ULTRASOUND FOCUSING SYSTEM FOR HYPERTHERMIA

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Technology

> by Uday P. Kulavmode 97307407

Guide Prof. T. Anjaneyulu

Department of Electrical Engineering Indian Institute of Technology, Bombay Powai, Mumbai 400 076. January 1999

DISSERTATION APPROVAL SHEET

Dissertation entitled "ULTRASOUND FOCUSING SYSTEM FOR HYPERTHERMIA" by Mr. Uday Pandit Kulavmode is approved for the degree of MASTER OF TECHNOLOGY.

Guide :-

(Prof. T. Anjaneyulu)

Potandyohudyy (Prof. B. Bandopadhyay)

Chairman :-

Internal Examiner :- (Prdr. II.S. Rathore)

V.M. dent 13.1.99

(Shri. V.M. Joshi)

External Examiner :- Uday P. Kulavmode : Ultrasound focusing system for hyperthermia, M.Tech. dissertation, Dept. of Electrical Engineering, Indian Institute of Technology, Bombay, January' 99. Guide: Prof. T. Anjaneyulu.

ABSTRACT

Ultrasonic focusing technique will be having good potential in therapeutic applications like hyperthermia and lithotripsy. In these applications, ultrasound should cause minimum damage and destruction of normal tissues, at the same time produce high intensity pressure at the lesion. For this purpose, focusing of ultrasound is necessary. In this report, a system for continuous heating of the target (using microcontroller) is proposed and discussed. Here, a large number of transducers are excited sequentially such that at the target ultrasound is absorbed continuously but at other places it occurs for a brief period of time. Thus making the heating more in tissue at the target than at other places. In the latter part of the report, the tests results of different blocks of the system built are discussed. Test results using limited number of transmitters are also described.

ACKNOWLEDGMENTS

I pay sincere thanks to my guide Prof. T. Anjaneyulu for his invaluable guidance. I also thank Profs. P. C. Pandey, T.S. Rathore and C.P. Gadgil for their co-operation and invaluable guidance.

I thank all my lab friends: Mandar, Harshal, Deven, Ashish, Amit, Hiren, Prashant and my colleagues for their timely help and encouragement. I cannot forget the earnest co-operation of Mr. A.D. Apte and Mr. L.D. Muntode of Electrical Engineering Department.

I.I.T. Powai Bombay Uday P. Kulavmode 97307407

CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

Cha	Chapter			
1.	Introduction			
	1.1 Hyperthermia	1		
	1.2 Ultrasound for hyperthermia	2		
	1.3 Ultrasound focusing techniques	3		
	1.4 Focusing method	4		
	1.5 Project objectives	5		
	1.6 Report outline	5		
2.	Ultrasound focusing			
	Implementation aspects			
	2.1 Introduction	9		
	2.2 Focusing procedure	9		
	2.3 Ultrasound transducers	10		
	2.4 Delay generation	11		
3	Focusing system			
0.	3.1 Introduction	14		
	3 2 System block diagram	14		
	3.3 Delay measurement	15		
	3 4 Firing step	15		
	3.5 Mechanical arrangement	16		

Chapter								
4.	System hardware							
	4.1 Introduction	22						
	4.2 Triggering circuit	22						
	4.3 Transmitter circuit	22						
	4.4 Switching network	23						
	4.5 Receiver amplifier circuit	24						
	4.6 Delay circuit	24						
5.	Experiments and results							
	5.1 Introduction	32						
	5.2 Results	32						
	5.3 Crystal parameters	34						
	5.4 Flow chart	35						
6.	Summary and conclusion	44						

APPENDICES

REFERENCES

LIST OF FIGURES

Fig.1.1 1. Direct method of ultrasound focusing. 2. Fig.1.2 Time reversal mirror technique for ultrasound focusing. 3. Fig.1.3 Scheme for continuous heating at the target using single rotating transducer. 4. Fig.2.1 Focusing procedure. 5. Fig.2.2 Lumped parameters and switched capacitor delay line. 6. Fig.3.1 System block diagram for continuous heating at the target. 7. Fig.3.2 Delay measurement. 8. Fig.3.3 Firing process. 9. Fig.3.4 The waveforms at the target due to excitation of various transducers. 10. Fig.3.5 Mounting of crystals. 11. Fig.4.1 Trigger circuit. 12. Fig.4.2 Transmitter circuit. 13. Fig.4.3 Switching cell. 14. Fig.4.3a Switching network. 15. Fig.4.3b Switching cell of S'N. 16. Fig.4.3c Switching cell of SN. Receiver amplifier. 17. Fig.4.4 18. Fig.4.5 Circuit diagram of the scheme. I/P pulse to trigger circuit. CH- A 19. Fig.5.1a O/P of the transmitter circuit. CH- B Expanded version of the o/p of the transmitter circuit. 20. Fig.5.1b 21. O/P of the transmitter circuit after connecting to Ts Fig.5.2

with $R_4 = 1k$ ohm.

Fig.5.3	O/P of the transmitter circuit after connecting to Ts
	with $R_4 = 0$ ohm.
Fig.5.4	Excitation pulse to Ts. CH- A
	Received signal at Tp1. CH- B
Fig.5.5	Excitation pulse to Ts. CH- A
	Received signal at Tp2. CH- B
Fig.5.6	O/P at P1.0. CH- A
	O/P at P1.1. CH- B
Fig.5.7	Excitation signal for Tp1. CH- A
	Received signal at the target. CH- B
Fig.5.8	Excitation pulse to Ts. CH- A
	Received signal at Tp1. CH- B
Fig.5.9	Excitation pulse to Ts. CH- A
	Received signal at Tp2. CH- B
Fig.5.10	Excitation signal for Tp1. CH- A
	Received signal at the target. CH- B
Fig.5.11	Experimental setup to find the parameters of the
	crystal.
Fig.5.12	Impedance characteristic of the crystal.
	Fig.5.3 Fig.5.4 Fig.5.5 Fig.5.6 Fig.5.7 Fig.5.8 Fig.5.9 Fig.5.10 Fig.5.11 Fig.5.12

1. Introduction

1.1 Hyperthermia

The number of persons succumbing to cancer is increasing dayby-day and, despite the tremendous efforts being devoted to its cure, a large percentage of patients succumb to various diseases categorized as cancer. It has also been known that elevating the temperature of a malignant tissue or tumor can be an effective treatment for cancer. Cancerous cells are more susceptible to heat than normal cells. Hence the treatment of heating the malignant tissue is one of the methods to kill such tissues. The elevation of temperature for the cancer treatment is known as *hyperthermia*. Thus, hyperthermia can be defined as the heating of an area of a tissue to a temperature below the threshold of thermal pain or damage to normal tissue (in the range of $42 - 45^\circ$ c or higher but not exceeding). Ideally, the surrounding tissue would be maintained at a lower temperature, to minimize the tissue damage.

Therefore, designing, developing and testing of a hyperthermia system are today's critical problems. In order to meet the requirements of controlled heating of tumor in a non - invasive and flexible manner, the hyperthermia induction equipment must satisfy the following requirements :

- 1) it should be non invasive,
- 2) it should provide a focusing or beam convergence,
- it should localize the heating on the target volume and prevent excessive heating of tissues outside the target volume.

Following are some of the techniques for heating in hyperthermia. 1) Capacitive heating, 2) Inductive heating, 3) Microwave heating and 4) Ultrasonic heating.

In the capacitive heating, the electrodes called pads are positioned on the body over the region to be treated. The pads are placed so that the portion of the body to be treated is sandwiched between them.

When the radio frequency output is applied to the pads, the dielectric losses of the capacitor manifest themselves as heat in the intervening tissues.

In the inductive heating, a flexible cable is coiled around the portion of the patient's body where plate electrodes are inconvenient to use. When RF current is passed through such a cable, an electrostatic field is set up between its ends and a magnetic field around its center. Deep heating in the tissue results from electrostatic action whereas the heating of the superficial tissues is obtained by eddy currents set up by magnetic effect. The limitation of these methods is that they direct continuous high frequency radio waves, and if a high enough output of energy is sustained for even a brief time they can cause burns.

Microwave heating consists in irradiating the tissues of the patient's body with very short wireless waves having frequency in the microwave region. Typically, the frequency used is 2450 MHz. Heating effect is produced by the absorption of the microwaves in the region of the body under treatment. Here, the microwaves are transmitted from an emitter, and are directed towards the portion of the body to be treated. These waves pass through the intervening air space and are absorbed by the surface of the body producing heating effect. Microwaves are produced by high frequency currents and have the same frequency as the currents which produce them. A Magnetron is used for the production of high frequency currents of high power.

In ultrasonic heating, the heating effect is produced because of the ultrasonic energy absorption property of the tissues.

1.2 Ultrasound for hyperthermia

The major consideration in hyperthermia system is to provide an adequate control of the energy deposition in the target volume and for maintaining a therapeutic temperature. Ultrasound in 0.3 to 3 MHz frequency

range has the following properties which are favourable in clinical hyperthermia:

- 1) short wavelength,
- 2) favourable absorption characteristic,
- 3) energy can be focused into a small region and at a greater depth. Because of these characteristics, ultrasound is being popular and, therefore used for therapeutical applications.

1.3 Ultrasound focusing techniques

Some of the important ultrasonic focusing techniques are given below.

1) Direct ultrasonic beam focusing [1]

In this focusing method, the ultrasonic beam is focused with the help of either a) a mirror or b) an acoustic lens or c) geometrical structure of the transducer as shown in Fig.1.1 [1]. Low resolution and image aberretions are their main disadvantages. Moreover, for use in short ranges a short wavelength is needed, which results in a aperature limitation. Geometric design of this technique is simple, but difficult to manufacture.

2) Time reversal mirror (TRM) technique [2]

Time reversal of ultrasonic fields represents a way to focus ultrasound in an inhomogeneous medium. This can be achieved by a time reversal mirror (TRM) [2] made from an array of transmit - receive transducers that respond linearly and allow incident acoustic pressure to be sampled at the target. This time reversal process is divided into three steps.

- (i) Transmitting the wavefront through medium as shown in Fig.1.2(a). The target generates scattered pressure field that propogates through inhomogeneous media.
- (ii) The scattered pressure field is then detected by a set of transducers as shown in Fig. 1.2(b).

- (iii) The pressure field is then retransmitted by the same set of transducers in reversed order i.e. the transducer which detect the scattered pressure field lastly will retransmit the pressure field first as shown in Fig. 1.2(c). Such a process allows to convert divergent waves issued from an acoustic source into a convergent wave focusing on the source. The basic principle of the technique is to receive the sound waves from different transducers at the same instant of time even when they are travelling with different velocities and through different distances. Thus increasing the intensity of pressure wave at the object and decreasing the intensity at other places.
- 3) Lele [3] had proposed a scheme for ultrasonic focusing where a transducer is rotated around the target as shown in Fig.1.3. Here, the sound beam reaches the target from all the positions and hence a continuous pressure field is applied to the target, whereas, at all other places sound pressure exists only for a very small period of time. Thus heating the target more intensely and reducing the heat at other places. This method was used on patients at M.I.T. lab by Lele [3].

The same aim as above can be achieved by putting a number of transducers surrounding the target and exciting them in a sequence depending upon the transit time between the transducer and the target.

1.4 Focusing method

Various focusing methods of ultrasound are described in the earlier section. The direct focusing with the help of a lens or mirror maynot be useful in many applications, because of variable distance of the target from the source. With change in distance of the target from the lens the focusing will be disturbed. Also some aberrating medium in between could disturbed the focusing. The TRM technique could be useful in lithotripsy, where high intensity ultrasound for short periods are required, as lithotripsy involves

destruction of kidney stone through focusing of ultrasonic wave at the site. As this method generates high intensity field at the target, it is not suitable in hyperthermia. Hence it was decided to use Lele's scheme with some modifications.

1.5 Project objectives

The ultrasonic focusing technique for continuous heating at the target (modification of the scheme proposed by Lele) will be implemented in this project. The main objectives of the project are, 1) to maximize the energy at the target, i.e. to confirm that the acoustic waves transmitted would be focused exactly at the target by arriving there continuously, 2) to take care that the normal tissues do not get damaged.

As in most cases of testing of biomedical equipment, the equipment is first tested in vitro.

In this particular case, the objective of the project is limited to heating of a target in a water bath without heating the intervening media. For simulating different media, some foreign objects in the path of the ultrasound could be used.

1.6 Report outline

Second chapter of the report describes the implementation aspects in ultrasonic focusing. It describes the selection of focusing procedure, the selection of transducers and delay elements for the system. Chapter 3 explains the block diagram of the focusing system. The mechanical assembly that was used for positioning the transducers is also explained. Chapter 4 gives the details of the electronic hardware that has been designed, built and tested for the system. Chapter 5 gives the details about experiments that were carried out to prove the focusing technique and the results obtained. Chapter 6 describes some limitations of the scheme.

Fig.1.2 Time reversal mirror technique for ultrasound focusing. a)Transmitting wavefront through the inhomogeneous media.

- b) Recording step.
- c) Transmitting a time reversed field.

2. Ultrasound focusing Implementation aspects

2.1 Introduction

In first chapter, various ultrasound focusing techniques were described. This chapter describes the various aspects towards actual implementation of ultrasound focusing, the focusing procedure, transducers selection, delay elements for measurement and generation of delays.

2.2 Focusing procedure

The focusing procedure adopted earlier by Sahasrabuddhe [7] is discussed briefly here. The focusing of ultrasound wave on the target is carried out in a water tank. The focusing procedure is shown in Fig.2.1. The target region on which ultrasound from transducers is to be focused is first insonified by transmitting transducer. The target scatters the ultrasound waves in different directions and the scattered waves are sensed by the receiving transducers (Tp1 to Tp4). The output of all the receiver transducers after amplification in receiver amplifiers (R1 to R4) are given to timing logic. The timing logic will measure the delay from the time transmitted wave is sent to the time it is received by the receiver. This delay is proportional to distance from target to receiver. Based on this delay the timing logic decides the sequence in which the transducers are supposed to retransmit.

Let Ts be the transmitting transducer which insonifies the region of interest and let the receiving transducers Tp1 to Tp4 receives the reflected signals after a time delay of T1, T2, T3 and T4 where T1 > T2 > T3 > T4. Then while retransmitting, the transducer Tp1 will be excited first and then Tp2, Tp3 and Tp4 after a delay of (T1- T2), (T2- T3) and (T3- T4) respectively, after the excitation of previous transducer is completed. The sound waves delayed in such fashion would reach the target in succession. Since the hardware

involved is large, it was felt that a microcontroller could be used in place of timing logic and a signal generator could be used to give continuous output. This scheme is described in the next chapter.

2.3 Ultrasound transducers

For the generation of ultrasound waves, the piezoelectric transducers are very commonly used. They work on piezoelectric effect. The material exhibiting this property are certain natural crystals, such as, quartz and tourmaline, ferroelectrics like barium titanate and lead zirconate titanate (PZT).

In selecting the operating frequency for the ultrasound system [4], it is desirable to keep a frequency that will keep the absorbed power in tissues near the skin surface less than the absorbed power at the depth.

The intensity at depth Z cm is given by,

 $I(Z) = Io e^{-2AZ} \overrightarrow{Z} \qquad \dots \qquad (1)$

Where, \vec{Z} = unit vector in Z axis direction,

Io = acoustic intensity at the surface (W/cm^2) ,

Z = distance into the tissue (cm) and

A = attenuation coefficient of the tissue (cm⁻¹)

The rate at which the energy is dissipated as the wave travels through the tissue is equal to the absorbed power per unit volume, P_a that may be derived from the general expression.

$$P_a = - \nabla I$$

'A' is assumed to be a function of frequency, and is approximately given by,

where, $A_0 =$ the attenuation coefficient in tissue at 1 MHz.

 $(A_0 = 1.0 \text{ d B/ cm/ MHz} = 0.12 \text{ nepers /cm/ MHz})$

f = frequency in MHz

Therefore, eq. (2) becomes,

$$P_a = 2Ao f I_0 e^{-2A} o^{fZ}$$
(4)

Also, it is necessary to keep the acoustic intensity Io below certain level. The relative power deposition rate in the tissue (P_a / Io) is thus a function of frequency (f).

i.e. $P_a / I_0 = 2A_0 f e^{-2A_0 f Z}$ -----(5)

Hence, the optimal frequency, $f = 1/(2A_0 Z)$ where P_a / I_0 will be maximum. Assuming $A_0 = 0.12$ nepers /cm/ MHz, f for heating the plane waves in the 2 cm to 5 cm range is between approximately 0.4 and 2 MHz.

2.4 Delay generation

A delay line is an element or component into which an electrical signal can be put and can be taken at its output at some later time, which depends upon the delay set into it, thus causing the signal to get delayed. Thus the time delay circuits are most important elements in the entire set up. The focusing ability of the system would entirely be dependent upon how precisely the delays in the retransmission can be controlled. Firing of transducers with accurate delays would result in the ultrasound waves reaching at the target successively, which ultimately is the aim.

Some of the delay elements are: lumped parameter delay lines [5], switched capacitor delay lines [6], monoshots, digital counters etc. Lumped parameters and switched capacitors delay lines are shown in Fig.2.2. All these delay elements can generate the desired delays if the latter are known already. But to make a closed loop system, a delay element is required that will be able to measure as well as generate the desired delays. Digital counters, microcontrollers can be used for this purpose. The use of microcontroller as a delay measuring and generating device is described later in detail.

 $---- \rightarrow$ Reflected wave

Fig. 2.1 Focusing procedure

3. Focusing system

3.1 Introduction

In the second chapter various aspects of ultrasonic focusing, such as the method, selection of system elements were discussed. In this chapter, the scheme to get continuous heating at the target and less heat around the target is discussed. The block diagram and function of each block of the scheme are also described.

3.2 System block diagram

The scheme carried out in the laboratory consists of ultrasound transducers, transmitter circuit, switching network, receiver amplifier circuit, microcontroller and oscillator. It is shown in Fig.3.1. It describes a method for continuous heating of the target while the tissues around the target gets heated to a lesser extent.

The scheme is proposed initially for heating a target in a water bath. The amount of heat energy necessory to be imparted on the target is not discussed.

The scheme involves two steps. The first step is for delay measurement. Delay measurement step determines the delays that are required to be stored in the microcontroller. At the end of these delays, the transducers are connected to the power oscillator to get a continuous heat at the target. The second step involves a firing process during which the transducers are connected to the power oscillator sequentially for a predetermined period to get a continuous output at the target.

In Fig.3.1, the transmitter, T is used to excite the transducer, Ts with a large spike. The transit times of the transmitted and reflected signals received at the primary transducers Tp1 to Tpn are measured. For this purpose, the received signals at Tp1 to Tpn are given to receiver amplifier

circuit, R through a switching network, S'N. The receiver amplifier amplifies the signal which is then fed to the microcontroller, μ c. The microcontroller will measure the delays and store them. During delay measurement, the switching circuit selects one transducer at a time. The switches S'1 ----- S'N are controlled by the microcontroller and connect the transducers to the receiver amplifier.

After delay measurement, the transducers are excited with a sine burst which can be generated with the help of oscillator, O, power amplifier, P and switching network SN. Details of the scheme are described below.

3.3 Delay measurement

The delay measurement set up is shown in Fig.3.2. Here, a transducer, Tp1 is selected with the help of switching network, S'N which is controlled by the microcontroller. The transducer, Ts is excited with a large spike generated by the transmitter and Ts generates a mechanical sound pressure. The transit time taken by the ultrasound to reach Tp1 is measured and stored in the microcontroller. Let the transit time taken by the ultrasound to reach Tp1 is T1. Similarly, the transit times T2 to Tn (the transit times from other transducers Tp2 to Tpn) are measured and stored in the microcontroller.

3.4 Firing step

The firing process is shown in Fig.3.3. During the firing process, the transducers are excited with sine burst which is generated with the help of oscillator, O and switching network, SN. The switching network, SN is controlled by the microcontroller, Lic so as to excite the transducers one after other sequentially depending upon the delays measured and stored earlier. If

 $T_1 > T_2 - --- > T_n$, then, the transucer Tp1 is excited first with a sine burst of width Tx as shown in Fig.3.4(a). The transducer Tp2 is excited with a sine bust after a time delay of $(T_1-T_2+T_x)$ as shown in Fig.3.4(b). The transducer Tp3 is excited with a sine burst after a further time delay of $(T_2-T_3+T_x)$ as shown in Fig.3.4(c) and so on. Such a type of excitation will give a continuous heating of the target as shown in Fig.3.4(e). Here, the transducers are excited with a sine burst instead of pulse so as to transmit more energy to the target. Thus the target receives the energy continuously while at all other places it is in bursts and hence heating is limited.

3.5 Mechanical arrangement

The primary (receiving) and the secondary (transmitting) transducers are to be positioned in such a way that the reflections from the target surface can be detected by the primary transducers. This in other words is the geometrical focusing of the ultrasonic waves because we are directing the transducers towards the target. As the attenuation of ultrasonic waves through water is very small, it is required to dip the crystals in water. For this purpose a platform as shown in Fig.3.5 is designed. The piezo crystals are fixed at the bottom surface of the plastic tube. These tubes are placed on a thin metal sheet. The metal sheet is bent such that the transducers it holds directs the waves towards the target. With such an arrangement, the crystals can be dipped inside the water and the waves directed towards the target.

Microcontroller

Fig. 3.1 System block diagram for continuous heating at the target.

Microcontroller

Fig. 3.3 Firing process.

Fig.3.4

The waveforms at the target due to excitation of various transducers.

Fig.3.5 Mounting of crystals.

4. System hardware

4.1 Introduction

This chapter describes the necessary electronic hardware that has been designed, built and tested for the system. Various blocks used are triggering circuit, transmitter circuit, switching network, receiver amplifier and delay circuit.

4.2 Triggering circuit

The function of the triggering circuit is to provide a trigger pulse to the transmitter circuit. The trigger circuit is shown in Fig.4.1[7]. It is a transistorized switching circuit built using 2N2222. The microcontroller generates a pulse at pin P2.3 which is used as an input for the triggering circuit. This pulse is used to excite the transmitter. The switching circuit increases the high state voltage level of the pulse from TTL to +12v so as to drive the MOSFET of the transmitter stage.

4.3 Transmitter circuit

The function of the transmitter is to excite the transmitting transducer, Ts to emit a short duration pulse of ultrasonic energy. This is done by applying a short duration electrical pulse to the transducer. The circuit diagram of the transmitter circuit is shown in Fig.4.2 [7]. It consists of a capacitor C1 connected at the output of a MOSFET switch. When the MOSFET is OFF, the capacitor is charged to + 120V. When the trigger signal from the output of the triggering circuit is applied to the gate of the MOSFET, it goes into ON state and acts virtually as a short circuit. This results in a large negative spike voltage across the transducer. By means of this electric pulse, the transmitted into water.

The amplitude and shape of the transmitter pulse have a great effect on the transmitted ultrasonic pulse. The width of the pulse and hence the energy transferred to the transmitting transducer can be increased by choosing higher value capacitance C1 [8].

4.4 Switching network

When the spike generated by the transmitter is given to the transmitting transducer, Ts, the transducer generates mechanical pressure wave. During delay measurement, the transit times for ultrasound to reach the transducer Tp1 to Tpn are measured successively. The selection of Tp1 to Tpn is done with the help of switching network, S'n (Fig.3.2) which is controlled by the microcontroller. A switching cell of the switching network is shown in Fig.4.3. Here DG 201A (Quad monolithic SPST CMOS analog switches) [9] is used. A DG 201A is bi-directional, latch proof switch which can block signals upto 30 Vm in OFF state. The switch is TTL and CMOS compatible. The switching network will play an important role during delay measurement. When a single DG 201A switch is used, a considerable leakage voltage was observed even when the switch is OFF. When the input was 60mVm and the switch is OFF, the output observed was 8mVm. This is not an acceptable value and hence the switching network shown in Fig.4.3a was tried out. When S_1 and S_3 are OFF, and S_2 is ON, the leakage was reduced to 2mV. Thus the switching network reduces the leakage and the crosstalk between two received signals will also be reduced. But, when S1 and S3 are ON, their ON resistance causes loading effect on the received signal during delay measurement and on excitation signal during the firing process. Hence the switching cell of switching network, S'N shown in Fig.4.3b during delay measurement and the switching cell of switching network, Sn shown in Fig.4.3c during firing process are preffered. In the switching network shown in Fig.4.3b, a CD 4066 (Quad bilateral switch) [9]

is used. As its ON resistance is very very less, it reduces the loading effect on received signal. Also it produces less leakage during OFF state. The switches are controlled by microcontroller pins (P3.0 to P3.7). In the circuit shown in Fig.4.3c, reed relays are used which has very low ON resistance (0.7 ohm) causing less loading on the excitation signal during firing process. A transistorized switch is use to make the reed relay ON and OFF which in turn controlled by the microcontroller pins (P1.0 to P1.7).

4.5 Receiver amplifier circuit

The signal available at the output of the receiver ultrasonic transducers are of very small amplitude of the order of few millivolts. They need to be amplified before feeding them to other circuit for further processing. The receiver amplifier circuit is shown in Fig.4.4. The amplifier has a bandwidth of 45 MHz [7,10]. It consists of a preamplifier followed by another amplifier with diode clipping circuits at the outputs of the both the stages. The gain of the preamplifier can be adjusted in such a fashion that the noise and echoes in the received signal are not amplified beyond the cut-in signal of the diode. Thus the output of the center dipping circuit will be free of noise and echo signals. The second amplifier boosts the signal from clipping circuit. The amplifier is built using NE592, a differential input, differential output wide band amplifier [11].

4.6 Delay circuit

The delay generation and the delay measurement is done with the help of microcontroller 89C55 [12]. It is a 16 bit microcontroller having 2 internal counters which can be used as timer or counter depending upon the application. The output of the receiver amplifier is given to the high speed comparator NE521 which compares the received signal with the reference signal (\cong 0.5 V) and gives out a square waveform. This waveform is then given as a clock pulse to a D- type flip - flop 7474. The input of D - type flip-

flop is held at zero. The output of D-type flip - flop is given to microcontroller pin (P2.6) [Fig.3.2]

The microcontroller pin (P2.6) is held to logic 1 level first. When a pulse generated by microcontroller is given to the transmitter circuit, a counter of microcontroller is started. When the microcontroller receives a logic 0 level on its pin P2.6, it stops the counter. The reading of the counter is corresponding to the delay required for the ultrasonic wave to travel from the transmitting transducer, Ts and to reach at one of the receiving transducers Tp1 - Tpn. These delays are then stored in the microcontroller. During firing process, the delays are obtained with the help of same counters. The complete circuit diagram of the scheme is shown in Fig.4.5.

VCC 120 V 47ut 2 C2 2 C3 15k,2W 1 R2 1 c 2 c 2 c 2 c 3 mD 1 c 1 c 2

5. Experiments and results

5.1 Introduction

This chapter describes the experiments carried out in order to test the focusing ability of the system and gives the results obtained thereof.

5.2 Results

The scheme shown in Fig.3.1 was built using the blocks discussed in chapter 4. Initially the testing was carried out using a single transmitting and receiving transducer. During delay measurement the receiving transducer was connected to receiving amplifier manually. The receiving transducer was kept at different heights and the delay measured and these delays were stored in the microcontroller. The microcontroller then decides the order in which the delays are to be rearranged. The firing process was observed on 8 LEDs. These LEDs simulated the firing transducers. The system was found to be working satisfactorily.

Because of the problems of the mechanical assembly for holding the transducers that caused the misalignment and due to the reduced power of oscillator, the transducers placed at larger angles could not receive the reflected signals and hence the scheme was carried out for two transducers with two types of switching network (using CD 4066 during delay measurement and using reed relays during firing process). The strength of the received signal reduces approximately to 20% for 2⁰ deviation from the line of alignment and 50% at 3⁰ deviation. The results obtained are described below.

Fig.5.1a shows the pulse generated by the microcontroller (CH-A) to trigger the triggering circuit which in turn gives a large negative spike (CH- B) at the output of transmitter circuit. Fig.5.1b shows the expanded version of the output of the transmitting network. Fig.5.2 shows the

waveform when transducer, Ts is connected to the output of the transmitting circuit. This shows some loading effect of the transducer. When the resistance R4 of the transmitting circuitry shown Fig.4.2 is changed, the resulting transmitting waveform is shown in Fig.5.3. Fig.5.4 shows the pulse transmitted to the transmitting transducer, Ts (CH- A) and the pulse received at receiving transducer Tp1 (CH- B). Fig.5.5 shows the pulse transmitted to Ts (CH- A) and the pulse received at Tp2 (CH- B). The delays between the transmitted pulses and the received pulses are measured.

Following delays were observed.

- 1. Time delay between the transmitted pulse and the received pulse at Tp1 was 101 Jusec.
- 2. Time delay between the transmitted pulse and the received pulse at Tp2 was 84 Lisec.
- 3. Thus the difference between the two received pulses is 17 lusec.

After the delay measurement, the microconttroller will trigger the transducer, Tp1 corresponding to the maximum delay first (CH- A) and then triggers the remaining transducer (Tp2) as shown in Fig.5.6 (CH- B). Fig.5.7 shows the excitation of the transducer, Tp1 with a sine burst (CH- A) the continuous wave of amplitude 268 mVpp and frequency 2.5 MHz seen at the target spot (CH- B).This was measured using immersible transducer.

The same procedure is carried out at other heights of transducer Tp1 and Tp2. The results obtained are shown in Fig.5.8, Fig.5.9 and Fig.5.10.

Efforts were made to extend the scheme using 8 transducers. But again due to reduced power output of the oscillator and mechanical misalignment at greater angles it could not be carried out successfully. It is required to calculate the power deposited at the target before designing the

power amplifier. This requires a matching scheme and the transducer parameters have to be found out.

Following tests were performed to measure the transducer parameters.

5.3 Crystal parameters

In order to design appropriate matching circuit, the characteristics of the crystal have to be determined. The tests are carried out to find the characteristics of the crystal. The experimental circuit is shown in Fig.5.11. The results obtained are described below.

The crystal is excited with a constant amplitude sine wave. The results obtained for different frequencies are given in Table 5.1. The characteristic Fin Vs Zo is shown in Fig.5.12.

Table 5.1: Impedance measurement of the crystal at different frequencies.

Fin	Vin	VR	Vo	IR	Zo	
(MHz) (V)		(V) (V)		(mA)	(ohm)	
1	2.474	0.247	2.29	24.7	92.7	
2.0	2.474	0.459	2.899	45.9	63.1	
2.5	2.474	1.555	1.484	155.5	9.5	
2.8	2.474	0.212	2.51	21.2	118.3	
3.0	2.474	0.353	2.79	35.3	79	

Vin = 7 Vpp

Thus, the resonant frequency of the crystal has found to be 2.5 MHz. At resonant frequency, the impedance of the crystal Zo is approximately 10 ohms.

5.4 Flow chart

The flow chart for controlling the switching network, S_N and S'_N , for the measurement of delays and for firing process is given in the appendix A. The software is given in appendix B.

ScopeMeter 97

ScopeMeter 97

with $R_4 = 1k$ ohm.

Fig.5.3 O/P of the transmitter circuit after connecting to Ts with $R_4 = 0$ ohm.

Received signal at Tp2. CH- B

Fig.5.7 Excitation signal for Tp1. CH- A Received signal at the target. CH- B

Received signal at Tp1. CH- B

ScopeMeter 97

Fig.5.9 Excitation pulse to Ts. CH- A Received signal at Tp2. CH- B

Fig.5.10 Excitation signal for Tp1. CH- A Received signal at the target. CH- B

crystal.

6. SUMMARY AND CONCLUSION

Hyperthermia is a therapeutic procedure where a particular part of human body is exposed to very high energy to destroy the lesion. Focused ultrasound will have potential for this purpose. Continuous heating of the target can be achieved by exciting the transducers successively at the instants depending upon the transit times for the ultrasound to reach at the receiver transducers. The various blocks of the system i.e. transmitter circuit, switching network, receiver amplifier circuit, and the crystal have been tested. The results obtained from them are found to be satisfactory. For delay measurement, the pulse excitation of the transducer is convenient so as to avoid the cross talk between transmitted and reflected pulses. During the firing process, the transducer will be excited with a sine burst so as to transmit more energy to the target. The switching operation in the complete process will be controlled by the microcontroller. Due to reduced power output of the oscillator and mechanical misalignment at greater angles, the scheme could not be carried out successfully for three transducers. This requires the matching scheme and the transducer parameters have to be found out. Also it is required to design a power amplifier. But before designing the power amplifier, the required power to be deposited at the target, the conversion efficiency of the transmitting transducers, thermal conversion factors of the target, attenuator in the media have to be known.

Following are the problems to be looked into.

1) Misalignment of the sound waves.

2) Power amplifier.

- 3) High speed switches with less leakage and low ON resistance to be used in place of reed relays.
- Energy estimation to be made.

APPENDIX A

.equ rs, p2.0 .equ rw, p2.1 .equ en, p2.2 .equ busy, p0.7

	.org 0000h
	mov sp,#6fh
	mour al disp
start:	mov p1,#00h
opens:	mov p2,#0ffh
opene	nov p3,#00h
	ib p3.0
	jb pz. /, opensl
opens1:	mov a #22b
	mov $a, #32n$
	lcall stime
	ib p2 7 spanse
	simp opens
opens2:	lcall proce
	mov a #ITI
	Icall strobo
	mov a #!0!
	Icall strobe
	mov a #! !
	lcall strobe
	mov a. #'A'
	lcall strobe
	mov $a, #00h$
	mov b, #08h
	lcall stime
shorts:	jnb p2.7, shorts1
	sjmp opens2
shorts1:	mov a,#14h
	mov b, #00h
	lcall stime
	jnb p2.7, shorts2
	sjmp opens2
shorts2:	mov a, #01h
	lcall stobe
	mov a, #00h
	mov b, #08h
	lcall stime
	mov a, #0c0h
	lcall stobe
	mov a, #'O'
	lcall strope
	mov a, #'K'
	ICALL SLIDDE
	mov a, #00h
	mov D, #Uon
	icall stime
opena:	jb p2.7, openal
	sjmp shoresz
openal:	mov a, #J2h
	looll stime
	ib n2 7 ailona
	simp shorts2
ailana	lcall ailon
arryna:	inb p2.7. shortal
Shortd:	simp ailqna
shortal	mov a, #14h
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

	mov b, #00h	
	inh p2 7 short 2	
	sjmp ailgna	
shorta2:	mov a, #01h	
	lcall stobe	
	mov a, #00h	
	lcall stime	
	mov a, #0c0b	
	lcall stobe	
	mov a, #'0'	
	lcall strobe	
	mov a, #'K'	
	mov a #00b	
	mov b, #0.8h	
	lcall stime	
	jb p2.7, opena2	
000002.	sjmp shorta2	
openaz:	mov $a, #32h$	
	lcall stime	
	jb p2.7, measa	
	sjmp shorta2	
measa:	setb p2.3	
	ani tcon, #0cfh	
	orl tmod #01b	
	mov $tl0, #00h$	
	mov th0, #00h	
	clr p2.4	
	nop	
	nop seth n2 4	
	clr p2.3	
	orl tcon,#10h	
waita:	jnb p2.6,stopa	
	jnb p2.5, shortsrl	
stona	anl tcon #0efh	
scopa.	mov 20h, tl0	
	mov 21h, th0	
res0:	mov 15h,20h	;lsb
	mov 16h,21h	;msb
	mov a #'0'	
	lcall strobe	
	lcall result2	
	mov a,#00h	
	mov b, #08h	
	lcall stime	
shortsr:	jnb p2.5, shortsri	
shout and .	mov a. #14h	
ShortSII:	mov b, #00h	
	lcall stime	
	jnb p2.5, shortsr2	
	sjmp opent	
shortsr2:	lcall stobe	
	mov a, #00h	
	mov b, #08h	
	lcall stime	
	48	

opes:	<pre>mov a,#0c0h lcall stobe mov a,#'0' lcall strobe mov a,#'K' lcall strobe mov a,#'R' lcall strobe mov a,#00h mov b,#08h lcall stime jb p2.5,opes sjmp shortsr2 ljmp opens</pre>
opent:	mov p3,#00h setb p3.1
opent1:	sjmp opent mov a,#32h mov b,#00h lcall stime jb p2.7,opent2
opent2:	<pre>sjmp opent lcall press mov a, #'T' lcall strobe mov a, #'1' lcall strobe mov a, #' ' lcall strobe mov a, #'A' lcall strobe mov a, #00h mov b, #08h lcall stime</pre>
shortt:	jnb p2.7, shortt1
shortt1:	<pre>ijmp res0 mov a,#14h mov b,#00h lcall stime jnb p2.7,shortt2 limp res0</pre>
shortt2:	mov a, #01h lcall stobe mov a, #00h mov b, #08h lcall stime mov a, #0c0h lcall stobe mov a, #'O' lcall stobe mov a, #'Y lcall strobe mov a, #'K' lcall strobe mov a, #00h mov b, #08h lcall stime
openb:	jb p2.7,openb1
openb1:	mov a,#32h mov b,#00h lcall stime jb p2.7,ailgnb

ailanh	sjmp shortt2
shorth	lcall ailgn
enerce.	jnb p2.7, shortb1
shorth1.	sjmp ailgnb
Shorebr.	mov $a, #14h$
	mov b, #00h
	lcall stime
	jnb p2.7. shortha
ab a web b D	sjmp ailgnb
shortb2:	mov a, #01h
	lcall stope
	mov a. #00h
	mov b. #08h
	lcall stime
	mov a, #0c0h
	lcall stope
	mov a, #'0'
	lcall strobe
	mov a, #'K'
	lcall strobe
	mov a, #00h
	mov b, #08h
	lcall stime
	jb p2.7, openb2
	sjmp shortb2
openb2 :	mov a, #32h
	mov b,#00h
	lcall stime
	jb p2.7,measb
	sjmp shortb2
measb:	setb p2.3
	anl tcon,#0cfh
	anl tmod, #0f0h
	orl tmod, #01h
*	mov t10, #00h
	mov th0, #00h
	clr p2.4
	nop
	nop
	setb p2.4
	cir p2.3
unith	ori tcon, #10n
waltb:	Jnb p2.6, stopb
	JND p2.5, Shorttri
atoph	sjiip waltb
scopb:	and Con, #0ern
	mov 22h, cio
	mov 2311, CHO
rest:	mov 151,2211
	looll result1
	loall strobe
	lcall result?
	mov a #00h
	mov b. #08h
	lcall stime
shorttr	inb p2.5, shorttr1
	simp fir
shorttr1.	moy a, #14h
	mov b, #00h
	lcall stime
	jnb p2.5, shorttr2
	sjmp fir
	5 50

;lsb ;msb

<pre>shorttr2: opet:</pre>	<pre>mov a, #01h lcall stobe mov a, #00h mov b, #08h lcall stime mov a, #0c0h lcall stobe mov a, #'O' lcall strobe mov a, #'K' lcall strobe mov a, #'R' lcall strobe mov a, #00h mov b, #08h lcall stime jb p2.5, opet sjmp shorttr2 ljmp opent</pre>
fir:	Jb p2.7,firl sjmp fir
firl:	mov a,#32h mov b,#00h
fir2:	lcall stime jb p2.7,fir2 sjmp fir
	mov a, #'F' lcall strobe mov a, #'I' lcall strobe mov a, #'R'
	lcall strobe mov a,#00h mov b,#08h
fir3:	lcall stime jnb p2.7, fir4
fir4:	ljmp res1 mov a,#14h
	mov b,#00h lcall stime
	jnb p2.7, focus
;****************** ;Program to arra ;*************	**************************************
focus:	mov p3, #00h lcall max mov 40h, a mov 41h, b lcall sense mov 58h, @r1 lcall max mov 42h, a mov 43h, b 51

lcall sense mov 59h,@r1 ljmp subp

**********	****
program to find	d interval between two succesive delays
r	***************************************
subp:	mov r0, #40h
	mov r1, #60h
	mov r7, #01h
sub:	clr c
	mov a, @r0
	inc ro
	inc r0
	subb a,@r0
	mov @rl,a
	dec r0
	mov a,@r0
	inc ro
	inc ro
	subb a,@r0
	inc rl
	mov @rl,a
	JC subl
aubl.	sjmp sub3
Sub1.	cir c
	mov a,@r1
	CPI a
	dog wil, a
	dec ri
	add a tork
	ic sub2
	inc rl
	Simp sub?
sub2:	inc rl
	mov a @rl
	add a $\#01b$
	mov @rl a
sub3:	inc rl
	dec r0
	ding r7 sub
	simp cplp
	elub chih
·************	*******
Program to find	d 2's compliment of data in 60 - 61
, **************	*******
[n] -	
chtb:	mov r0, #60h
CDI	mov r7, #01h
-PIX:	clr c
	inc r0
	mov a,@r0
	cpl a
	mov @r0,a
	dec r0
	mov a,@r0
	cpl a
	52

Max: mov	r7, #02h
;*************************************	<pre>************************************</pre>
;	mov pl,#00n
	mov b,#08h lcall stime
	<pre>lcall timerx mov a,#00h</pre>
	mov a, 59h
;	mov a,#00h mov b,#08h
	mov th0,61h lcall stimer mov th0,#0feh mov th0,#0ffh lcall stimer mov tl0,#0feh mov th0,#0ffh
;	mov pl,#00h
	mov a,#00h mov b,#08h lcall stime
	mov a,58h lcall timerx
;;;	mov a,#00h mov b,#08h lcall stime
firing:	mov p1,#00h mov tl0,#0feh mov th0,#0ffh
**************************************	**************************************
cp12:	mov @r0,a inc r0 djnz r7,cplx sjmp firing
cp11:	add a,#01h mov @r0,a jc cpl1 inc r0 sjmp cpl2 inc r0 mov a,@r0 add a,#01h

l

	mov	a,@r0								
axx:		jnz maxs								
mart		inc r0								
		mov a, @r0								
		jnz maxs1								
		inc r0								
		djnz r7, maxx								
		mov b, #ooh								
		sjmp last								
-1:	dec	ro								
maxs	mov	a,#00h								
maxo		mov b, #00h								
	- 1	sjmp max1								
	CIL	C								
max		mov a,r3								
		subb a, r2								
		mov r4, a								
		add a those								
		adu a, #02h								
		mov 15,a								
		mov ro osh								
		mov = 0,0811								
		mov 0.8h r3								
		mov $r0.08h$								
	clr	C								
max1:		subb a,@r0								
		mov a,b								
		inc r0								
		subb a,@r0								
		jnc max2								
		mov b, @r0								
		dec r0								
		mov a, @r0								
		mov 08h,r0								
		mov r2,08h								
		clr c								
		inc r0								
		inc r0								
		mov 08h, r0								
		mov r3,08h								
		djnz r7, max4								
		sjmp last								
max2:	dec	ro								
		djnz r4, max2								
		mov b,@r0								
		dec r0								
		mov a, @r0								
		mov 08h,r0								
		mov r2,08h								
Mayo		clr c								
mars:	inc	ro								
		djnz r5, max3								
		mov 08h, r0								
		mov r3,08n								
last.		djnz r7, max4		; a=	lsb	of	max.	web of	Emax	
	ret						; b=	msb of	max.	
					No. 12 - 44			******	******	*****
;*****			******	****	****	****	*****	and to	desc.	order
Subrout !	****	*************	a from	50h-	-53h	COI	resp	******	******	****
;******	to s	sense fixed dat	******	****	****	***				
Sense.	****	***********								
		mov 50h, #01h	- 4							

sensel:	<pre>mov 51h,#02h mov r0,#20h mov r1,#50h mov r7,#02h mov r6,a mov 08h,@r0 inc r0 mov 09h,@r0 clr c cjne a,08h,sense2 mov a,b clr c</pre>
_{sense2} :	cjne a,09h,sense2 sjmp sense3 mov a,r6 inc r0 inc r1
sense3:	mov @r0,#00h dec r0 mov @r0,#00h ret
*****	****
Subroutine for	stimer
stimer:	anl tcon, #0cfh anl tmod, #0f0h orl tmod, #01h orl tcon, #10h
waitx:	jbc tf0,dwnab sjmp waitx
dwnab:	anl tcon,#0efh ret
. * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
Subroutine for	timerx ************************************
timerx:	anl tcon,#0cfh anl tmod,#0f0h orl tmod,#01h mov p1,a orl tcon,#10h
waits:	jbc tf0,dwnabs sjmp waits
dwnabs:	anl tcon,#0efh ret
;******	* * * * * * * * * * * * * * * * * * * *
; Subroutine fo: ;************	r result1 ************************************
result1: ; ;	<pre>lcall decimal mov a,#01h lcall stobe mov a,#00h mov b,#08h lcall stime mov a,#80h lcall stobe mov a,#'T' lcall strobe 55</pre>

intine for	result2			
Subreatter	***************************************			
*******	mov a, #'			
result	lcall strobe			
	mov a, #'='			
	lcall strobe			
	mov a, 34h			
	jz Ax1			
	ljmp Px1			
	mov a, 35h			
AXI	jz Bx1			
	sjmp Qx1			
	mov a, 36h			
BX1	jz Cx1			
	sjmp Rx1			
	mov a, 37h			
CX1.	jz Dx1			
	sjmp Sx1			
au11	mov a,38h			
DX1.	sjmp Tx1			
nv11	lcall ncode2			
PX1.	lcall strobe			
	mov a, 35h			
ox1:	lcall ncode2			
UNT .	lcall strobe			
	mov a, 36h			
Px1:	lcall ncode2			
N	lcall strobe			
	mov a,37h			
Sx1:	lcall ncode2			
0	lcall strobe			
	mov a,38h			
Txl:	lcall ncode2			
	lcall strobe			
	mov a,#' '			
	lcall strobe			
	mov a, #'u'			
	lcall strobe			
	mov a, #'S'			
	lcall strobe			
	ret			
******	* * * * * * * * * * * * * * * * * * * *			
;Subroutine for	ailgnment			
;********	* * * * * * * * * * * * * * * * * * * *			
ailgn:	mov p2,#0ffh			
	setb p2.3			
	mov tl0,#0d4h ;delay of 300 us			
	mov th0,#0feh			
	lcall stimer			
	clr p2.3			
	mov tl0, #9ch ;delay of 100 us			
	mov th0, #0ffh			
	lcall stimer			
	ret			
	· · · · · · · · · · · · · · · · · · ·			

"Subroutine to display" press K for"				
Dra	*****			
Press:	mov a, #01h			
	lcall stobe			

	<pre>mov a, #00h mov b, #08h lcall stime mov a, #000h lcall stobe mov a, #'P' lcall strobe mov a, #'R' lcall strobe mov a, #'S' lcall strobe mov a, #'S' lcall strobe mov a, #'' lcall strobe mov a, #'' lcall strobe mov a, #'' lcall strobe mov a, #'P' lcall strobe mov a, #</pre>				
	ret				
	-/				
;*************************************	**************************************	*********** 21h(m),20 ****	********* h(l) & st *******	**************************************	**************************************
decimal:	mov 34h,#00h mov 35h,#00h mov 36h,#00h mov 37h,#00h mov 38h,#00h setb psw.4 clr psw.3 mov a, 16h jz store_b mov r2, 16h mov r1, 15h	;	msb lsb		
store_b:	sjmp htd mov r2, #00h				
htd.	mov r1, 15h				
xxx1:	mov a, #00h				
	mov r4,a mov r5,a mov r6,a mov r0,#10h nop				
mm :	<pre>mov a,#00h mov a,r1 rlc a mov r1,a mov a,r2 rlc a mov r2,a mov a,#00h</pre>	57			
		57			

nn: 11:	addc a,r4 da a jc xx add a,r4 da a mov r4,a mov a,#00h addc a,r5 da a jc yy add a,r5 da a mov r5,a mov a,#00h addc a,r6 da a add a,r6 da a add a,r6 da a mov r6,a dec r0 cjne r0,#00h,mm	
xx:	add a,r4 da a mov r4,a setb c	
уу:	add a,r5 da a mov r5,a setb c simp 11	
split:	mov 34h, #00h mov 35h, #00h mov 36h, #00h mov 37h, #00h mov 38h, #00h mov 38h, #00h mov a,r4 anl a,#0fh mov 38h,a mov a,r4 swap a anl a,#0fh mov 37h,a mov a,r5 anl a,#0fh mov 36h,a mov a,r5 swap a anl a,#0fh mov 35h,a mov a,r6 anl a,#0fh mov 34h,a clr psw.4	;R6-R5-R4 contains decimal value ;of hex value form R1-R2
	cir psw.s ret	;[result - 34h to 38h]

;*****

SOFTWARE DELAY ROUTINE ******* software delay ; , load the number ms delay in binary in register a (lsb) and b (msb) ; and call delay loading zeros in a and b means immediate return .equ delay, 08ch ; for timer push 07h stime: ;save r7 push acc ;checking for a=b=00 orl a,b ;will be 00 if both 00 cjne a,#00h,ok ;return if all 00 pop acc ;keep stack balanced sjmp done pop acc ok: ;not all eroes, proceed
;initialise r7, 1 mov r7, #delay timer: onemil: nop ;tune the loop for 6 cycles, 1 nop ;this makes 2 cycles total, 1 nop ;3 cycles total, 1 djnz r7, onemil ;count r7 down ;total delay 5 cycles(3.75us X delay) djnz acc,timer ; count A and B down as one cjne a, b, bdown1 ; A = 00, count B down until = 00 sjmp done ; if so then delay is done bdown1: dec b ; count B down and time again sjmp timer done: pop 07h ;restore r7 to original value ret ncode2: inc a movc a, @a+pc ret .db 30h .db 31h .db 32h .db 33h .db 34h .db 35h .db 36h .db 37h .db 38h .db 39h ; software initialization for display disp: ; function set clr rs clr rw ; function set mov p0,#38h ; 4.1 ms delay ; 5 ms delay mov a,#05h mov b, #00h lcall stime ; function set mov p0,#38h ; 1 ms delay mov a, #01h mov b, #00h lcall stime ; 1 line 5x7 dots 59 mov a,#38h lcall stobe

; command screer ;display on/off ; command cursor ; clear all and	n and cursor on, mov a, #1eh lcall stobe control mov a, #0ch lcall stobe right as data o mov a, #06h lcall stobe home cursor mov a, #01h lcall stobe ret	nc	played
'this is the st	Tobe Tout !	* *	*****
*****	*********	pr	display
strobe:	MOV DO HOFFL	**	*****
wait:	clr rs setb rw clr en setb en jb busy,wait clr en clr rw setb rs setb en mov p0,a clr en clr rs	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	for reading busy flag read signal this generates the enable strobe this pulls down EN write signal choose data ram enable strobe write to data ram
	ret		
stobe:	mov p0,#0ffh clr rs	;	configure pl as an input port
wat.	setb rw	;	read signal
wat.	setb en jb busy,wat clr en	;	this generates the enable strobe
	clr rw	;	write signal
	setb en nop mov p0,a clr en nop ret	;	enable strobe

.end

REFERENCES

- [1] S.O. Harrold," Ultrasonic focusing techniques, " Research Technique in Non-destructive Testing, vol.6, edtd. by R.S. Sharpe, Academic press, pp.49-106,1982.
- [2] M.Fink, "Time reversal of ultrasonic fields part 1: basic principles, "IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.39, No.5, pp.555-566, 1992.
- [3] P.P. Lele, "1986, Rationale, technique and clinical results with scanned focused ultrasound (SIMFU) systems, "Proceedings of 8th Annual Conference of IEEE engineering in Medicine and Biology Society (IEEE 86CH 2368-9), (New York : IEEE), pp.1435-1440.
- [4] Paul J. Benkeser, Leon A. Frizzell, Stephen A. Goss, Charles A. Cain, " Analysis of a Multielement Ultrasound Hyperthermia Applicator, " IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.36, No.3, pp.319 - 325, May 1989.
- [5] A.D. Halfrick, W.D. Copper, Modern Electronic Instrumentation and Measurement Technique, Prentice Hall of India Pvt. Ltd., pp.210,1994.
- [6] P.N.T. Wells, Biomedical Ultrasonics, Academic Press, pp.245,1997.
- [7] R. Sahasrabuddhe, "Ultrasonic Focusing Technique, "M.Tech. Dissertation, Dept. of Electrical Engineering, Indian Institute of Technology, Bombay, January 1997.
- [8] C. Satishkumar, " Ultrasonic Flow Measurement," M.Tech. Dissertation, Dept. of Electrical Engineering, Indian Institute of Technology, Bombay, January 1996.

[9] The TTL Logic Data Book, Texas Instruments Incorp., 1988.

- [10] K. Kowabata, S.Umemora, " Study of efficient sono chemical reactions by focused ultrasound, " *Proceedings of Ultrasonic Symposium*, pp.1281-1285, 1992.
- [11] The Linear Data Book, National Semiconductor Corporation, vol.3, Santa Clara, 1988.
- [12] Microcontroller Handbook, Intel Corporation, Santa Clara, 1984.