.2.5 Inductance-capacitance circuit with infinite reactance at resonance

15.1.3 Equivalent shunt element, general, in parallel with guided transmission path

15.1.3.1 Capacitive susceptance

15.1.3.2 Inductive susceptance
15.1.3.3 Conductance

15.1.3.4 Inductance-capacitance circuit having zero reactance, infinite susceptance at resonance

15.1.3.5 Inductance-capacitance circuit having infinite reactance, zero susceptance at resonance

15.1.4 Slide-screw tuner

15.1.5 E-H tuner

15.1.6 Multistub tuner with 3 stubs

15.2 Coupling

Commonly used in coaxial and waveguide diagrams.
15.2.1 Coupling by aperture with an opening of less than full waveguide size

Transmission loss may be indicated.

NOTE — 15.2.1A: The asterisk is not part of the symbol. Always replace the asterisk by E, H, or HE, depending on the type of coupling.

E indicates that the physical plane of the aperture is perpendicular to the transverse component of the major E lines.

H indicates that the physical plane of the aperture is parallel to the transverse component of the major E lines.

HE indicates coupling by all other kinds of apertures.

15.2.1.1 Application: E-plane coupling by aperture to space

15.2.1.2 Application: E-plane coupling by aperture; 2 ends of transmission path available

15.2.1.3 Application: E-plane coupling by aperture; 3 ends of transmission path available

15.2.1.4 Application: E-plane coupling by aperture; 4 ends of transmission path available

15.2.2 Coupling by loop to space

15.2.3 Coupling by loop to guided transmission path
15.2.4 Coupling by loop from coaxial to circular waveguide with direct-current grounds connected

![Diagram of coupling by loop from coaxial to circular waveguide]

15.2.5 Coupling by probe to space

See OPEN CIRCUIT (item 3.8.1)

![Diagram of coupling by probe to space]

15.2.6 Coupling by probe to guided transmission path

![Diagram of coupling by probe to guided transmission path]

15.2.7 Coupling by probe from coaxial to rectangular waveguide with direct-current grounds connected

![Diagram of coupling by probe from coaxial to rectangular waveguide]

15.3 Directional Coupler

Commonly used in coaxial and waveguide diagrams.

The arrows indicate the directions of power flow.

Number of coupling paths, type of coupling, and transmission loss may be indicated.

15.3.1 General

![Diagram of general directional coupler]

15.3.2 Application: E-plane aperture coupling, 30-decibel transmission loss

![Diagram of E-plane aperture coupling with 30-dB transmission loss]
15.3.3 Application: loop coupling, 30-decibel transmission loss

![Loop Coupling Diagram](image)

15.3.4 Application: probe coupling, 30-decibel transmission loss

![Probe Coupling Diagram](image)

15.3.5 Application: resistance coupling, 30-decibel transmission loss

![Resistance Coupling Diagram](image)

15.3.6 Application: directional coupler showing coupling loss and directivity

First value is coupling loss; second value is directivity.

![Directional Coupler Diagram](image)

15.4 Hybrid
Directionally Selective Transmission Devices

15.4.1 Hybrid (general)

![Hybrid Diagram](image)

15.4.2 Hybrid, junction (magic T)

Commonly used in coaxial and waveguide transmission

![Magic T Diagram](image)
15.4.3 Application: rectangular waveguide and coaxial coupling

15.4.4 Hybrid, circular (basic)

NOTE — 15.4.4A: The asterisk is not part of the symbol. Always replace the asterisk by E, H, or HE. E indicates there is a principal E transverse field in the plane of the ring. H indicates that there is a principal H transverse field in the plane of the ring. HE shall be used for all other cases.

An arm that has coupling of a different type from that designated above shall be marked according to COUPLING (item 15.2.1).

Critical distances should be labeled in terms of guide wavelengths.

15.4.4.1 Application: 4-arm circular hybrid

15.4.4.2 Application: rectangular waveguide circular hybrid with 3 arms coupling in the E plane and a fourth arm coupling in the H plane

15.5 Mode Transducer

Commonly used in coaxial and waveguide diagrams.

If it is desired to specify the type of transmission, appropriate indications may be added.
15.5.1 General

15.5.2 Application: transition from rectangular to circular waveguide

15.5.3 Application: transition from rectangular waveguide to coaxial cable with mode suppression and direct-current grounds connected

15.6 Mode Suppressor

Commonly used in coaxial and waveguide transmission.

15.6.1 General

15.7 Rotary Joint (radio-frequency rotary coupler)

15.7.1 General: with rectangular waveguide system

NOTE — 15.7.1A: The asterisk is not part of the symbol. If necessary, a transmission path recognition symbol may be added. See symbol 3.6.

15.7.1.1 Application: coaxial type in rectangular waveguide system
15.7.1.2 Application: circular waveguide type in rectangular waveguide system

![Diagram]

15.8 Nonreciprocal Devices

15.8.1 Isolator

See also symbol 8.10

![Diagram]

15.8.2 Nonreciprocal directional phase shifter

![Diagram]

15.8.3 Gyrator

The longer arrow indicates the direction of propagation in which the required phase change occurs.

![Diagram]

15.8.4 Circulator, fixed direction

Arrowhead indicates direction of power flow from any input to next adjacent arm but not to any other arm. Circulator may have three or more ports.

![Diagram]

15.8.4.1 Reversible direction

Current entering the coil at the end marked with the dot causes the energy in the circulator to flow in the direction of the arrowhead marked with the dot.
15.8.5 Field-polarization rotator

Arrow indicates direction of rotation of electric field when viewed in direction of signal flow.

15.8.6 Field-polarization amplitude modulator

15.9 Resonator
Tuned Cavity

Excluding piezoelectric and magnetostriction devices.

15.9.1 General

Commonly used for coaxial and waveguide transmission.

15.9.2 Application: resonator with mode suppression coupled by an E-plane aperture to a guided transmission path and by a loop to a coaxial path

15.9.3 Application: tunable resonator having adjustable Q coupled by a probe to a coaxial system
15.9.4 Application: tunable resonator with direct-current ground connected to an electron device and adjustably coupled by an E-plane aperture to a rectangular waveguide

15.10 Resonator (cavity-type) Tube

15.10.1 Single-cavity envelope and grid-type associated electrodes

15.10.2 Double-cavity envelope and grid-type associated electrodes

15.10.3 Multicavity magnetron anode and envelope

15.11 Magnetron

15.11.1 Resonant type with coaxial output
15.11.2 Transit-time split-plate type with stabilizing deflecting electrodes and internal circuit

15.11.3 Tunable, aperture coupled

15.12 Velocity-Modulation (velocity-variation) Tube

15.12.1 Reflex klystron, integral cavity, aperture coupled

15.12.2 Double-cavity klystron, integral cavity, permanent externally ganged tuning, loop coupled (coupling loop may be shown inside if desired).

See symbol 15.2.2

15.13 Transmit-Receive (TR) Tube

Gas-filled, tunable integral cavity, aperture coupled, with starter.
15.14 Traveling-Wave-Tube

15.14.1 Forward-wave traveling-wave-tube amplifier shown with four grids, having slow-wave structure with attenuation, magnetic focusing by external permanent magnet, rf input and rf output coupling, each by E-plane aperture to external rectangular waveguide.

15.14.2 Forward-wave traveling-wave-tube amplifier shown with four grids, having slow-wave structure with attenuation, magnetic focusing by external permanent magnet, rf input and rf output coupling, each by inductive coupling

15.14.3 Forward-wave traveling-wave-tube amplifier shown with four grids, having slow-wave structure with attenuation, external electromagnetic focusing, rf input and rf output coupling, even by external cavity and loop coupling to a coaxial path
15.14.4 Forward-wave traveling-wave-tube amplifier shown with four grids, having slow-wave structure with attenuation, magnetic focusing by external permanent magnet, rf input and rf output coupling, each by direct connection from slow-wave structure to a coaxial path

15.14.5 Forward-wave traveling-wave-tube amplifier shown with four grids, having bifilar slow-wave structure with attenuation, electrostatic focusing, rf input and rf output coupling, each by inductive coupling

15.14.6 Backward-wave traveling-wave-tube amplifier shown with two grids, having slow-wave structure with attenuation, sole (beam-aligning electrode), magnetic focusing by external permanent magnet, rf input and rf output coupling, each by E-plane aperture to external rectangular waveguide

15.14.7 Backward-wave traveling-wave-tube oscillator shown with two grids, having slow-wave structure with attenuation, sole (beam-aligning electrode), magnetic focusing by external permanent magnet, rf output coupling by inductive coupling
15.14.8 Backward-wave traveling-wave-tube oscillator shown with two grids, having slow-wave structure with attenuation, sole (beam-aligning electrode), magnetic focusing by external permanent magnet, rf output coupling by inductive coupling, with slow-wave structure connected internally to collector

![Backward-wave traveling-wave-tube oscillator](image)

15.15 Balun

15.15.1 General

![Balun general](image)

15.15.2 Application: balun connected between a balanced dipole and unbalanced coaxial cable

![Balun application](image)

15.16 Filter

15.16.1 Mode filter

![Mode filter](image)

15.16.2 Frequency filter (bandpass)

See also symbol 16.1.1.2

![Frequency filter](image)

15.17 Phase Shifter (matched)

See also symbols 15.8.2 and 16.6

The broken line - — - indicates where line connection to a symbol is made and is not part of the symbol.
15.18 Ferrite Bead Ring

See also symbol 6.1.4

NOTE — 15.18A: If equivalent circuits must be shown within the symbol, the size or the aspect ratio of the original symbol may be altered providing its distinctive shape is retained.

15.18.1 General

15.18.2 Application: with equivalent circuit (LC network) shown

15.19 Line Stretcher (with female connectors shown)

Cross References

Bifilar Slow-Wave Structure (item 2.6.4)
Capacitive Termination (item 2.2.10)
Coaxial Cable, Recognition Symbol (item 3.1.9)
Inductive Termination (item 6.2.7)
Intentional Isolation of DC Path in Coaxial or Waveguide Applications (item 3.5)
Permanent Magnet (item 2.8)
Resistive Termination (item 2.1.11)
Shunt Capacitor (item 2.2.11)
Shunt Inductor (item 6.2.6)
Shunt Resistor (item 2.1.10)
Strip-Type Transmission Line (item 3.7)
Termination (item 3.8)
Waveguide (item 3.6)
Waveguide Flanges (item 5.7)

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

16. Graphic Symbols for Composite Assemblies

16.1 Circuit Assembly
Circuit Subassembly
Circuit Element

NOTES:

16.1A — The asterisk is not part of the symbol. Always indicate the type of apparatus by appropriate words or letters in the rectangle.

16.1B — If identification, electrical values, location data, and similar information must be noted within a symbol, the size or the aspect ratio of the original symbol may be altered providing its distinctive shape is retained.

16.1C — The use of a general circuit-element symbol is restricted to the following:

a) Diagrams drawn in block form.

b) A substitute for complex circuit elements when the internal operation of the circuit element is not important to the purpose of the diagram.

c) Applications where a specific graphic symbol, or the parts to devise a suitable build-up, do not appear elsewhere in this standard.

16.1.1 General

* See Note 16.1A

16.1.1.1 Accepted abbreviations from ANSI Z32.13-1950 may be used in the rectangle.

16.1.1.2 The following letter combinations may be used in the rectangle:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>Clock</td>
</tr>
<tr>
<td>EQ</td>
<td>Equalizer</td>
</tr>
<tr>
<td>FAX</td>
<td>Facsimile set</td>
</tr>
<tr>
<td>FL</td>
<td>Filter</td>
</tr>
<tr>
<td>FL-BE</td>
<td>Filter, band-elimination</td>
</tr>
<tr>
<td>FL-BP</td>
<td>Filter, bandpass</td>
</tr>
<tr>
<td>FL-HP</td>
<td>Filter, high-pass</td>
</tr>
<tr>
<td>FL-LP</td>
<td>Filter, low-pass</td>
</tr>
<tr>
<td>IND</td>
<td>Indicator</td>
</tr>
<tr>
<td>PS</td>
<td>Power supply</td>
</tr>
<tr>
<td>RG</td>
<td>Recording unit</td>
</tr>
</tbody>
</table>
16.2 Amplifier

See also DIRECT-CURRENT MACHINES (symbols 13.4.20 to 13.4.23)

16.2.1 General

The triangle is pointed in the direction of transmission.

The symbol represents any method of amplification (electron tube, solid-state device, magnetic device, etc).

NOTE — 16.2.1A: If identification, electrical values, location data, and similar information must be noted within a symbol, the size or aspect ratio of the original symbol may be altered providing its distinctive shape is retained.

Amplifier use may be indicated in the triangle by words, standard abbreviations, or a letter combination from the following list:

BDG Bridging
BST Booster
CMP Compression
DC Direct-current
EXP Expansion
LIM Limiting
MON Monitoring
PGM Program
PRE Preliminary
PWR Power
TRQ Torque

16.2.2 Magnetic amplifier
16.2.3 Application: amplifier with two inputs

16.2.4 Application: amplifier with two outputs

16.2.5 Application: amplifier with adjustable gain

16.2.6 Application: amplifier with associated attenuator

16.2.7 Application: amplifier with associated power supply

16.2.8 Application: amplifier with external feedback path
16.3 Rectifier

See ELECTRON TUBE (item 7.1), SEMICONDUCTOR DIODE (symbol 8.5.1), and SEMICONDUCTOR DEVICE (item 8.1)

16.3.1 General

NOTES:

16.3.1A — Triangle points in direction of forward (easy) current as indicated by a direct-current ammeter, unless otherwise noted adjacent to the symbol. Electron flow is in the opposite direction.

16.3.1B — This symbol represents any method of rectification (electron tube, solid-state device, electrochemical device, etc).

See Notes 16.3.1A and B

16.3.2 Controlled

See Notes 16.3.1A and B

16.3.3 Bridge-type rectifier

See item 8.5.1

16.3.4 On connection or wiring diagrams, rectifier may be shown with terminals and polarity marking. Heavy line may be used to indicate nameplate or positive-polarity end.

For connection or wiring diagram

16.4 Repeater (includes Telephone Repeater)

16.4.1 1-way repeater

Triangle points in the direction of transmission.
16.4.2 2-wire, 2-way repeater

16.4.3 2-wire, 2-way repeater with low-frequency bypass

16.4.4 4-wire, 2-way repeater

16.5 Network
Artificial Line (other than delay line)

16.5.1 General

16.5.2 Network, low-voltage power

16.6 Phase Shifter
Phase-Changing Network

For power circuits see ALTERNATING-CURRENT MACHINES (symbols 13.5.17 and 13.5.18)

See also symbol 15.17
16.6.1 General

16.6.2 3-wire or 3-phase

16.6.3 Application: adjustable

16.6.4 Differential phase shifter

Phase shift ϕ in direction of arrowhead; magnitudes shall be indicated.

16.6.5 Application: adjustable

16.7 Chopper \Box

NOTES:

16.7A — The explanatory words are not part of the symbol.

16.7B — When diagram is other than single line, show connections as required for a specific device.
16.8 Diode-Type Ring Demodulator
Diode-Type Ring Modulator

16.9 Gyro
Gyroscope
Gyrocompass

16.10 Position Indicator

16.10.1 DC synchro type

16.10.2 Inductor type
16.11 Position Transmitter

16.11.1 Desynn type (dc synchro type)

16.11.2 Inductor type

16.12 Fire Extinguisher Actuator Heads

16.12.1 Single head with connectors

16.12.2 Double head with connectors

Cross References

Oscillator (item 2.9)

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.
17. Graphic Symbols for Analog and Digital Logic Functions

17.1 Operational Amplifier

17.2 Summing Amplifier
(4 inputs and 1 output shown)

17.3 Integrator (Amplifier)
(4 inputs and 1 output shown)

NOTES:
17.3A — The asterisk is not part of the symbol. Always add identification within or adjacent to the circle.
17.3B — The letters IC mean Initial Conditions.
17.4 Electronic Multiplier

17.4.1 Two dependent multipliers

17.5 Electronic Divider

17.6 Electronic Function Generator

17.7 Generalized Integrator

17.8 Positional Servomechanism

Avoid conflict with item 2.6 if used on the same diagram.

NOTE — 17.8A: Dashed line indicates positioned in accordance with an input signal.
17.9 Function Potentiometer

Cross References

18. Graphic Symbols for Digital Logic Functions

18.1 Digital Logic Functions

(See cross references)

Cross References

The following standards do not constitute a part of this standard; they are listed for reference purposes only:

NEMA Standard, Industrial Controls and Systems ICS-1970 with Revision 5, July 1975

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

19. Graphic Symbols for Special-Purpose Maintenance Diagrams

19.0 Introduction

The graphic symbols shown in this section were developed primarily for use on special-purpose maintenance diagrams, such as symbolic integrated maintenance-type diagrams, to provide detailed maintenance and operating information. See also item 23.1(3) for reference document. Use on other types of diagrams, however, is recommended if necessary to emphasize particular functions as defined in this section.27

See paragraph A4.5 of the Introduction

27The symbols shown in this section have comparable meanings or applications when used for drawings in mechanical, medical, or other disciplines or fields.
19.1 Data-Flow Code Signals

NOTE — 19.1A: Use only if essential to provide detailed maintenance and operation information (such as symbolic integrated maintenance manual diagrams).

19.1.1 Functional flow path

NOTE — 19.1.1A: Emphasis is required when it is necessary to differentiate between two relatively significant functional flow paths.

19.1.1.1 Major (most significant)

19.1.1.2 Minor (least significant)

19.1.2 Signal code

NOTE — 19.1.2A: All signal-code symbols shall be drawn on the functional flow path lines, e.g.,

19.1.2.1 Normal

NOTE — 19.1.2.1A: The asterisk is not part of the symbol. Add an identification code letter when necessary for clarity.

19.1.2.1.1 Application: emergency mode

19.1.2.1.2 Application: automatic mode

19.1.2.2 Secondary flow; power distribution
19.1.2.3 Reference signal voltage; reference frequency

19.1.2.4 Signal to energize relay

19.1.2.5 Transmitter pulse; pulse-forming network, discharge path, or subsequent high-level modulation pulse

NOTE — 19.1.2.5A: This symbol shall be used only on a major (most significant) functional flow path.

19.1.2.6 Gating; synchronizing signal; low-level modulating signal

NOTE — 19.1.2.6A: This symbol shall be used only on a minor (least significant) functional flow path.

19.1.2.7 Test signal; signal used to light a lamp or provide a meter reading

19.1.2.8 Feedback

NOTE — 19.1.2.8A: The arrowheads shall be placed close together.

19.1.3 Fault-signal code

NOTE — 19.1.3A: All fault signals shall use the signal-code symbols shown in items 19.1.2 through 19.1.2.6, except that they are not to be filled in.

19.1.3.1 Application: fault-isolation signal to relay
19.2 Functional Circuits

See Note 19.1A

19.2.1 Amplifier circuit (such as voltage amplifier, power amplifier etc.)

NOTES:

19.2.1A — This symbol represents an active circuit (of one or more stages) which changes the voltage or power level of the incoming signal, and contains one or more non-linear active elements, such as an electron tube, transistor, or diode.

19.2.1B — The asterisk is not part of the symbol. A circuit identifier code should be added for proper identification of the basic symbol.

19.2.2 Signal generator; signal processor

NOTE — 19.2.2A: This symbol represents an active circuit (of one or more stages) which generates a signal or processes an incoming signal in a manner other than to change the signal voltage or power level, e.g., oscillator, multivibrator, mixer, etc. Such circuits contain one or more active elements, such as an electron tube, transistor, or diode.

19.2.3 Linear element; linear network

NOTE — 19.2.3A: This symbol represents a resistor, a capacitor, or a network consisting of any combination of these linear elements, such as a filter network, voltage divider, pulse-forming network, etc.

19.2.4 Relay contacts

*See Note 19.2.1B
19.2.5 Relay coil or operating coil

\[\text{\textbf{*See Note 19.2.1B}} \]

19.2.6 Switch

\[\text{\textbf{*See Note 19.2.1B}} \]

19.2.7 Digital logic elements

See Section 18

19.2.8 Composite circuit (other than those covered by symbols 19.2.1 through 19.2.6)

\[\text{\textbf{*See Note 19.2.1B}} \]

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

20. Graphic Symbols Commonly Used on System Diagrams, Maps, and Charts

20.1 Radio Station

Other antenna symbols may be used to indicate specific types.

NOTE — 20.1A: The asterisk is not part of the symbol; identification of the type of station may be added within or adjacent to the symbol.
20.1.1 General

* See Note 20.1A

20.1.2 Portable

20.1.3 Mobile

20.1.4 Direction-finding

20.1.5 Radio beacon
20.1.6 Controlling

20.1.7 Passive relay

20.2 Space Station

20.2.1 General

20.2.2 Active space station

20.2.3 Passive space station
20.2.4 Earth station used for tracking a space station (shown with a paraboloidal antenna)

![Diagram of a paraboloidal antenna with an IEC symbol]

20.2.5

Application: earth station of a communication service via space station

![Diagram of a communication service via space station with an IEC symbol]

20.3 Exchange Equipment

20.3.1 General

NOTE — 20.3.1A: The asterisk is not part of the symbol. Replace the asterisk with information to specify a particular application.

![Diagram of automatic switching with an IEC symbol]

* See Note 20.3.1A

20.3.2 Automatic switching

![Diagram of a manual switchboard with an IEC symbol]

20.3.3 Manual switchboard

20.4 Telegraph Repeater

The letter “T” may be omitted if no confusion will result.
20.4.1 One-way simplex operation

20.4.2 Two-way simplex operation

20.4.3 Duplex operation

20.4.4 Qualifying symbols

The following symbols are restricted to use with the symbols in item 20.4 of this standard.

20.4.4.1 Polar direct-current (double current)

20.4.4.2 Neutral direct-current (single current)

20.4.4.3 Alternating-current

20.4.5 Applications:

20.4.5.1 Polar direct-current for duplex operation
20.4.5.2 Polar direct-current/neutral direct-current for one-way simplex operation

20.4.5.3 Polar direct-current/alternating-current for one-way simplex operation

20.4.5.4 Regenerative type for one-way simplex operation

20.5 Telegraph Equipment

20.5.1 General

NOTE — 20.5.1A: The letter “T” may be replaced by a suitable qualifying symbol from item 20.5.6.

20.5.2 Transmitter

20.5.3 Receiver
20.5.4 Two-way simplex

20.5.5 Duplex

20.5.6 Qualifying symbols

The following symbols are restricted to use with the symbols in Section 20.5 of this standard.

20.5.6.1 Tape printing

20.5.6.2 Tape perforating; perforated tape

20.5.6.3 Simultaneous printing on and perforating of one tape

20.5.6.4 Page printing

20.5.6.5 Keyboard

20.5.6.6 Facsimile
20.5.7 Applications:

20.5.7.1 Tape-printing receiver

20.5.7.2 Tape-printing receiver with keyboard transmitter

20.5.7.3 Printing reperforator

20.5.7.4 Page-printing receiver

20.5.7.5 Page-printing receiver with keyboard transmitter

20.5.7.6 Facsimile receiver

20.5.7.7 Keyboard perforator
20.5.7.8 Automatic transmitter using perforated tape

![Diagram of automatic transmitter using perforated tape]

20.5.7.9 Separate reperforator and automatic transmitter with continuous tape feed

![Diagram of separate reperforator and automatic transmitter with continuous tape feed]

20.6 Telephone Set

20.6.1 General

![Diagram of general telephone set]

20.6.2 Local-battery

![Diagram of local-battery telephone set]

20.6.3 Common-battery

![Diagram of common-battery telephone set]

20.6.4 Dial-type

NOTE — 20.6.4A: The dots may be omitted if no confusion would result.

![Diagram of dial-type telephone set]

20.6.5 Pushbutton dialing

![Diagram of pushbutton dialing telephone set]
20.6.6 With two or more extension lines

20.6.7 With coin box

20.6.8 With ringing generator

20.6.9 Loudspeaker-type

20.6.10 Amplifier-type

20.6.11 Sound-powered

20.6.12 Key or pushbutton type with special facilities (other than dialing or multiline operation)
Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).
2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.
3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

21. Graphic Symbols Commonly Used on System Diagrams, Maps, and Charts

21.1 Generating Station

NOTES:

21.1A — Symbols for “planned” applications appear on the left; symbols for “in service” applications appear on the right.
21.1B — The preferred symbol is the square, but if necessary, a rectangle may be used.
21.1C — Relative sizes of symbols are shown. Symbol size may be reduced for small-size diagrams. See also paragraph A4.5 of the Introduction.

21.1.1 General

See note 21.1A

21.2 Hydroelectric Generating Station

See Note 21.1A

21.2.1 General

21.2.2 Run of river
21.2.3 With storage

21.2.4 With pumped storage

21.3 Thermoelectric Generating Station

See Note 21.1A

21.3.1 General

21.3.2 Coal or lignite fueled

21.3.3 Oil or gas fueled

21.3.4 Nuclear energy fueled
21.3.5 Geothermic

21.4 Prime Mover (qualifying symbols)
Use if essential to show the type of prime mover in a generating station.
See Note 21.1A

21.4.1 Gas turbine

21.4.1.1 Application: shown for oil- or gas-fueled generating station

21.4.2 Reciprocating engine

21.4.2.1 Application: shown for oil- or gas-fueled generating station

21.5 Substation
See Note 21.1A

21.5.1 General
Avoid conflict with symbol 13.1.1 if used on the same diagram.
21.5.2 Rectifier substation

Use if essential to show type of equipment.

Cross References

NOTES:

1 — See Introduction for general information (note especially A3.1).

2 — Symbols for single-line (one-line) diagrams appear at the left, symbols for complete diagrams at the right, and symbols suitable for both purposes are centered in each column.

3 — For centered figures with symbols appearing side by side, the symbol on the left-hand side should be considered to be for a single line (one-line) diagram and the symbol on the right-hand side for a complete diagram, i.e., 1.5.1.

22. Class Designation Letters

for use in assignment of reference designations for electrical and electronics parts and equipments as described in ANSI Y32.16-1975, Reference Designations for Electrical and Electronics Parts and Equipments

22.1 Class Designation Letter

The letters identifying the class of an item shall be selected in accordance with the list in paragraph 22.4.

For reference purposes, see also alphabetical listings of the items and other common and colloquial names in the index.

Graphic symbols do not appear in this standard for H, HP, N, WT, and some MP (listed in paragraph 22.4) because they apply to items beyond the scope of this standard.

Certain item names and designating letters may apply to either a part or an assembly.

22.2 Special Considerations for Class Designation Letter Assignment

22.2.1 Actual versus intended function

If a part serves a purpose other than its generally intended one, the function actually performed shall be represented by the graphic symbol used on the schematic diagram; the class letter shall be chosen from the list in paragraph 22.4 and shall be indicative of its physical characteristics. For example, a semiconductor diode used as a fuse would be

28 Device function designations for power switchgear, industrial control, and industrial equipment use are not covered by this standard. For typical application of these device function designations, see:

represented by the graphic symbol for a fuse (actual function), but the class letter would be D or CR (class of part). If a part has a dual function, the class letter for the principal physical characteristic of the part shall apply.

22.2.2 Assembly versus subassembly

The term subassembly as used herein shall apply equally to an assembly.

22.2.3 Subassembly versus individual part

A group of parts shall not be treated as a subassembly unless it is one or more of the following:

a) A plug-in item.
b) A significant item covered by a separate schematic.
c) A multiapplication item.
d) Likely to be handled as a replaceable item for maintenance purposes.

22.2.4 Specific versus general

The letters A and U (for assembly) shall not be used if more specific class letters are listed in paragraph 22.4 for a particular item.

22.2.5 Inseparable subassemblies

Potted, embedded, riveted, or hermetically sealed subassemblies, modular assemblies, printed circuit boards, and integrated circuit packages and similar items which are ordinarily replaced as a single item of supply shall be treated as parts. They shall be assigned the class letter U, unless a more specific class letter is applicable.

22.3 Item Names

In the alphabetically arranged class letter list of paragraph 22.4, item names approved in the Federal Item Identification Guide, Cataloging Handbook H6-1, as of the date of this edition (though additional modifiers may be necessary), are indicated by the symbol \[\text{[symbol]}\]. For definitions which are not contained in Handbook H6-1, see American National Standard C42.100.

22.4 Class Designation Letters: Alphabetical List

Parts not specifically included in this list shall be assigned a letter or letters from the list below for the part or class most similar in function.

Designations for general classes of parts are marked with an asterisk (*) to facilitate designation of parts not specifically included in this standard.
A†
(see also U and 22.2.4)
electronic divider
electronic function generator (other than rotating)
electronic multiplier
facsimile set
field-polarization amplitude modulator
field-polarization rotator
general circuit element
gyroscope
integrator
positional servomechanism
sensor (transducer to electric power)
separable assemblyc
separable subassembly
television set
television station
teleprinter
teletypewriter

AR
amplifier (other than rotating)
repeater

AT
bolometer
capacitive termination
fixed attenuator
inductive termination
isolator (nonreciprocal device)
pad
resistive termination

B
blower
motor
synchro

BT
barrier photocell
battery
battery cell
blocking layer cell
photovoltaic transducer
solar cell

C
capacitor bushing
capacitor

CB
circuit breaker
network protector

CP
connector adapter
coupling (aperture, loop, or probe)
junction (coaxial or waveguide)
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| D or CR | asymmetrical varistor
crystal diode
current regulator (semiconductor
device)
diode (semiconductor type)
diode rectifier (semiconductor type)
diode-type ring demodulator
diode-type ring modulator
metallic rectifier
photodiode (photosensitive type)
stabistor
thyristor (semiconductor diode
type)
varactor |
| D or VR | breakdown diode (voltage
regulator)
overvoltage absorber |
| DC | directional coupler |
| DL | delay function
delay line
slow-wave structure |
| DS | alphanumeric display device
annunciator
electrically restored drop
general light source
indicator (excluding meter or
thermometer)
lamp (excluding heating lamp)
light-emitting solid-state device
manually restored drop
photodiode (photoemissive type)
signal light
visual alarm
visual indicator
visual signaling device |
E* aluminum cell
antenna
armature
binding post

cable termination
carbon block
circuit terminal
conductivity cell
electrical contact
electrical contact brush
electrical shield
electrolytic cell
ferrite bead rings
film element
gap (horn, protective, or sphere)
Hall element
ignitor gap
insulator
lightning arrester
magnetic core
miscellaneous electrical part
optical shield
permanent magnet
rotary joint (microwave)
short circuit (termination)
spark gap
splice
telephone protector
telephone protector block
terminal (individual)
valve element
vibrating reed

EQ equalizer
equalizing network

F current limiter (for power cable)
fuse
fuse cutout

FL filter

G electronic chopper
generator
ignition magneto
interrupter vibrator
oscillator
rotating amplifier (regulating generator)
telephone magneto

H* hardware (common fasteners, etc)

HP* hydraulic part

HR heater
heating lamp
heating resistor
infrared lamp
thermomechanical transducer

HS handset
operator’s set
IEEE Std 315-1975 GRAPHIC SYMBOLS FOR

HT
- earphone
- electrical headset
- receiver (excluding radio receiver)
- telephone receiver

HY
- circulator
- directionally selective transmission device
- hybrid circuit network
- hybrid coil (telephone usage)
- hybrid junction (magic T)

J
- disconnecting device (receptacle connector)
- electrical receptacle connector
- jack
- receptacle (connector, stationary portion)
- waveguide flange (choke)

K
- contactor (magnetically operated)
- relay

L
- coil (all not classified as transformers)
- electrical solenoid
- field winding
- generator field
- inductor
- lamp ballast
- motor field
- reactor
- winding

LS
- audible alarm
- audible signaling device
- buzzer
- electric bell
- electric horn
- loudspeaker
- loudspeaker-microphone
- siren
- telephone ringer
- telephone sounder
- underwater sound transducer

M
- clock
- coulomb accumulator
- elapsed time recorder
- electric timer
- electrical counter
- electrochemical step-function device
- instrument
- message register
- meter
- meter-type level pressure gage
- oscillograph
- oscilloscope
- position indicator
- thermometer
MG converter (rotating machine)
 dynamotor
inverter (motor-generator)
 motor-generator
MK hydrophone
 microphone
telephone transmitter
MP* brake
 clutch
 mechanical interlock
 mechanical part
 miscellaneous mechanical part
 (bearing, coupling, gear, shaft)
MT accelerometer
 measuring transducer
 mode transducer
 motional pickup transducer
 primary detector
N** equipment subdivision
P disconnecting device (plug connector)
 electrical plug connector
 plug (connector, movable portion)
 waveguide flange (plain)
PS power supply
 rectifier (complete power-supply assembly)
PU head (with various modifiers)
 sound reproducer
Q semiconductor controlled rectifier
 semiconductor controlled switch
 phototransistor (3 terminal)
 thyatron (semiconductor device)
 thyatron (semiconductor triode type)
 transistor
R function potentiometer
 instrument shunt
 magnetoresistor
 potentiometer
 relay shunt
 resistor
 rheostat
RE radio receiver
RT ballast lamp
 ballast tube
 current-regulating resistor
 resistance lamp
 temperature-sensing element
 thermal resistor
 thermistor
RV symmetrical varistor
 voltage-sensitive resistor
S contactor (manually, mechanically, or thermally operated)
 disconnecting device (switch)
 electrical safety interlock
 flasher (circuit interrupter)
 governor (electrical contact type)
 speed regulator (electrical contact type)
 switch
 telegraph key
 telephone dial
 thermal cutout (circuit interrupter) (not visual)
 thermostat

SQ electric squib
 explosive squib
 fusible link
 igniter squib
 sensing link

SR electrical contact ring
 rotating contact
 slip ring

T autotransformer
 coaxial taper
 linear coupler
 telephone induction coil
 telephone repeating coil
 transformer
 waveguide taper

TB connecting strip
 terminal board
 terminal strip
 test block

TC semiconductor thermocouple
 thermocouple
 thermopile

TP†† test point

TR radio transmitter

U*† inseparable assembly
 (see also A* and 22.2.4)
 integrated-circuit package
 microcircuit
 micromodule
 photon-coupled isolator

V electron tube
 Geiger-Muller counter tube
 ionization chamber
 klystron
 magnetron
 phototube
 proportional counter tube
 resonator tube (cavity type)
 solion
 thyratron (electron tube)
 traveling-wave tube
 voltage regulator (electron tube)
VR
(see also D)
induction voltage regulator
voltage regulator (excluding
electron tube)

W
bus bar
cable
cable assembly (with connectors)
coaxial cable
conductor
distribution line
distribution path
Goubau line
strip-type transmission line
transmission line
transmission path
waveguide
wire

WT†‡
wiring tiepoint

X
fuseholder
lampholder
socket

Y
magnetostriction oscillator
piezoelectric crystal unit
quartz crystal unit
tuning-fork resonator

Z
artificial line (other than delay line)
balan
carrier-line trap
coupled tunable resonator
directional phase shifter (non-
reciprocal)
discontinuity (usually coaxial or
waveguide transmission use)
E-H tuner
general network (where specific
class letters do not fit)
gyrator
mode suppressor
multistub tuner
phase shifter
phase-changing network
resonator (tuned cavity)
slide-screw tuner

*Device function designations for power switchgear, industrial control,
and industrial equipment use are not covered by this standard. For typical
application of these device function designations, see:
American National Standard Manual and Automatic Station Control,
Supervisory, and Associated Telemetering Equipments,
C37.2-1970.
NEMA Standard, Industrial Controls and Systems ICS-1970
(R1975).
Joint Industrial Council Electrical Standards for Mass Production
Equipment, EMP-1-1967, and General Purpose Machine
Military Standard, Designations for Electric Power Switchgear
Devices and Industrial Control Devices, MIL-STD-27.
†The class letter A is assigned on the basis that the item is separable. The
class letter U shall be used if the item is inseparable.
‡For economic reasons, assemblies which are fundamentally separable
may not be so provisioned but may be supplied as complete assemblies.
However, the class letter A shall be retained.
**Not a class letter, but used to identify a subdivision of an equipment in
the Location Numbering Method.
22.5 Item Names: Alphabetical List

The index to this standard shows the class designation letter as applicable under the general rules, together with the item number of the representative graphic symbol.

22.6 Item Designations, IEC 113-2

For reference purposes, Appendix F shows a comparison of the class letters used to identify parts and equipment according to International Electrotechnical Commission (IEC) Publication 113-2 and those assigned in American National Standard Y32.2-1975.

23. Referenced Standards and Canadian Standard Z99 Modifications

23.1 Referenced Standards 29

When the following American National Standards are superseded by a revision approved by the American National Standards Institute, the revision shall apply:

American National Standard Reference Designations for Electrical and Electronics Parts and Equipment, Y32.16-1975 (IEEE Std 200-1975) (1)

American National Standard Abbreviations for Use on Drawings, Y1.1-1972 (2)

American National Standard Manual and Automatic Station Control, Supervisory, and Associated Telemetering Equipments, C37.2-1970 (2)

American National Standard Dictionary of Electrical and Electronics Terms, C42.100-1972 (IEEE Std 100-1972)

29For Military Applications:
(1) Refer to the latest edition adopted for mandatory use by the Department of Defense.
(2) Refer to the following military standards (latest edition at time of invitation to bid) in lieu of the American National Standards:
(3) The following documents are listed for purposes of information only:
 MIL-STD-100 Engineering Drawing Practices.
 MIL-M-24100 Manuals, Technicals: Functionally Oriented Maintenance Manual (FOMM)
 Federal Cataloging Handbook H6-1, Section A.

While not illustrated in the Standard itself, the widespread practice of using heavier lines in drawing certain symbols can, if followed, result in improved drawing readability. The practice is consistent with Clause A4.3. It is therefore recommended that heavier lines be used to show:

- 1.10 Envelopes
- 2.2 Capacitors
- 2.5 The negative plates of batteries and cells
- 4.3 The parallel lines in the (4.29 and 4.30) parallel contact symbols
- 4.7 The moving contact in the push button symbol
- 7.1 Indirectly heated cathode, anode and combinations including these
- 8.5 Base symbol as used for semiconductors

These items are illustrated below:

Additionally, it is recommended that the last symbol of Section 3.1.6.3 be avoided in all cases. Where space is at a premium, the possibility of misreading it as a crossover will usually be greater.

Cross References

Annex A

Cross Reference List of Changed Item Numbers

(Informative)

(These appendixes are not part of American National Standard Graphic Symbols for Electrical and Electronics Diagrams (Including Reference Designation Class Designation Letters) Y32.2-1975 (IEEE Std 315-1975), but are included to facilitate its use.)

<table>
<thead>
<tr>
<th>ANSI Y32.2-1970</th>
<th>ANSI Y32.2-1975</th>
<th>ANSI Y32.2-1970</th>
<th>ANSI Y32.2-1975</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1.1</td>
<td>1.3.1</td>
<td>2.2.14</td>
<td>2.2.13</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>1.3.1</td>
<td>2.2.15</td>
<td>2.2.14</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>1.3.2</td>
<td>2.2.16</td>
<td>2.2.15</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>1.3.2</td>
<td>2.2.17</td>
<td>2.2.16</td>
</tr>
<tr>
<td>1.3.3</td>
<td>1.3.2</td>
<td>2.3.6.8</td>
<td>14.2.4.1</td>
</tr>
<tr>
<td>1.3.3.1</td>
<td>1.3.2</td>
<td>2.6.1 (top)</td>
<td>2.6.4</td>
</tr>
<tr>
<td>1.3.3.2</td>
<td>1.3.2</td>
<td>2.6.3</td>
<td>2.6.4</td>
</tr>
<tr>
<td>2.2.9</td>
<td>2.2.11</td>
<td>4.2.1.1 (bottom)</td>
<td>4.2.1.2</td>
</tr>
<tr>
<td>2.2.11</td>
<td>2.2.12</td>
<td>4.2.1.2</td>
<td>4.2.1.1</td>
</tr>
<tr>
<td>2.2.12</td>
<td>2.2.9</td>
<td>4.2.1.3</td>
<td>4.2.1.2</td>
</tr>
<tr>
<td>2.2.13</td>
<td>2.2.9.1</td>
<td>4.2.1.4</td>
<td>4.2.1.3</td>
</tr>
</tbody>
</table>
Annex B

Reference Data

International Electrotechnical Commission (IEC)

Publication 117: Recommended Graphical Symbols

(Informative)

The following documents were used for the listing of the IEC symbols (IEC) next to those graphic symbols in this standard that are considered to be in accordance with the graphic symbols in Publication 117.

<table>
<thead>
<tr>
<th>Publication 117</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>General Index (1973)</td>
</tr>
<tr>
<td>5</td>
<td>Generating stations and substations, lines for transmission and distribution (1963) Amendment 1 (August 1973)</td>
</tr>
<tr>
<td>7</td>
<td>Semiconductor devices, capacitors (Second edition, 1971)</td>
</tr>
<tr>
<td>8</td>
<td>Architectural diagrams (1967)</td>
</tr>
</tbody>
</table>
10 Aerials (antennas) and radio stations (1968)
 Supplement A (Nov 1969)
11 Microwave technology (1968)
 First supplement (1971)
12 Frequency spectrum diagrams (1968)
13 Block symbols for transmission and
 miscellaneous applications (1969)
 Supplements: First (1971), Second (1972), C
 (April 1974)
14 Telecommunication lines and accessories
 (1971)
 Supplement A (May 1974)
15 Binary logic elements (1972)
16 Ferrite Cores and magnetic storage matrices
 (1972)
Annex C

Revised or Deleted Symbols

(Informative)

<table>
<thead>
<tr>
<th>Symbols Formerly in ANSI Y32.2-1970</th>
<th>Recommended Symbols in ANSI Y32.2-1975</th>
</tr>
</thead>
</table>
| Revised 2.6.3 Bifilar slow-wave structure
Commonly used in traveling-wave tubes. | See item 2.6.4 |
| *See Note 2.6.1A* | |
| Deleted Alternate
8.5.1 Semiconductor diode; semiconductor rectifier diode; metallic rectifier | See item 8.5.1 |
| | See item 8.5.2
Style 2 |
| Revised Alternate
8.5.2 Capacitive diode (varactor) | See item 8.5.2
Style 2 |
| | |
| Deleted Alternate
8.6.3 NPN transistor with transverse-biased base | See item 8.6.3 |
| | |
| Revised
8.11 Solid-State Thyratron (replacement type)
8.11.1 Balanced | See item 8.11.1 |
| | 8.11.2 Unbalanced
See item 8.11.2 |
Annex D

Revised or Deleted Symbols

(Informative)

<table>
<thead>
<tr>
<th>Symbols Formerly in USAS Y32.2-1967</th>
<th>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified</td>
<td></td>
</tr>
<tr>
<td>1.7.2 Both ways</td>
<td>See item 1.7.2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded</td>
<td></td>
</tr>
<tr>
<td>2.1.12 Thermistor</td>
<td>See item 2.1.12</td>
</tr>
<tr>
<td>Thermal resistor</td>
<td></td>
</tr>
<tr>
<td>2.1.12.1 General</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.12.2 With independent integral heater</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>2.8 Permanent Magnet</td>
<td>See item 2.8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>3.1.9 Coaxial cable, recognition symbol</td>
<td>See item 3.1.9</td>
</tr>
<tr>
<td>Coaxial transmission path</td>
<td></td>
</tr>
<tr>
<td>Radio-frequency cable (coaxial)</td>
<td></td>
</tr>
<tr>
<td>NOTE — 3.1.9A: If necessary for clarity, an outer-conductor connection to the symbol shall be made where the broken line - - - is shown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Note 3.1.9A

See Note 1.7.1A
<table>
<thead>
<tr>
<th>Symbols Formerly in USAS Y32.2-1967</th>
<th>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.21 Thermostat</td>
<td>4.21 Thermostat</td>
</tr>
<tr>
<td>Ambient-temperature-operated device. Operates on rising temperature.</td>
<td>4.21.1 With break contact</td>
</tr>
<tr>
<td>See also item 4.20.2</td>
<td>4.21.2 With make contact</td>
</tr>
<tr>
<td>See also item 4.20.2</td>
<td>4.21.3 With integral heater and transfer contacts</td>
</tr>
<tr>
<td></td>
<td>See items 4.21 through 4.21.7</td>
</tr>
<tr>
<td>Deleted</td>
<td>Deleted</td>
</tr>
<tr>
<td>4.30 Relay</td>
<td>4.30 Relay</td>
</tr>
<tr>
<td>Fast-operate</td>
<td>Fast-operate</td>
</tr>
<tr>
<td>Fast-release</td>
<td>Fast-release</td>
</tr>
<tr>
<td>4.30.5 Thermal relay</td>
<td>4.30.5 Thermal relay</td>
</tr>
<tr>
<td>4.30.6 Thermal relay</td>
<td>4.30.6 Thermal relay</td>
</tr>
<tr>
<td>5.6.2 Coaxial with the outside conductor shown carried through</td>
<td>5.6.2 Coaxial with the outside conductor shown carried through</td>
</tr>
<tr>
<td>Symbols Formerly in USAS Y32.2-1967</td>
<td>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>5.6.3 Application: Coaxial with outside conductor shown carried through; with outside conductor terminated on chassis</td>
<td>See item 5.6.3</td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>5.6.4 Application: Coaxial with center conductor shown carried through; outside conductor not carried through</td>
<td>See item 5.6.4</td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>5.7.1 Mated (general)</td>
<td>See item 5.7.1</td>
</tr>
<tr>
<td>Deleted</td>
<td></td>
</tr>
<tr>
<td>5.7.4 Application: mated choke flanges in rectangular waveguide line</td>
<td>See item 5.7.4</td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>5.7.5 Application: rectangular waveguide with mated plain and choke flanges with direct-current isolation (insulation) between sections of waveguide.</td>
<td>See item 5.7.5</td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>7.3.6 Cathode-ray tube</td>
<td>See items 7.3.6 through 7.3.6.2.2</td>
</tr>
<tr>
<td>7.3.6.1 With electric-field deflection</td>
<td></td>
</tr>
<tr>
<td>7.3.6.2 For magnetic deflection</td>
<td></td>
</tr>
<tr>
<td>Symbols Formerly in USAS Y32.2-1967</td>
<td>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Revised</td>
<td>See item 8.6.15</td>
</tr>
<tr>
<td>8.6.15 Thyristor, bidirectional triodetype; triac; gated switch</td>
<td></td>
</tr>
<tr>
<td>Revised and Expanded</td>
<td>See item 9.1.2</td>
</tr>
<tr>
<td>9.1.2 High-voltage primary fuse cut-out, dry</td>
<td></td>
</tr>
<tr>
<td>Revised and Expanded</td>
<td>See item 9.1.2</td>
</tr>
<tr>
<td>9.1.4 With alarm contact</td>
<td>See item 9.1.2</td>
</tr>
<tr>
<td>When fuse blows, alarm bus A is connected to power bus B. Letters are for explanation and are not part of the symbol.</td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td>See item 10.4.1</td>
</tr>
<tr>
<td>10.4.1 General</td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td>See item 15.2.4</td>
</tr>
<tr>
<td>15.2.4 Coupling by loop from coaxial to circular waveguide with direct-current grounds connected</td>
<td></td>
</tr>
<tr>
<td>Symbols Formerly in USAS Y32.2-1967</td>
<td>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>15.2.7 Coupling by probe from coaxial to rectangular waveguide with direct-current grounds connected</td>
<td>See item 15.2.7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>15.3.2 Application: E-plane aperture coupling, 30-decibel transmission loss</td>
<td>See items 15.3.2 through 15.3.6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.3.3 Application: loop coupling, 30-decibel transmission loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.3.4 Application: probe coupling, 30-decibel transmission loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.3.5 Application: resistance coupling, 30-decibel transmission loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>15.4.4.1 Application: 5-arm circular hybrid with principal coupling in the E plane and with 1-arm H coupling using rectangular waveguide</td>
<td>See item 15.4.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbols Formerly in USAS Y32.2-1967</td>
<td>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Deleted</td>
<td></td>
</tr>
<tr>
<td>15.4.5.1 Application: circulator, reversible direction
The polarity symbol (item 1.6) must be used with electromagnet symbol to indicate proper direction flow.</td>
<td>See item 15.8.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>15.5.3 Application: transducer from rectangular waveguide to coaxial with mode suppression and direct-current grounds connected.</td>
<td>See item 15.5.3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>15.7.1.1 Application: coaxial type in rectangular waveguide system
See item 15.7.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Deleted</td>
<td></td>
</tr>
<tr>
<td>15.8.3 Unidirectional (isolator) Power flowing in direction of arrow is not intentionally attenuated.</td>
<td>See item 15.8.1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised</td>
<td></td>
</tr>
<tr>
<td>15.9.2 Application: resonator with mode suppression coupled by an E-plane aperture to a guided transmission path and by a loop to a coaxial path</td>
<td>See item 15.9.2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbols Formerly in USAS Y32.2-1967</td>
<td>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Revised 15.9.3 Application: tunable resonator having adjustable Q coupled by a probe to a coaxial system</td>
<td>See item 15.9.3</td>
</tr>
<tr>
<td>Revised 15.11.1 Resonant type with coaxial output</td>
<td>See item 15.11.1</td>
</tr>
<tr>
<td>Revised 15.12.2 Double-cavity klystron, integral cavity, permanent externally-ganged tuning, loop coupled (coupling loop may be shown inside if desired) See item 7.1.7.1.</td>
<td>See item 15.12.2</td>
</tr>
<tr>
<td>Revised 15.14.1 Forward-wave traveling-wave-tube amplifier shown with four grids, having slow-wave structure with attenuation, magnetic focusing by external permanent magnet, rf input and rf output coupling, each by E-plane aperture to external rectangular waveguide</td>
<td>See item 15.14.1</td>
</tr>
<tr>
<td>Symbols Formerly in USAS Y32.2-1967</td>
<td>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>15.14.2 Forward-wave traveling-wave-tube amplifier shown with four grids, having slow-wave structure with attenuation, magnetic focusing by external permanent magnet, rf input and rf output coupling, each by inductive coupling</td>
<td>See item 15.14.2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.14.3 Forward-wave traveling-wave-tube amplifier shown with four grids, having slow-wave structure with attenuation, external electromagnetic focusing rf input and rf output coupling-each by external cavity and loop coupling, to a coaxial path</td>
<td>See item 15.14.3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.14.4 Forward-wave traveling-wave-tube amplifier shown with four grids, having slow-wave structure with attenuation, magnetic focusing by external permanent magnet, rf input and rf output coupling, each by direct connection from slow-wave structure to a coaxial path</td>
<td>See item 15.14.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbols Formerly in USAS Y32.2-1967</td>
<td>Revised</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>15.14.6 Backward-wave traveling-wave-tube amplifier shown with two grids, having slow-wave structure with attenuation, sole (beam-aligning electrode), magnetic focusing by external permanent magnet, rf input and rf output coupling, each by E-plane aperture to external rectangular waveguide</td>
<td>See item 15.14.6</td>
</tr>
</tbody>
</table>

| | |
| | ![Diagram](attachment://diagram1.png) |

<table>
<thead>
<tr>
<th></th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.14.7 Backward-wave traveling-wave-tube oscillator shown with two grids, having slow-wave structure with attenuation, sole (beam-aligning electrode), magnetic focusing by external permanent magnet, rf output coupling by inductive coupling</td>
<td>See item 15.14.7</td>
</tr>
</tbody>
</table>

| | |
| | ![Diagram](attachment://diagram2.png) |

<table>
<thead>
<tr>
<th></th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.14.8 Backward-wave traveling-wave-tube oscillator shown with two grids, having slow-wave structure with attenuation, sole (beam-aligning electrode), magnetic focusing by external permanent magnet, rf output coupling by inductive coupling, with slow-wave structure connected internally to collector</td>
<td>See item 15.14.8</td>
</tr>
</tbody>
</table>

| | |
| | ![Diagram](attachment://diagram3.png) |
Symbols Formerly in USAS Y32.2-1967

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Amplifier</td>
</tr>
<tr>
<td>AT</td>
<td>Attenuator</td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit breaker</td>
</tr>
<tr>
<td>HS</td>
<td>Handset</td>
</tr>
<tr>
<td>I</td>
<td>Indicating or switchboard lamp</td>
</tr>
<tr>
<td>L</td>
<td>Inductor</td>
</tr>
<tr>
<td>J</td>
<td>Jack</td>
</tr>
<tr>
<td>LS</td>
<td>Loudspeaker</td>
</tr>
<tr>
<td>MIC</td>
<td>Microphone</td>
</tr>
<tr>
<td>OSC</td>
<td>Oscillator</td>
</tr>
<tr>
<td>PAD</td>
<td>Pad</td>
</tr>
<tr>
<td>P</td>
<td>Plug</td>
</tr>
<tr>
<td>HT</td>
<td>Receiver, headset</td>
</tr>
<tr>
<td>K</td>
<td>Relay</td>
</tr>
<tr>
<td>R</td>
<td>Resistor</td>
</tr>
<tr>
<td>S</td>
<td>Switch or key switch</td>
</tr>
<tr>
<td>T</td>
<td>Transformer</td>
</tr>
<tr>
<td>WR</td>
<td>Wall receptacle</td>
</tr>
</tbody>
</table>

Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified

- See item 16.1.1

The broken line — — — indicates where line connection to a symbol is made and is not part of the symbol.
Annex E
Revised or Deleted Symbols
(Informative)

<table>
<thead>
<tr>
<th>Symbols Formerly in USA Standard Y32.2-1962 & Supplement Y32.2A-1964 or MIL-STD-15-1A (including original item numbers)</th>
<th>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleted 11.3.1 On a connection or wiring diagram, a 3-pole single-throw circuit breaker (with terminals shown) may be drawn as shown below. See ANSI Y14.15-1966</td>
<td></td>
</tr>
<tr>
<td>Corrected 34.11.10.2 Double-cavity klystron, integral cavity, permanent external-ganged tuning, loop coupled (coupling loop may be shown inside if desired) See item 34.8.1</td>
<td>See item 15.12.2</td>
</tr>
<tr>
<td>Revised and Expanded 42.7 Saturable-core inductor (reactor) Polarity marks may be added to direct-current winding. Explanatory words and arrow are not part of the symbols shown. See item 6.3</td>
<td></td>
</tr>
<tr>
<td>Revised 48 Meter Instrument T Temperature meter</td>
<td>See item 12.1</td>
</tr>
<tr>
<td>Symbols Formerly in USA Standard Y32.2-1962 & Supplement Y32.2A-1964 or MIL-STD-15-1A (including original item numbers)</td>
<td>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Corrected 53.3 Application: transducer from rectangular waveguide to coaxial with mode suppression and direct-current grounds connected</td>
<td>See item 15.5.3</td>
</tr>
<tr>
<td>Corrected 58.8.2 Coaxial cable, recognition sym-Coaxial transmission path Cable, radio frequency (Coaxial) See item 58.1.</td>
<td>See item 3.1.9</td>
</tr>
<tr>
<td>Corrected 58.8.4 Shielded 2-conductor cable with shield grounded</td>
<td>See item 3.1.8.4</td>
</tr>
<tr>
<td>Corrected 71.2.1 Resonator with mode suppression coupled by an E-plane aperture to a guided transmission path and by a loop to a coaxial path.</td>
<td>See item 15.9.2</td>
</tr>
<tr>
<td>Revised 76.12.7 Wafer, 3-pole 3-circuit with 2 nonshorting and 1 shorting moving contacts Viewed from end opposite control knob or actuator unless otherwise indicated. For more than one section, section No. 1 is nearest control knob. When contacts are on both sides, front contacts are nearest control knob.</td>
<td>See item 4.13.7</td>
</tr>
</tbody>
</table>
Symbols Formerly in USA Standard Y32.2-1962 & Supplement Y32.2A-1964 or MIL-STD-15-1A (including original item numbers)

<table>
<thead>
<tr>
<th>Deleted Applications</th>
</tr>
</thead>
</table>

81.5 Applications

NOTES:

81.5A — If the device terminals are in a circular arrangement, the actual angular spacing between the terminals should be approximated on the terminal diagram.

81.5B — If the terminals are in an essentially linear arrangement the terminal diagram may show the terminals in either a linear array along one side of the elongated envelope symbol (preferable), or within a maximum angle of 150 degrees around the circular envelope symbol.

81.5C — If pins are omitted in an otherwise standard terminal arrangement, do not respace the remaining pins.

81.5D — A terminal at the center of the terminal arrangement shall be identified as the CENTER terminal lead or pin.

81.5E — The typical examples show pin numbering in accordance with standard industry practice, i.e., with the terminals viewed from outside the terminal face of the device.

81.5.1 Two-terminal device with one flexible lead and one rigid terminal connected to a metallic envelope (typical semiconductor diode shown).

81.5.2 Two-terminal device with rigid terminals and reference point located at one of the terminals (typical semiconductor diode shown).

81.5.3 Three-terminal device with circular arrangement of pin terminals with base orientation determined by gap in pin spacing (typical transistor shown).

<table>
<thead>
<tr>
<th>Recommended Symbols in ANSI Y32.2-1975, if Not Otherwise Specified</th>
</tr>
</thead>
</table>

See ANSI Y14.15-1966
<table>
<thead>
<tr>
<th>Deleted (continued)</th>
<th>Recommended Symbols in ANSI Y32.2 - 1975, if Not Otherwise Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.5.4 Three-terminal device with rigid terminals, one connected to the metallic enclosure, and index pin (typical transistor shown).</td>
<td>See ANSI Y14.15-1966</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>81.5.5 Four-terminal device with in-line pin terminals, one connected to metallic envelope, and reference point (typical transistor shown).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>81.5.6 Five-terminal device with in-line terminal leads, one connected to metallic enclosure and reference point (typical relay shown).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>81.5.7 Device with 8-terminal keyed (such as octal) base, rigid envelope terminal, and magnetic envelope connected to base terminal (typical triode-heptode shown).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symbols Formerly in USA Standard Y32.2-1962 & Supplement Y32.2A-1964 or MIL-STD-15-1A (including original item numbers)

<table>
<thead>
<tr>
<th>Deleted (continued)</th>
<th>Recommended Symbols in ANSI Y32.2 - 1975, if Not Otherwise Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.5.8 Device with keyed (such as octal) base having design capability of 8 pins but with 2 pins omitted, and with 3 rigid envelope terminals (typical disc-seal triode shown).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>81.5.9 Device with 9-terminal (such as noval) base utilizing gap in pin spacing to establish base orientation (typical twin triode shown).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revised

<table>
<thead>
<tr>
<th>84 Thermistor Resistor, Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>“T” indicates that the primary characteristic of the element within the circle is a function of temperature.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>See items 1.2.1 and 2.1.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revised</th>
<th>84.1 General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>See item 2.1.12.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revised</th>
<th>85.2.1 Temperature-measuring semiconductor thermocouple</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>See item 8.8.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrected</th>
<th>86.1.1 Application: transformer with direct-current connections and mode suppression between two rectangular waveguides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>See item 6.4.1.1</td>
<td></td>
</tr>
</tbody>
</table>
Annex F

Cross-Reference List of Class Designation Letters

(Informative)

IEC Publication 113-2 (1971) Item Designations, Letter Codes
ANSI Y32.2-1975 (IEEE Std 315-1975), Section 22, Class Designation Letters

* No conflict between ANSI Y32.2 and IEC.
ANSI Y32.2 not in agreement with IEC, but no conflict if used.
@ ANSI Y32.2 conflicts with IEC as IEC uses class letter to represent other devices.

<table>
<thead>
<tr>
<th>IEC Publication 113-2 Terminology</th>
<th>IEC</th>
<th>Y32.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustical indicator</td>
<td>H</td>
<td>LS</td>
</tr>
<tr>
<td>Adjustable resistor</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Aerial</td>
<td>W</td>
<td>E</td>
</tr>
<tr>
<td>Amplifier</td>
<td>A</td>
<td>AR</td>
</tr>
<tr>
<td>Amplifier (with tubes)</td>
<td>A</td>
<td>AR</td>
</tr>
<tr>
<td>Arrester</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>Assemblies</td>
<td>A</td>
<td>A,U</td>
</tr>
<tr>
<td>Auxiliary switch</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Battery</td>
<td>G</td>
<td>BT</td>
</tr>
<tr>
<td>Bistable element</td>
<td>D</td>
<td>U,A</td>
</tr>
<tr>
<td>Brake</td>
<td>Y</td>
<td>MP</td>
</tr>
<tr>
<td>Busbar</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Cable</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Cable balancing network</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>Capacitor</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Changer</td>
<td>U</td>
<td>A,B,G,MT</td>
</tr>
<tr>
<td>Circuit breaker</td>
<td>Q</td>
<td>CB</td>
</tr>
<tr>
<td>Clutch</td>
<td>Y</td>
<td>MP</td>
</tr>
<tr>
<td>Coder</td>
<td>U</td>
<td>U,A</td>
</tr>
<tr>
<td>Companider</td>
<td>Z</td>
<td>A</td>
</tr>
<tr>
<td>Connecting stage</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Contactors</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>Control switch</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Converter</td>
<td>U</td>
<td>A,U,MG</td>
</tr>
<tr>
<td>Core, storage</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>IEC Publication 113-2 Terminology</td>
<td>Letter Code</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Z FL Crystal filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Y Crystal transducer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T T Current transformer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D DL Delay device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D DL Delay line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U A Demodulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S S Dial contact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V D Diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W E Dipole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X P Disconnecting plug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X Disconnecting socket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U A Discriminator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D A Disk recorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B MG Dynamotor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y MT Electrically operated device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V V Electronic tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z EQ Equalizer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z FL Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U A.B.G Frequency changer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F F Fuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V V Gas discharge tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G G Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E HR Heating device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z Z Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P DS Indicating device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L L Induction coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L L Inductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P M,MT,Z Integrating measuring device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U A.U.PS.MG Inverter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q AT Isolator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W W Jumper wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A MT.A Laser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E DS Lighting device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S S Limit switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC Publication 113-2 Terminology</td>
<td>Letter Code</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td># Limiter</td>
<td>Z MT,RE</td>
<td></td>
</tr>
<tr>
<td>@ Line trap</td>
<td>L FL,MP,V</td>
<td></td>
</tr>
<tr>
<td># Loudspeaker</td>
<td>B LS</td>
<td></td>
</tr>
<tr>
<td># Magnetic amplifier</td>
<td>A AR</td>
<td></td>
</tr>
<tr>
<td># Magnetic tape recorder</td>
<td>D A</td>
<td></td>
</tr>
<tr>
<td>* Maser</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>@ Measuring equipment</td>
<td>P M</td>
<td></td>
</tr>
<tr>
<td># Microphone</td>
<td>B MK</td>
<td></td>
</tr>
<tr>
<td>* Miscellaneous</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td># Modulator</td>
<td>U A</td>
<td></td>
</tr>
<tr>
<td># Monostable element</td>
<td>D A,U</td>
<td></td>
</tr>
<tr>
<td>@ Motor</td>
<td>M B</td>
<td></td>
</tr>
<tr>
<td># Optical indicator</td>
<td>H DS</td>
<td></td>
</tr>
<tr>
<td>@ Oscillator</td>
<td>G Y,G</td>
<td></td>
</tr>
<tr>
<td>* Overvoltage discharge device</td>
<td>F F,E</td>
<td></td>
</tr>
<tr>
<td>@ Parabolic aerial</td>
<td>W E</td>
<td></td>
</tr>
<tr>
<td>@ Photoelectric cell</td>
<td>B V</td>
<td></td>
</tr>
<tr>
<td># Pickup</td>
<td>B PU</td>
<td></td>
</tr>
<tr>
<td>@ Plug</td>
<td>X P</td>
<td></td>
</tr>
<tr>
<td># Pneumatic value</td>
<td>Y MP</td>
<td></td>
</tr>
<tr>
<td>* Potentiometer</td>
<td>R R</td>
<td></td>
</tr>
<tr>
<td>@ Power switchgear</td>
<td>Q CB,S</td>
<td></td>
</tr>
<tr>
<td>* Protective device</td>
<td>F F</td>
<td></td>
</tr>
<tr>
<td>* Pushbutton</td>
<td>S S</td>
<td></td>
</tr>
<tr>
<td>@ Quartz-oscillator</td>
<td>G Y</td>
<td></td>
</tr>
<tr>
<td># Recording device</td>
<td>P A,M</td>
<td></td>
</tr>
<tr>
<td># Register</td>
<td>D A,U,M</td>
<td></td>
</tr>
<tr>
<td>* Relay</td>
<td>K K</td>
<td></td>
</tr>
<tr>
<td>* Resistor</td>
<td>R R</td>
<td></td>
</tr>
<tr>
<td>* Resolver</td>
<td>B B</td>
<td></td>
</tr>
<tr>
<td>* Rheostat</td>
<td>R R</td>
<td></td>
</tr>
<tr>
<td>* Rotating frequency generator</td>
<td>G G,MG</td>
<td></td>
</tr>
<tr>
<td>* Rotating generator</td>
<td>G G</td>
<td></td>
</tr>
<tr>
<td>* Selector</td>
<td>S S</td>
<td></td>
</tr>
<tr>
<td>IEC Publication 113-2 Terminology</td>
<td>Letter Code</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>* Selector switch</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>#, @ Semiconductor</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>* Shunt (resistor)</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td># Signal generator</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td># Signaling device</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td># Socket</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td># Soldering terminal strip</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td># Static frequency changer</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td># Storage device</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>* Subassembly</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td># Supply</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td># Supply device</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>* Sycho</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td># Telegraph translator</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>@ Terminal</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td># Terminal board</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td># Termination</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td># Test jack</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td># Testing equipment</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td># Thermistor</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td># Thermo cell</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td># Thermoelectric sensor</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td># Thyristor</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td># Transducer (nonelectrical quantity to electrical quantity)</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>* Transformer</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>* Transmission path</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>@ Transistor</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>* Tube (electron)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>* Voltage transformer (potential)</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>* Waveguide</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td># Waveguide directional coupler</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

IEC Publication 113-2 Letter Code

Terminology	IEC	Y32.2
* Selector switch | S | S
#, @ Semiconductor | V | D, CR, Q
* Shunt (resistor) | R | R
Signal generator | P | A
Signaling device | H | DS
* Socket | X | X
Soldering terminal strip | X | E, TB
Static frequency changer | U | A
Storage device | D | A, U
* Subassembly | A | A
Supply | G | A, PS
Supply device | G | A, PS
* Sycho | B | B
Telegraph translator | U | A
@ Terminal | X | E
Terminal board | X | TB
Termination | Z | AT
Test jack | X | E, J
Testing equipment | P | A
Thermistor | R | RT
Thermo cell | B | A, TC
Thermoelectric sensor | B | A
Thyristor | V | Q
Transducer (nonelectrical quantity to electrical quantity) | B | A, BT
* Transformer | T | T
* Transmission path | W | W
@ Transistor | V | Q
* Tube (electron) | V | V
* Voltage transformer (potential) | T | T
* Waveguide | W | W
Waveguide directional coupler | W | DC