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Abstract

Display of lip shape can be employed for providing visual information to improve
speech reception by the hearing impaired persons during telephonic conversation.
The objective of this project is to investigate estimation of lip-shape parameters
from speech waveform without the knowledge of speech content. Estimation of
lip-shape parameters is carried out from the spectral moments of the pitch syn-
chronously computed speech spectra using bivariate least squares approximation,
and 2D and 3D Delaunay triangulation methods. Lip-shape parameters extracted
from these methods are first analyzed for the training sounds. Segments of vowels
/a/, /e/, /i/, /o/ and /u/ are used as the training sounds. The spectral moments
of the training sounds are then used as the reference data for synthesizing lip
shapes for other segments like vowel-vowel and vowel-semivowel-vowel syllables.
Analysis results have been consistent for speech signal with SNR greater than 20
dB. Also, lip-shape parameters estimated using 3D Delaunay triangulation method

have smooth contour than those using the other two methods.
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Chapter 1

Introduction

1.1 Problem overview

For persons with normal hearing, the process of learning to speak is aided by
auditory feedback. Hearing impaired persons lack this auditory feedback, and
therefore, experience difficulty in acquiring normal speech characteristics. Thus,
in spite of proper speech production mechanism, these persons may not be able to
produce intelligible speech. Visual feedback can be provided by display of certain
speech parameters which provide necessary cues for uttering a particular speech
segment. The parameters can be vocal tract shape, energy and pitch contours,
and lip shape, all related to speech segment. Hearing impaired persons can be
provided speech training using display of such parameters on a screen. Also, the
hearing impaired persons retain the ability to speak clearly, if their hearing loss
occurred at a later stage in their life. For them, the ability to speak in spite of

hearing loss provides easier adaptability to training for speech reading [1].

Apart from speech assisted devices like hearing aids and communication tech-
niques like sign language, the hearing impaired persons rely on lip reading and
audio visual speech perception. Hearing impaired persons, who have the ability to
speak and lip-read, can make substantial use of visual information from speaker’s
face on a videophone during telephonic conversations. For them, the visual infor-
mation from the speaker’s face can efficiently integrate or even substitute audio
information for understanding speech [1]| [2]. Reported results showed that the
speech recognition score in noise can be improved upto 43% by speech reading and
31% by audio visual speech perception when compared to auditory alone. How-
ever, bandwidth limitations and storage constraints do not allow the videophones

to send every visual frame with the audio [1]. It thus necessitates the extraction



of certain speech parameters which provide good correlation between speech and
visual information, and which can be transmitted over the channel with minimum

capacity.

1.2 Project objective

In the words of Lavagetto [2]|, “Lip reading represents the highest synthesis of
human expertise in converting visual inputs into words and then into meanings. It
consists of a personal database of knowledge and skills constructed and refined by
training, capable of associating virtual sounds to specific mouth shapes, generally
called visemes, and therefore infer the underlying acoustic message. The lip-reader
attention is basically focused on the mouth, including all its components like lips,
teeth, and tongue, but significant help in comprehension comes also from the facial
expression.” There is an ongoing project on the estimation of vocal tract shape
at IIT Bombay [3] [4] [5]. Its objective is to estimate the vocal tract shape and
pitch from the speech signal, and display these in real time. However, displaying
only the internal view of the vocal tract shape and the side view of the lip shape
cannot provide adequate information to help the hearing impaired persons. An
additional display of the front view of the speaker’s mouth, mainly the lip shape
would provide additional visual information to assist in speech perception by the

hearing impaired persons.

The goal of the project is to synthesize lip movements to visualize speech.
If such lip motions can be synthesized, hearing impaired persons may be able
to recover auditory information by reading lip movements. This also has wide

applications in animation and video telephony.

1.3 Organization of the report

Next chapter provides a brief overview of the various methods proposed and imple-
mented for estimating the lip-shapes. Chapter 2 also discusses the use of Delaunay
triangulation for connecting a set of points to the desired parameters. In Chapter
3, the method of finding the pitch period of the speech signal and calculation of
spectral moments from the signal have been described. The use of least squares

approximation, and the surface fitting and the volumetric fitting using Delaunay



triangulation for calculating the lip-shape parameters have been described in the
same chapter. Chapter 4 discusses the analysis of the results obtained for the
methods described in Chapter 3. Chapter 5 gives the summary of the work done

and some suggestions for future work.



Chapter 2

Speech-driven lip-synchronization

Speech driven lip-synchronization (or lip-sync) involves an accurate portrayal of
how the lips, tongue, mouth, and jaw of the speaker appear to move during the
utterance of the speech deduced from the speech signal without the necessity of
speech recognition or previous knowledge of speech [6]. Lip-sync can also be done
with the help of content or text of speech. Text-driven lip-sync systems identify
the phonemes in the speech. Speech driven lip-sync systems use audio information
to identify the mouth position during the speech production [7]. In the next few
sections, some of the methods proposed and implemented to synthesize lip shapes
have been described. Last section explains the theory of Delaunay triangulation

which will be used for mapping a set of points to generate lip-shape parameters.

2.1 Real time DECface

Waters and Levergood [8] developed DECface as a novel form of real time face-
to-face communication. The process involves the ability to generate speech and
graphics at real time rates where the audio and graphics are tightly coupled to
generate expressive synthetic facial characters. The process employs three major
algorithms - (1) the letter to sound system, (2) phonemic synthesizer and (3)
vocal tract model. The letter to sound system accepts ASCII text as input and
produces phonemic transcription as output. The phonemic synthesizer accepts
this phonemic transcription output and produces parameter control records for the
vocal tract model. The synthesizer applies intonation, duration and stress rules to
modify the phonemic representation based on phrase level context. The resulting
phonetic sequence is provided to the synchronization component. The vocal tract
model accepts the control records from the phonemic synthesizer and updates its

internal state in order to produce the next frame of synthesized speech samples.
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The vocal tract model is a formant synthesizer based on Klatt’s model [9]. Using
the prototype mouth shapes for the known phonemes, the model then computes
the current mouth shape for the phoneme being uttered, using interpolation. The
synchronization component is then used to synchronize the synthesized speech

samples with the graphical display of the mouth shape in real time.

2.2 HMM based approach

Tamura et al [10] proposed a technique for synthesizing synchronized lip move-
ments from auditory input speech signals. The technique is based on an algorithm
for parameter generation from HMM with dynamic features. In the analysis phase,
they extracted lip contours from the audio-visual speech database as the static fea-
tures. At the same time, Mel-cepstral coefficients were extracted from the speech
signal. They trained the syllable HMMs using the parameters extracted from the
database. In the synthesis stage, the speech recognition of the auditory input
speech was performed based on the syllable HMMs using the maximum likelihood
calculation of HMMs. As a result, they obtained a sequence of syllables and state
durations for the input speech. The syllable HMMs corresponding to the obtained
syllable sequence were then concatenated to obtain a sentence HMM. A sequence
of lip contours were generated from sentence HMM using an ML-based parameter

generation algorithm.

There is another HMM based speech to lip movement synthesis model with
speech as input, which incorporates a forward co-articulation effect, as proposed
by Yamamoto et al [11]. In the analysis phase, the acoustic phoneme HMMs were
trained from an audio visual speech database. Next the speech parameters were
aligned into HMM state sequences using the forced Viterbi alignment. Frames were
classified into “viseme” classes corresponding to succeeding phonemes by looking
ahead to context independent HMM state sequence. Synchronized lip parameters
associated with the same HMM state and same viseme class of the succeeding
phoneme context were then extracted to form a visual database. In the synthesis
stage, an input speech signal was aligned into an HMM state sequence using Viterbi
alignment. Viseme classes corresponding to each frame were then determined and

the lip parameters associated with the HMM state and the viseme class were then



extracted and concatenated into a lip movement sequence.

Williams and Katsaggelos [1| proposed an HMM based speech to video speech
synthesizer based on a novel correlation HMM model. The unique feature of the
model is the ability to integrate independently trained acoustic and visual HMMs
for speech-to-visual synthesis. In this approach, the acoustic speech signal is first
preprocessed and then the acoustic feature vectors are extracted to construct an
acoustic observation sequence. Next the acoustic HMMs are used to realize an
acoustic state sequence that best realizes the input speech. The state sequence is
then mapped by the correlation model into a visual state sequence. The heart of
the correlation model is the integration technique which is divided into three parts
- early integration, intermediate integration and late integration. These integration
techniques try to integrate the audio and visual HMMs depending on the state of
their occurrence. Finally the visual state sequence and the corresponding visual

HMMs are used to produce a visual observation sequence for speech reading.

2.3 Synthesis using RGB information

Liéven and Luthon [12] proposed the use of colour video sequence of the speaker’s
face for segmenting the lip shapes without any reference to audio information. First
the logarithmic colour transform from RGB to HI (hue, intensity) colour space is
performed on the video sequence to estimate the sequence dependent parameters,
and also to estimate the noise on the motion information. Next, the mouth shape
is segmented statistically using Markov random field model, and simultaneously,
the Region of Interest (ROI) covering the lip shape is estimated using the red-hue

predominant regions.

Most of these methods require video information of the speaker’s face for
generating lip motions. Another requirement is the use of audio-visual speech
database containing visemes related to all known phonemes, which in turn requires
a lot of storage capacities, thereby increasing the cost. The major drawbacks are
the additional hardware required for tracking the speaker’s facial parameters as

well as limiting facial motion of the speaker.



2.4 Synthesis using neural network

In synthesizing lip movements using audio information only, the most important
part is the identification and generation of lip-shape parameters sufficient enough
to support lip-reading. Massaro et al [13] developed an audio to visual speech
synthesis which synthesized visual speech directly from the acoustic speech wave-
form. From the acoustic waveform, 13 cepstral coefficients were generated using
21 Mel-scaled filters. At every frame, the cepstral coefficients were fed to a feed-
forward artificial neural network with three layers. At any instant, the cepstral
coefficients related to 11 consecutive frames, viz 5 previous frames, current frame,
and 5 forward frames, were taken as input, yielding a total of 143 inputs. At the
network outputs were 37 control parameters of the animated face. Smoothing al-
gorithm was then used to remove the fluctuations in the control parameters. The
smoothed parameters were then fed to a face renderer to drive the articulation
of the synthetic face. Results showed that the synthesizer detected the middle
phonemes in a word more correctly than the phonemes at the extreme positions,

but visemes were generated more correctly at the extremes than in the middle.

Lavagetto et al [14] [2] proposed a similar speech to lip movement conversion
method based on the time delay neural network. The major differences are the
extraction of cepstral coefficients from LPC speech analysis and the architecture

of the neural network.

2.5 Use of spectral moments

One method reported by McAllister et al [15] [7] is based on the observation that
the basic shape of the Fourier transform for a given speech signal is relatively static
and independent of pitch, and can reliably be correlated with the mouth shape of
that sound. Hence rather than locating the formants, which is more difficult and
error-prone, the spectral moments of the signal can be used to derive its associated

viseme.

First the fundamental frequency of the speech signal at successive intervals
or equivalently the glottal pulse duration P, is determined by optimizing the sum

of the magnitude of the first four odd samples of the DFTs at these intervals.



Once the P, sequence is being tracked accurately, the first two central moments,
i.e., mean and variance are calculated from the magnitude spectrum of the speech
signal with the window length N equal to P,, after normalizing it like a probability
density function. For every frame, the spectral moments are then mapped to
mouth parameters using 2D Delaunay triangulation. Next, using Hermite cubic
polynomial and mouth parameters as its control parameters, the lip contours were
developed for each frame. The method works well for vowels, semivowels and

fricatives, but not so well for affricates and stops.

The advantage of this method is that only two spectral moments and the
pitch period sequence of the speech signal were used as the control parameters for
generating lip shapes from the acoustic waveform. Also, low amount of redundancy
is involved in this case, as the spectral moments can not be used to regenerate the
speech waveform. Audio-visual speech database has not been used in this method.
Because of these features, this method has been implemented and analyzed with

certain modifications in this project as described in the next two chapters.

2.6 Delaunay triangulation

Triangulation algorithm can be used to connect a set of data points to generate
a geometric figure. Triangulation is a subdivision of a surface area (volume) into
triangles (tetrahedrons). Moreover, a triangulation of a set of points consists of
vertices, edges connecting two vertices and faces connecting three vertices. One
of the most common methods of achieving triangulation of points is the Delaunay
triangulation. Various algorithms have been proposed to obtain Delaunay tri-
angulation like Bowyer-Watson algorithm, Guibas-Stolfi Algorithm, plane-sweep
algorithm, divide-and-conquer algorithm etc. [16] [17] [18] [19] [20].

The two properties of Delaunay triangulation are [21]:

1. No point is contained in the circumcircle of any triangle. This empty circle

property is used in several Delaunay triangulation algorithms.

2. In 2D only, of all the possible triangulations of a given set of points, the
Delaunay triangulation maximizes the minimum angle for all triangular el-

ements which is the requirement for good quality finite elements. Unfortu-



nately, this maximizing the minimum angle property is lost in 3D and higher

dimensions where poor quality elements are formed.

When a set of points uniformally distributed in space are connected using
2D Delaunay triangulation, the generated surface takes the shape of a grid with
a flexibility of controlling grid resolution. The use of Delaunay triangulation is
particularly suited when one does not want to force any constraints on the set of
points to be connected. Since the Delaunay triangulation is done over a set of
points and does not necessarily conform to imposed boundary (fixed edges), the
method can be forced to include the boundary properly. This new forced method
is called Constrained Delaunay Triangulation. In this method, the pre-defined
edges are in the triangulation and the empty circle property is modified to apply
only to points that can be seen from at least one edge of the triangle where the
pre-defined edges are treated as opaque. In 3D, there appears to be no concept of

constrained Delaunay triangulation.

An example of 2D Delaunay triangulation is shown in Figure 2.1. Another
example of 2D Delaunay triangulation, when projected in 3D space and where a
set of points in X-Y axes is mapped to an equal number of desired parameters in
Z-axis, is shown in Figure 2.2. Using the surface in Figure 2.2, the parameter
value for any other point inside the boundary range can be found. This feature
would be used for finding lip-shape parameters from the spectral moments of the
speech signal as part of the project.

2D Delaunay triangulation can be used for unstructured meshs and structured
surface fitting of two variables. Similarly, 3D Delaunay triangulation can be used
for volumetric fitting of three variables. In general, both 2D and 3D Delaunay
triangulation methods are the fastest methods for unstructured meshes, but the

boundary conformance needs to be checked or maintained.



0.9 b

0.8 b

0.7 b

0.6 b

0.5 b

0.4 b

0.3 b

0.2 b

Figure 2.1: 2D Delaunay triangulation of a set of points
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Figure 2.2: 2D Delaunay triangulation of a set of points in 3D space
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Chapter 3

Implementation

A Matlab [22| based speech analysis and display package, VLip, has been devel-

oped for implementation and evaluation of various analysis techniques for lip shape

estimation. The natural speech signals were recorded using GoldWave Editor [23]

and the synthesized speech signals were generated using Klatt’s cascade/parallel

formant synthesizer [9]. All the speech signals have been digitized at 11.025 kSa/s.

Analysis techniques employed include:

1.

2.

Display of speech waveform with an estimate of its pitch period.

Display of voiced, and unvoiced segments, which is useful for determining

the voice onset.

. Analysis of the energy of the waveform, which is calculated for a window

length equal to thrice the average pitch period of the signal with 30% over-
lapping.

Spectrographic analysis for time-frequency plot of the speech signal.
Display of spectral moments of the pitch synchronously computed spectrum.

Estimation of lip-shape parameters using least squares approximation method

and Delaunay triangulation method.

At first, the pitch period P, of the speech signal is estimated based on the algo-

rithm proposed by Rodman et al [6] [15] [24] [25]. Segmentation into these periods

is then used for estimating lip-shape parameters. Spectral moments, namely, mass,

weighted mean, and weighted variance of the average magnitude spectrum of the

signal estimated with a window length equal to the pitch period P, and actual

11



frequencies of the samples as the weights have been calculated. It will be observed
in the next chapter that spectral moments of the vowels occupy distinct positions
in the mean-variance space. Finally, these spectral moments are mapped to the
lip-shape parameters. Lip-shape parameters are first analyzed for the training
sounds. Then, the spectral moments of the training sounds are used as the ref-
erence data for synthesizing lip shapes for other speech segments like vowel-vowel

and vowel-semivowel-vowel syllables.

3.1 Determining the pitch period

In implementation of the pitch period determination method proposed by Rod-
man et al [6] [15] [24] [25], we have assumed that a rough estimate of the pitch
period P, can be calculated using any other pitch determination method, and this
will determine the pitch of the speech signal as that of a male or female or child.
Using these results, we can define a range of valid P;s. A method of calculating
the glottal pulse position is reported by Rodman et al [6] [15] [24]. This method is
based on the fact that the magnitudes of the odd harmonics of a periodic function
with period T}, is zero when the function is expanded in Fourier series whose co-
efficients are determined by integrating over the interval T' = 27},. If the periodic
waveform is mixed with small amount of random noise, the sum of magnitudes of
the odd harmonics is minimum, if the integration interval used for the calculation
of the harmonics is equal to 27,. In a narrow band time-dependent Fourier repre-
sentation, the excitation for voiced speech is manifested in sharp peaks at integer
multiples of the fundamental frequency and the contribution of noise is negligible
when viewed as a function of frequency. In practice, the speech is digitized and
we can take DF'T samples as harmonics. Rodman et al have used the sum of the

first four odd samples in the DFT. The algorithm is as follows:

Let sq, s9, S3,... be some arbitrary sample points of a discrete time sequence
z(n) of voiced speech. A window sequence with window length in the range |4, j]
(an estimate of the pitch period 2P,) is defined such that

i<2P, <j

We then compute the magnitudes of the DFTs over the intervals [sy, s;], [s1, Sit1],
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[s1, sit2], ... producing | X;(k)[, | Xip1(K)[, [Xi2(K)|, ..., where

Xn(k) = DFT[z(n)] 0<k<N, (3.1)
0<n<N

where ¢+ < N < 7. Sum of the magnitudes of first four odd samples of the spectrum

Xn (k) is now obtained as

Yy = [Xn(]+ [Xn )+ [Xn ()] + | Xn(7)] (3.2)

Next, we find

Y, = max[Yy,i < N < j]. (3.3)

We check to see whether Y is below a certain threshold - determined by the
maximum of the Y obtained when the segment is noise or silence and if so, P, is set
to zero for this segment. The introduction of Equation 3.3 is a slight modification
in Rodman et al’s approach. This is because a sequence of noise samples do not
have a consistent pitch period sequence and that the identification of the noise
segments among the voiced speech is a must for the correct working of the glottal

pitch tracker. Otherwise, we seek the point m, where

Y, = min[Yy,i < N <j]. (3.4)

The value of m is the number of samples in the estimate of twice the pitch
period P,. The analysis window is then shifted forward by P, samples and we
search for the next minimum. This produces a sequence of P, estimates, Py,

Py,.... To locate the Py, the estimated window size is

i=15P; 1y,  j=25P; 1

This window size is chosen because of the fact that the window size estimate
should be large enough to handle the rapid excursions of the P, when it encoun-
ters a fricative or similar class of sounds, but not so large as to allow the alternate
extrema, which would result in the alternate tracking of a multiple of pitch period.

Whenever a window segment is found to be unvoiced, P, is set to zero, and the
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analysis window is shifted by (i + j)/4, and the new values of i and j are respec-
tively set to 2P i, and 2P, 4., Which are the minimum and maximum values

respectively in the predefined pitch period range.

Ym - Ym
‘7/2 <001 then P, :% (3.5)

Yin

In a deviation with Rodman et al’s approach, it is also checked whether any

minimum of Yy occurs at half the current estimate m and the relative difference
in the two minima should be less than 0.01 and if so, the new estimate of the
pitch period is set to m/2. Such extreme minima at window length equal to twice
the pitch period and its integer multiples are observed to occur for vowels and
semivowels. This is because, if Yy is minimum for N = 2P, then it is minimum
for N = 2kP, as well where k is an integer. On the other hand, the estimate
should not be small enough such that the glottal pulse tracker converges to zero

and crashes.

The fundamental frequency Fo; of the speech segment with pitch period P;
and the sampling rate 11.025 kHz is then calculated as

~ 11025
=5

gt

(3.6)

0;

N
o

=
a1

o

Sum of odd harmonics
|_\
o

o

100 150 200
Window Size

Figure 3.1: An example of sum of the magnitudes of first four odd samples of DFT
for synthesized /a/
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Figure 3.1 shows the plot of sum of the magnitudes of the odd samples of
DFT of a window sequence for synthesized /a/. Since the window in this case is
[73, 237|, and the minimum is at 147th glottal pulse number, the pitch period P,
is 147/2 ~ 73 samples.

3.2 Spectrographic analysis

The spectrogram is a two-dimensional representation of the time-dependent spec-
trum in which the vertical axis represents frequency and the horizontal axis repre-
sents time. The spectrum magnitude is represented by the darkness of the marking
on the paper [26]. The analysis window determines the spectral bandwidth of the
display. For a 3-dB bandwidth of 300 Hz, the spectrogram displays good temporal
resolution and poor spectral resolution. For a 3-dB bandwidth of 50 Hz, the spec-
trogram displays good spectral resolution and poor temporal resolution. In this
project, the analysis window used is a Gaussian window. The 3-dB bandwidth is
calculated as [27]

1.2982804

3-dB bandwidth = s
anawl window length

where f, is the sampling rate. Thus, for wide band and narrow band spectrograms,
the window lengths of approximately 47 and 286 samples respectively have been

used.

In a spectrogram, it is difficult to view the pitch harmonics and the formant
structure clearly, as they are mixed up. However, it is possible to suppress the

pitch harmonics by using harmonic or LPC smoothened spectrogram.

Harmonic smoothened spectrogram

A spectral envelope of the speech signal can be obtained with a window length
equal to the pitch period P,. If this spectral envelope is displayed as a spectrogram,
the result is Harmonic Smoothened Spectrogram. This spectrogram gives a good
display of the formant structure of the speech signal. Also, the formant analysis

is dependent on the pitch period.
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Linear predictive coefficient (LPC) model

The basis for linear predictive models is the source-filter model of speech produc-
tion which roughly approximates the human vocal-tract filter to a time-invariant
(for a short time window) with an all-pole transfer function. An important feature
of the source-filter model is that it separates intonation from phonetic information.
Intonation characteristics such as pitch, amplitude and voice quality are features of
the sound source, while the vocal tract filtering affects the features of the phoneme
being produced. LPC can be used to separate the sound source properties from
those of the vocal tract filter, which governs the phoneme articulation and it can
provide good parameter estimates for lip-syncing models generated by speech. The

detailed discussion on LPC model can be obtained from [26].

The linear predictive coefficients of the speech signal with a fixed window
length greater than or equal to 2P, are computed for successive intervals. The
magnitude response of an all-pole transfer function, with its coefficients equal
to the linear predictive coefficients for each interval, are then computed. This
magnitude response is then plotted as a spectrogram with the frequency along Y-
axis and the corresponding time interval along X-axis and the response displayed

as intensity.

3.3 Voiced-unvoiced segmentation

Once the P, sequence of the speech signal is determined, it is necessary to know
whether a segment of speech under analysis is voiced or not. If the segment is
voiced, the fundamental frequency Fj is an important parameter which needs to
be correctly estimated. In presence of noise, it becomes significantly complicated
to extract pitch and take the voicing decision. The purpose of a voicing decision is
to correctly partition speech into voiced, unvoiced, and silence segments. In case
of noise contaminated speech, only voiced-unvoiced segmentation can be made. As
the noise is added, the silence segments may appear unvoiced and the weak voiced
segments may even appear to be unvoiced [28|. So the voicing decision has to be
robust in noisy conditions.

Energy can be an important parameter in finding the voiced segments of the

speech signal. However, the energy parameter cannot be used to discriminate be-
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tween unvoiced and silence segments. Wang et al [29] observed that the properties
similar to that of cepstrum can help identify the voiced portions of the speech sig-
nal. The algorithm, as proposed by Wang et al, is implemented for a window
length 2f;/50 (where fs is the sampling rate) equivalent to the fundamental fre-
quency 50 Hz in the audio range. The procedure is defined below for a sampling

rate of 11.025 kSa/s and window size of 440 samples:

For each window of 440 samples, we compute | X (k)|, absolute value of the
DFT of x(n) and keep the first half as R(k),0 < k < 219. Next we compute
T(l), the absolute value of the DFT of R(k) and again keep the first half as
Y(1),0 <1 < 100.

X(k) =DFT[z(n)]  0<k <439, (3.7)
0<n<439
R(k) = |X(K)| 0<k<219 (3.8)

T(I) =DFT[R(k)]  0<k < 219,
(3.9)
0<1<219

Y({I)=1|T1)] 0<1<109 (3.10)
Let M = Y(0), i.e. the DC coefficient of Y({). It is observed that the value

M for the voiced segment far exceeds the value M for the silence or weak noise
segment. So, we define a threshold B, (30 in our case), to separate these seg-
ments. The introduction of threshold B is in deviation to Wang’s approach. If the

maximum value of Y () falls below B, then the segment is termed as silence.

Let P be the maximum value of Y (I) between sample 22 and sample 55, this
range corresponds to the possible pitch period range of all speakers. The ratio of
P to M is compared with a threshold ¢, which depends on the window size. If this
ratio is greater than ¢ (0.05 in our case), the utterance segment is voiced. It is
to be noted that if at most four consecutive segments are termed as silence, then
the segments are termed as unvoiced, provided the values M for these consecutive

segments exceed the threshold B. Comparison with threshold B is needed, because

17



for silence segments, M has a low value, and its presence in the denominator of the
ratio of P to M may give results comparable to those for voiced segments, thus
wrongly terming some silence segments as voiced. The procedure is then repeated

with a window shift of 110 samples.

3.4 Calculating spectral moments

Once the glottal pulse duration P, sequence is determined, the spectral moments
are calculated using the shape of the magnitude spectrum produced by using DFT
on Pj-sample windows. The magnitude spectrum is normalized like a probabil-
ity density function and statistical moments - mass, mean and variance are then

computed. This technique, as proposed by McAllister et al [15] [25], is as follows:

At first the pitch period P, of the speech signal is determined by the method
given in section 3.1. Once the P, sequence is being tracked accurately, the mag-
nitude spectrum of the speech signal with the window length N equal to P, is
computed and averaged out, computation being done for the same window length

N, with window shifting by at least one sample or 10% of the window length N.

X,.(k) = DFET[z,(m)] 0<m< N -1,

0<k<N-1, (3.11)
0<n<N-1
;| Nl
Sk)=—— X, (k 0<E<N-1 3.12
(0= 2 1) (3.12)

This does not produce any significant variation compared to the magnitude
spectrum of the single speech segment, but it smooths out the spectrum. Next,
DC term of S(k) is dropped, and the cube-root of S(k) is taken.

S'(k) = +/S(k) (3.13)
N
M = 4000 * — (3.14)

where f, is the sampling rate.
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Taking the cube-root of S(k) has the effect of lessening the influence of the first
formant and emphasizing the differences in the other parts of the spectrum. Next,
only the first 4000 Hz part of the spectrum S’(k) is selected using Equation 3.14
and normalized like a probability density function to get P(k) by dividing by
its mass mg. The first central moment, i.e., mean (m;), and the second central
moment about the mean, i.e., variance (my), of the spectrum are computed and

plotted on a m;-my space.

Mo = i S'(k) (3.15)

P(k) = S;Ek) (3.16)
my = i kP(k) (3.17)
my =Y (k—mi)*P(k) (3.18)

It is to be noted that while calculating the moments, the value of £ in the
computation is scaled by a factor f;/N to compute the moments in the actual
frequency range [0, fs/2|. If the moments are calculated using their sample num-
bers as their weights, due to differences in the pitch periods even for adjacent
segments, moments will then become dependent on the pitch period and hence the
fundamental frequency. If the factor fs/N is taken into account for the weights,
then the maximum weight that is possible is f;/2, and much of the above fluc-
tuations diminish. However, some fluctuations do remain because of rectangular
windowing as well as computational rounding, and so the spectral moments are
smoothened using 5-point median filtering followed by 5-point averaging and then

3-point median filtering.

3.5 Lip-shape parameters from spectral moments

It is observed from the moment space, as shown in the next chapter, that for
different speakers, the vowels occupy similar positions but at different points in

the moment space, which is in agreement with observations as reported by Taylor
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Figure 3.2: Parameters that define the lip shape

Table 3.1: Values of mouth parameters for different mouth positions [7] [30]

Speech |  Keyword Mouth Parameters
Segment Jaw | Flare | Edges | Corners

/a/ calm 1 0.15 0 0
/i/ team 0 -0.75 1 0
Ju/ zoom 0.25 0.75 -1 1
/e/ name 0.5 -0.75 0.75 0
/o/ foam 0.5 0.4 -0.25 0.5

silence - 0 0 0 0

et al [31] [32]. This implies that the spectral moments of the vowels can be mapped

to the corresponding positions of the lip shape. For experimental investigation,
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similar to those of Krothapalli et al [7] [30], four measurable parameters with
extreme range like vertical and horizontal openings of the lips, lip-protrusion and
actual closing of the lip in the horizontal position are used for developing the
mouth shape, as shown in Figure 3.2 taken from an animated cartoon. Also, we
have assumed that the parameter values for the silence are zero. This is because
any arbitrary lip shape can be used for the silence, and the requirement is for
an ideal lip shape for silence, which can be used as reference for calculating lip

parameters for other mouth positions. The four parameters are [7] [30] :

1. The parameter Jaw is a function of jaw height during articulation, and is
measured as the opening between the upper and the lower teeth. As the
upper jaw is fixed in position with reference to silence, it is the lower jaw,
that determines the parameter value. Jaw parameter takes values in the
range [0, 1|, because the lower jaw cannot take a higher position than that
in silence for any possible mouth shape. The lower the jaw position while
uttering the sound, the higher is the jaw value. For sounds like /a/, where
the lower jaw moves down to its maximum position, the jaw parameter takes
a higher value. For sounds like /i/ and /u/, the lower jaw is nearer to that

in silence and so the parameter takes a low value.

2. The parameter Flare is a measure of forward or backward motion of the
lips. For sounds like /0o/ and /o/, the lips round and protrude forward, and
the flare values are high in these cases. For sounds like /i/ and /e/, the lips

are stretched, and so have negative flare values.

3. Edges is the measure of the distance between the two points where the lips
meet internally. For sounds like /u/ and /o/, this distance is less than that
in silence and so the edges have negative values. For sounds like /i/ and /e/,

where the mouth is wide open, the edges parameter takes a positive value.

4. Corners is the measure of the distance between the extreme lip joints in the
horizontal direction. The difference between edges and corners parameters
is clearly seen in sounds like /u/ and /o/ where the lips are rounded. These

sounds take a high value for the corners. Sounds like /i/, /e/, and /a/ have
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nearly the same position for corners as that in silence. The three parameters,

namely, flare, edges and corners take values in the range [-1, 1].

Relative values of the lip-shape parameters for different speech segments are
given in Table 3.1. The relative values are used to represent the mouth positions
as it would then become easy to map the values to the absolute values of the actual
mouth shapes depending on the language medium used and the size of the mouth.
Moreover, the sum of the absolute values of the jaw and the flare gives the actual
height of the top of the lower or upper lip from the jaw position while in silence
[7].

At present we are concerned with developing mouth shapes for vowels and
semivowels. So, speech segments consisting of vowels /a/, /e/, /i/, /o/, and /u/
have been used as the training sounds for research. In a deviation from Krothapalli
et al’s approach, the sound /ce/ has been excluded from the investigation. These
vowel sounds are well separated in vowel space and they represent different possible
mouth shapes in English and Hindi languages. Because of their longer durations,
the middle part of the utterance is more or less static and it therefore becomes
easy to define a mouth shape for each of these vowels. Such isolated sounds are
chosen for training because obtaining mouth shapes directly from words are more
difficult. Because of the co-articulation effect, the mouth positions for semivowels
which have shorter durations than vowels, follow that of surrounding vowels at the
time of transition. So, there is not a single semivowel as part of training sound.
Moreover, the above four parameters are sufficient enough to define the mouth

positions for most voiced utterances.

Once we have calculated the spectral moments of the speech signal and have
defined the training sounds and their relative mouth positions, the task is now
to find an appropriate method for finding the relative mouth position from the
spectral moments. When speech is recorded from a speaker, the background noise
is also recorded along with it. There might also be some experimental error in
calculating the spectral moments of the speech signal. The smoothing techniques
used in computing spectral moments remove pitch differences and noise with small
variance. However some perturbations in the data still remains. So it is necessary

to choose methods that do not suffer from small perturbations in the data. Three
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methods, viz. least squares approximation, 2D Delaunay triangulation and 3D
Delaunay triangulation methods have been investigated for finding the relative

mouth positions.

3.6 Least squares approximation

Various approaches to interpolation have been proposed for finding the relationship
between a set of data and the resultant outcomes [33| [34] [35]. The problem with
the interpolation method is that it tends to give unexpected results for some inputs.
There is another approach, least squares approximation - one that involves fitting a
curve (surface) to a set of data without restricting that curve (surface) to coincide
with the data points [35]. The least squares approximation method is used in case
where the number of equations is greater than the number of unknowns. In many
applications, there will be noise or experimental error along with the field data.
Even though the field data remains roughly constant, the resultant outcomes vary.
Therefore we need to find the control parameters which give minimal deviation
of the desired outcomes from all data points. This can be achieved through the
method of least squares. The method of least squares assumes that the best fit
curve of a given type is the curve that has the minimum sum of least square error

from a given set of data.

Given the data set (z1,y1,h1), (T2,Y2,h2), ., (Tm, Ym, Am), & polynomial
p(z,y) of degree n which gives a good data fit has to be found. Usually n is
1, 2 or 3 while m is very large. The polynomial p(z,y) of third degree is given as

p(z,y) = ag+a1x+ as2? + a3z + asy + asy® + agy® + arzy + agr’y + agry? (3.19)

The residual vector r at (x;,y;) is given by

r; = p(xi, yz) —h; (3-20)

The sum R of the residual squares is given by

R=> 1} (3.21)



The coefficients are chosen to minimize R. The term aq is set to zero, since
for silence, mean and variance are zero and so p(x; = 0,y; = 0) should be zero.
Experiments with various terms have shown that R has a much lower value and
lower fluctuations in p(z,y) are observed, when the terms a7, ag, ag are assumed
to be zero, than when all the terms are present, due to the mutual independence

of the mean and variance.

In matrix form, the equation 3.19, with the terms aq, ar, ag, ag assumed to

be zero, is written as

P = XA (3.22)
where
ai p(ﬁl,?h) T 17% x:f Y1 ?J% y{’
A a P p(ﬁz, y2) X — T2 17% x% Y2 ?J% y%
Qg p(xm, ym) Tm 1‘7271 x;o;z YUm y72n ygz

The coefficient vector A is then calculated as

A= (X'X)"'X'P (3.23)
where the matrix (X'X) ™! is known as pseudo inverse of X.

Here, the mean m; and variance msy are chosen as the two independent
variables z and y respectively. The desired outcome h is one of the four mouth
parameters, thus requiring four polynomials, each corresponding to one of the
four parameters to be solved. We now need to define the speech segments which
can best represent the training sounds for investigation. The choice is necessary
because such training sounds should give the best possible parameter values for
developing the mouth shape. The training sounds can be the middle parts of the
speech segments /a/, /e/, /i/, /o/, /u/, which are assumed to be static. Also those
sections of the speech segments should be avoided which have wide fluctuations in
the contours of the pitch and spectral moments. Using these criteria, a cluster of

15-20 points, each for mean and variance from the selected segments are taken and
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concatenated into two lists. These lists represent the data for the mean and the
variance of sounds under analysis. We assume that for these values of the mean
and variance of the selected segments, the corresponding values of the lip-shape

parameters, as given in Table 3.1, are known.

We observed from the plots of spectral moments that the spectral moments
of noise segments are not insignificant compared to that of voiced segments and
also the moments of the noise segments do not have specific values. However, the
mass of the spectrum of the noise or silence segment is comparably lower than that
of the voiced segments. So, we set to zero the mean and variance of the spectrum
of the noise segments using their mass and the voiced-unvoiced segmentation as
the criteria. This is because for silence segment, with zero values for mean and

variance, the parameters would be zero by Equation 3.19.

The vector A is calculated for each of the four mouth parameters, giving
four vectors Ajow, Acornerss Aftare; and Aegges respectively. These vectors are then
multiplied by the spectral moments of the speech segments to get the values of the

corresponding mouth parameters for the same speaker.

The problem with this method, as observed from the results in the next
chapter, is that this method produces large deviation for some of the data points.
Moreover, experiments have shown that increasing the degree of the polynomial
results in poor curve-fitting. Even smoothing the resultant outcomes does not
give good curve fitting. The reason is the localized data variation which the least

squares method fails to ignore.

3.7 Surface fitting using 2D Delaunay triangula-
tion

Least squares approximation is a global method, and this is why there are local

fluctuations in the outcomes extracted using this method. In accordance with

Krothapalli et al’s findings [7] [30], we wish to investigate the 2D Delaunay tri-

angulation method which can ignore small fluctuations in the localized region.

Matlab provides a package for Delaunay triangulation, and data gridding and sur-

face fitting. The only limitation is that the method uses interpolation for finding
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intermediate points and does not employ extrapolation and so any seeking of data

outside a given region will return NaNs.

Similar to the least squares approximation method, the mean m; and vari-
ance mo are chosen as the two independent variables. Moreover, the criteria used
for selecting the speech segments for training sounds are same as that used for least
squares approximation method. The m; and ms of the sequence are set to zero for
the noise segments. We assume that for certain values of the mean and variance of
the training sounds, the corresponding values of the mouth parameters, as given
in Table 3.1, are known. Using the mean and variance and the values of the mouth
parameters of the training sounds as the reference points, and the Matlab function
‘griddata()’ for 2D Delaunay triangulation, the values of the mouth parameters

can be calculated for the utterances of the same speaker.

3.8 Volumetric fitting using 3D Delaunay triangu-

lation

Some fluctuations in the results are still observed while using 2D Delaunay trian-
gulation. This is because, the regions of some vowels for the same speaker overlap
in the moment space, and the energy and the mass mg of the speech are not even
roughly flat for most of the durations. This happens mostly during phonetic tran-
sitions and silence-speech transitions. So, we try to investigate whether the use of

three independent variables my, m1 and msy will give a better outcome.

The mass my, mean m; and variance ms are taken as the three independent
variables. The criteria for selecting the segments for training sounds have been
described earlier. Unlike the previous procedure, the m; and ms of the noise
segments are not set to zero. Moreover, we assume that for certain values of the
spectral moments of the training sounds, the corresponding values of the mouth
parameters, as given in Table 3.1, are known. Using these spectral moments and
the respective values of the mouth parameters as the reference points, and the
Matlab function ’griddata3()’ for 3D Delaunay triangulation, the values of the

mouth parameters are calculated for the utterances of the same speaker.
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Chapter 4
Analysis and Results

The techniques presented in the previous chapter were evaluated using synthesized
vowels and the speech utterances of five adult male speakers. The pitch range for
the male speakers has been taken as 65-260 Hz. The range of the pitch period P,
for the male speakers will then be approximately 42-170 samples for a sampling
rate of 11.025 kSa/s using Equation 3.6. For the speech utterances of the female

and the child, a small modification regarding the pitch range has to be made.

Speech segments /a/, /e/, /i/, /o/, /u/ extending 1-2 secs in durations
were recorded from different speakers as part of research for training sounds. The
vowel-vowel and vowel-semivowel-vowel segments were also recorded from the same
speakers. Firstly, the pitch period sequence and the lip-shape parameters are ex-
tracted for the training sounds recorded by a speaker. Next, the spectral moments
of the training sounds and their corresponding lip-shape parameters are saved as
reference data. Then, using these data, the lip-shape parameters are extracted for
various syllables for the same speaker. This method is then repeated for different

speakers.

4.1 Determination of pitch period and voiced-unvoiced

segmentation

Figure 4.1 shows the waveform and average magnitude spectrum for synthesized
vowels /a/, /i/, and /u/ for two fundamental frequencies. This figure also shows
a plot of the sum of the magnitudes of first four odd samples of the DFT, as a
function of window length. The pitch period estimate is equivalent to half the
window length for which the sum of the magnitudes of first four odd samples of

DFT, i.e. Y,, of Equation 3.4, is minimum. Last column in the figure shows the
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corresponding magnitude spectrum evaluated over one pitch period.

Magnitude Spectrum Sum of magnitudes of first ~ Mag. spectrum calculated
Speech Waveform (in dB) 4 odd samples of DFT over one pitch period (in dB)
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Figure 4.1: Spectral analysis of synthesized vowels /a/, /i/, /u/ with Fo = 90 Hz
and 110 Hz

We now analyze the pitch period determination method and the voiced-unvoiced
segmentation method with synthesized vowel syllables with varying pitch or ampli-
tude characteristics. All synthesized segments in Fiig 4.2 have a constant amplitude
of voicing AV = 60dB and a pitch contour in steps of 100, 100, 120, 120, 90, 90
Hz as fed to Klatt synthesizer tool [9]. The segments in Fig. 4.3 have a constant
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pitch of 130 Hz and amplitude contour in steps of 50, 50, 65, 65, 55, 55 dB.
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Figure 4.2: Pitch period and voiced-unvoiced segmentation of synthesized syllables
/a/, /e/, /i/, Jo/, /u/ with varying Fo and constant amplitude
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Figure 4.3: Pitch period and voiced-unvoiced segmentation of synthesized syllables
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We observed that the methods work correctly for all segments as shown in
Figures 4.2 and 4.3. However, during voiced-silence transition, the pitch period
determination method shows an error. This is because, at the transition, the
segment contains a sharp transition between voiced region and silence. For natural
segments as in Fig 4.4 and 4.5, the change in the pitch period is very well detected,
and unlike fluctuations in pitch period during speech-silence transitions in the

synthesized segments, no such case occurs in case of natural segments.
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Figure 4.4: Pitch period and voiced-unvoiced segmentation of natural syllables
Ja/, Je/, /®/, /i/, Jo/, /u/ by a male speaker “Vikash”

Similarly, for segments like /aalye/, /aya/ and /awa/ in Figures 4.6 and
4.7, the pitch period tracker is able to follow the changes in the pitch period.
However, the voiced-unvoiced segmentation method shows some unvoiced segments

for syllable /aalye/ which is actually voiced speech.
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Figure 4.5: Pitch period and voiced-unvoiced segmentation of natural syllables
/a/, /e/, /e/, /i/, Jo/, /u/ by a male speaker “Mani”
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Figure 4.6: Pitch period and voiced-unvoiced segmentation of natural syllables

/aalye/ (uttered twice) by a male speaker “Mani”
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Figure 4.7: Pitch period and voiced-unvoiced segmentation of natural syllables

/aya/-/awa/ by a male speaker “Mani”

We now test the pitch period tracker and the voiced-unvoiced segmentation
method with fricatives and stops. Results in Figure 4.8 show that unvoiced seg-
ments in the syllable /apa/ are well detected. For /aba/, it shows unvoiced during
closure, and voiced soon after the burst release, indicating an early voiced onset
for the voiced stop.

Figure 4.9 shows the results for syllables /afa/ and /ava/, As seen from the
figure, the unvoiced segments in the former syllable is detected only for a short
duration, because of the low threshold value of ¢ or else the high M value. Even the
pitch period tracker gives zero values around the unvoiced segments. The latter
syllable is found totally as voiced which is true. However, there is a dip in the
pitch period contour for the latter syllable when the syllable makes a transition

from vowel to fricative.
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Figure 4.8: Pitch period and voiced-unvoiced segmentation of natural syllables

/apa/ and /aba/ by a male speaker “Peter”
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Figure 4.9: Pitch period and voiced-unvoiced segmentation of natural syllables

/afa/ and /ava/ by a male speaker “Peter”
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4.2 Analyzing spectral moments

After verifying the pitch period determination method, we now need to analyze
the spectral moments of the syllables. As observed from Figures 4.10 and 4.11 for
synthesized syllables, fluctuations are observed between silence-speech transitions.
Also the mean and standard deviation of the speech are roughly flat for most of the
duration in case of speech segments. From the mean vs variance plot, we observed
that the vowels occupy distinct, but similar positions independent of amplitude
and pitch. Similar results are obtained for natural syllables as shown in Fig. 4.12
and 4.13. However, even though the noise is negligible in amplitude compared to
speech segment, their mean and standard deviation are not insignificant, because

of the low value of the corresponding mass my.
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Figure 4.10: Spectral moments of synthesized syllables /a/, /e/, /i/, /o/, /u/ with

varying Fo and constant amplitude
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Figure 4.11: Spectral moments of synthesized syllables /a/, /e/, /i/, /o/, /u/ with

constant Fo and varying amplitude
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Figure 4.12: Spectral moments of natural syllables /a/, /e/, /ce/, /i/, /o/, /u/ by

a male speaker “Vikash”.
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Figure 4.13: Spectral moments of natural syllables /a/, /e/, /ce/, /i/, /o/, /u/ by

a male speaker “Mani”.

4.3 Extracting lip-shape parameters

As observed in the previous section, the vowels, whether synthesized or natural,
occupy similar but different positions in the moment space. Hence, the spectral
moments of the speech can be mapped to the relative mouth parameters indepen-
dent of the speaker. In the previous chapter, we have described about the least
squares approximation, grid surface fitting using 2D Delaunay triangulation and
grid volumetric fitting using 3D Delaunay triangulation. In the current section, we
will show that the lip-shape parameters calculated from these methods are directly

related to the positions or tracks of the syllables in the moment space.

As described earlier in the previous chapter, the vowels /a/, /e/, /i/, o/,
/u/ are used as the training sounds. The mean m; and variance msy are used
as the independent variables for the least squares approximation method and 2D
Delaunay triangulation method. Apart from mean and variance, the mass my is

used as another independent variable for 3D Delaunay triangulation method. From
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figures in the previous section for spectral moments, we observe that the contours
for mean and variance do not have wide fluctuations in the middle segments for
all vowels. Since we need the best possible results with training sounds, we choose
these middle segments of the vowels as the best choice for training sounds, and their
respective mean and variance as the mean and variance for the training sounds.
So, a cluster of 15-20 points each for mass, mean and variance is selected from all

vowels as part of research for training sounds.
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Figure 4.14: Characteristics of synthesized syllables /a/, /e/, /i/, /o/, /u/ with

varying Fo and constant amplitude
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Figure 4.15: Lip-shape parameters of synthesized syllables in Fig. 4.14 calculated

using least squares approximation.
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Figure 4.16: Lip-shape parameters of synthesized syllables in Fig. 4.14 calculated

using 2D Delaunay triangulation.
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Figure 4.17: Lip-shape parameters of synthesized syllables in Fig. 4.14 calculated

using 3D Delaunay triangulation.
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From Figures 4.15, 4.16, 4.17 and 4.19, 4.20, 4.21, it is observed that irre-
spective of the pitch or amplitude variation, the lip-shape parameters are roughly
flat for most of the durations. There are some fluctuations observed in case of
lip-shape parameters calculated using least squares approximation as shown in
Fig 4.15 and 4.19. For both types of synthesized syllables as in Fig 4.14 and 4.18,
the mouth parameters comply to the values given in Table 3.1. As for example,
the jaw parameter takes a very high value for vowel /a/ and a low value for vowel
/i/. Similarly, the mouth shape is rounded and lips move forward in case of vowels

/o/ and /u/ as clearly confirmed by the parameters flare and edges.
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Figure 4.18: Characteristics of synthesized syllables /a/, /e/, /i/, /o/, /u/ with

constant Fo and varying amplitude
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Figure 4.19: Lip-shape parameters of syllables in Fig. 4.18 calculated using least

squares approximation.
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Figure 4.20: Lip-shape parameters of syllables in Fig. 4.18 calculated using 2D

Delaunay triangulation.
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Figure 4.21: Lip-shape parameters of syllables in Fig. 4.18 calculated using 3D

Delaunay triangulation.
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4.4 Lip shape analysis for speaker “Vikash”

Next, it is to be observed that the mouth parameters for natural vowels also
comply to the values given in Table 3.1. As expected they indeed do as observed
in Figures 4.23, 4.24 and 4.25 for speaker “Vikash”. But for vowel /ce/, the
mouth parameters are not flat for most of the durations. A glance at the results
for synthesized and natural vowels show that 3D Delaunay triangulation method
gives smoother results than the other two. Least squares approximation method

does come close to it in results with fluctuations at some points.
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Figure 4.22: Characteristics of natural syllables /a/, /e/, /e/, /i/, /o/, /u/ by
speaker “Vikash”
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Figure 4.23: Lip-shape parameters of syllables in Fig. 4.22 calculated using least

squares approximation.
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Figure 4.24: Lip-shape parameters of syllables in Fig. 4.22 calculated using 2D

Delaunay triangulation.
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Figure 4.25: Lip-shape parameters of syllables in Fig. 4.22 calculated using 3D

Delaunay triangulation.
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Using the training moments for Fig 4.22, we wish to analyze the mouth param-
eters for the composite syllables for the same speaker. Here we have experimented
with the syllables /aalye/ and /aya/-/awa/ for the same speaker. As in Fig 4.26,
the syllable /aalye/ is uttered twice. It is observed from the Figures 4.27 and
4.29 that the lower jaw moves down for the phoneme /a/, then gradually moves
to position defined for silence for the phoneme /i/, and then moves down for the
phoneme /e/ at the end of the syllable. Moreover, the lips protrude forward and
then backward during the utterances of syllable /Iye/, as observed from the flare
value. Moreover the horizontal opening of the mouth as indicated by edge param-

eter also becomes small during the utterance of the syllable /Tye/.
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Figure 4.26: Characteristics of natural syllables /aalye/ by speaker “Vikash”
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Figure 4.27: Lip-shape parameters of syllables in Fig. 4.26 calculated using least

squares approximation.
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Figure 4.28: Lip-shape parameters of syllables in Fig. 4.26 calculated using 2D

Delaunay triangulation.
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Figure 4.29: Lip-shape parameters of syllables in Fig. 4.26 calculated using 3D

Delaunay triangulation.
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Similarly from Figures 4.31 and Figures 4.33 for the syllables /aya/ and /awa/,
the jaw parameter takes a very high value during utterance of /a/, goes to a low
value for phoneme /y/ or /w/ and then again rises to a high value at the end.
Moreover, during the utterance of /w/, the lips protrude forward as indicated by
flare parameter /w/ and the mouth has a small horizontal opening as observed
in the same figures. Moreover the actual meeting of the lips in the horizontal
direction moves toward the centre during the utterance of /w/, whereas there is
little motion similar to /i/ during the utterance of /y/ as indicated in these figures
by the parameter corner. Similar results with random fluctuations at some points

are also observed using 2D Delaunay triangulation as in Fig 4.32.
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Figure 4.30: Characteristics of natural syllables /aya/-/awa/ by speaker “Vikash”
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Figure 4.31: Lip-shape parameters of syllables in Fig. 4.30 calculated using least

squares approximation.
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Figure 4.32: Lip-shape parameters of syllables in Fig. 4.30 calculated using 2D

Delaunay triangulation.
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Figure 4.33: Lip-shape parameters of syllables in Fig. 4.30 calculated using 3D

Delaunay triangulation.
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4.5 Lip shape analysis for speaker “Mani”

We next analyze the whole method for a different speaker “Mani”. The selection of

moments used for training is the same as described earlier for synthesized vowels.
As expected, the results comply with the data given in Table 3.1. Also the 3D

Delaunay triangulation method gives smoother results than the other two.
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Figure 4.34: Characteristics of natural syllables /a/, /e/, /e¢/, /i/, /o/, /u/ by

speaker “Mani”

48



Flare
15 T

Jaw
1 : 3
0.5F : 1 0
0 L L L L C H b}
0 2 4 6 8

0 2 4 6 8
TI[E%rIHeSreC Tlr%%bnesec
i ‘ ‘ ‘ ey ir ‘ ‘ ‘ ey
0 NM,_WNM of—w \J LA

b ]

0 2 4 6 8 0 2 4 6 8
Time in sec Time in sec

Figure 4.35: Lip-shape parameters of syllables in Fig. 4.34 calculated using least

squares approximation.
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Figure 4.36: Lip-shape parameters of syllables in Fig. 4.34 calculated using 2D

Delaunay triangulation.
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Figure 4.37: Lip-shape parameters of syllables in Fig. 4.34 calculated using 3D

Delaunay triangulation.
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We now wish to analyze the mouth parameters for the composite syllables for
the same speaker “Mani”. Here we have experimented with the syllables /aao/,
Jaalye/, /aya/, Jawa/, /ayi/, /awi/, /ara/ and /ala/ for the same speaker. It is
observed from the Figures 4.39 and 4.41 that the jaw parameter takes a very high
value for the phoneme /a/, then gradually decreases to a very low value for the
phoneme /o/. Moreover, the lips protrude forward at the end of the syllable, as
observed from the flare value. The horizontal opening of the mouth, as indicated

by the parameter 'edges’, becomes small during the end of the syllable.
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Figure 4.38: Characteristics of natural syllables /aao/ by speaker “Mani”
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Figure 4.39: Lip-shape parameters of syllables in Fig. 4.38 calculated using least

squares app

roximation.
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Figure 4.40: Lip-shape parameters of syllables in Fig. 4.38 calculated using 2D

Delaunay triangulation.
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Figure 4.41: Lip-shape parameters of syllables in Fig. 4.38 calculated using 3D

Delaunay triangulation.
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Similar results are obtained for the mouth parameters for the syllable /aalye/
as shown in Figures 4.43, 4.44 and 4.45 for speaker “Mani” as for speaker “Vikash”.
However, the effect of noise while using 2D Delaunay triangulation for calculation
of mouth parameters becomes more prominent as observed in Fig 4.44. The reason
is because of the exclusion of the noise spectrum from the reference data. As
observed in Fig 4.45, the inclusion of the moments of the noise spectrum in the

reference data actually improves the results.
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Figure 4.42: Characteristics of natural syllables /aalye/ (uttered twice) by speaker

“Mani”
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Figure 4.43: Lip-shape parameters of syllables in Fig. 4.42 calculated using least

squares approximation.
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Figure 4.44: Lip-shape parameters of syllables in Fig. 4.42 calculated using 2D

Delaunay triangulation.
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Figure 4.45: Lip-shape parameters of syllables in Fig. 4.42 calculated using 3D

Delaunay triangulation.



Similarly from Figures 4.47 and 4.49 for the syllables /aya/-/awa/, we ob-
serve that similar results are obtained for speaker “Mani” as well. However, from
Fig 4.47, the flare value during utterance of /w/ goes negative i.e. mouth pro-
truding out wards which is not correct. Also the effect of noise spectrum while

using 2D Delaunay triangulation for the calculation of mouth parameters is also

significant.
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Figure 4.46: Characteristics of natural syllables /aya/-/awa/ by speaker “Mani”
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Figure 4.47: Lip-shape parameters of syllables in Fig. 4.46 calculated using least

squares approximation.
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Figure 4.48: Lip-shape parameters of syllables in Fig. 4.46 calculated using 2D

Delaunay triangulation.
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Figure 4.49: Lip-shape parameters of syllables in Fig. 4.46 calculated using 3D

Delaunay triangulation.



Figures 4.51, 4.52 and 4.53 show the results for the syllables /ayi/ and /awi/.
The jaw contour for /ayi/ indicates that the lower jaw moves down at the start
of the former syllable, remains flat till the phonemic transition to /y/ begins, and
then moves up to the position attained by phoneme /i/, Similar is the case with the
latter syllable /awi/. Moreover, the lips protrude forward during the utterance of
/y/ and /w/ till the end of the utterance of /i/ as indicated by the flare parameter.
Also, the contour for corners show that the lip joints try to move to the position
attained by /u/ during the utterance of /w/, but soon move back to the position
attained by phoneme /i/. Tt is also confirmed that 3D Delaunay triangulation

method gives smoother results than the other two.

1 , , , , ; ,
Waveform of 0 H
“mani_ayi awil” 1 ‘ ‘ ‘ ‘ ‘ ‘
0 0.5 1 15 2 2.5 3
200}
Estimated 100}
Pitch (in Hz)
O I I I n I
0 0.5 1 15 2 2.5 3
10
Estimated 5[ _
Energy /\Ju\/\m
O 1 1 I 1 I
0 0.5 1 15 2 2.5 3
N
I
: = 4000
Wide-band Spectrogram 2
c
with Gaussian window S 2000
9] L
II O L 1 I MG ol o et L 1
0 0.5 1 15 2 25 3
Time in sec

Figure 4.50: Characteristics of natural syllables /ayi/-/awi/ by speaker “Mani”
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Figure 4.51: Lip-shape parameters of syllables in Fig. 4.50 calculated using least

squares approximation.
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Figure 4.52: Lip-shape parameters of syllables in Fig. 4.50 calculated using 2D

Delaunay triangulation.
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Figure 4.53: Lip-shape parameters of syllables in Fig. 4.50 calculated using 3D

Delaunay triangulation.



4.6 Discussion

Analysis of the pitch period determination method was carried out for vowels,
semivowels, fricatives and stops. The pitch period tracker was able to identify the
pitch changes for vowels, semivowels and voiced fricatives. For syllables containing
low energy content phonemes like unvoiced fricatives, voiced, and unvoiced stops,
the pitch period tracker was able to detect the pitch changes in the strong voiced
portions of the speech, and showed the voice onset time contrast for unvoiced
and voiced stops. The tracker worked well for speech segments with SNR as low
as 20 dB. For segments with SNR below 20 dB, the effect of noise caused the
tracker to give random values. Next, the spectral moments of the speech signal
were computed, and when the mean and variance of the vowels were plotted on a
mean-vs-variance space, we observed that vowels, whether synthesized or natural,
occupied similar but different positions for different speakers. Also, the value of
the lip-shape parameters can be ascertained from the mean-variance space. It is
observed from Figures 4.10, 4.11, 4.12, and 4.13, that the jaw parameter takes
a high value for low values of variance, as indicated by the positions of /a/. Also,
the low values of mean results in lip rounding as indicated by the positions of /o/
and /u/. This implies that the spectral moments can be used for finding the lip

parameters.

Analysis was then carried out for mapping the spectral moments of the
speech segment to the lip-shape parameters for vowels and semivowels. It was
observed that least squares approximation method and 3D Delaunay triangulation
method produced results in conformity with the predefined values in Table 3.1
for synthesized and natural vowels. For vowel-vowel and vowel-semivowel-vowel
segments, co-articulation effect was observed during phonemic transition. In case
of 2D Delaunay triangulation method, lip-shape parameters for noise segments
were non-zero, thus deviating from the predefined values. Also the 3D Delaunay

triangulation method provided smoother results than the other two.
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Chapter 5

Conclusion

5.1 Summary

For hearing impaired persons, the visual information from the speaker’s face can ef-
ficiently integrate or even substitute audio information for understanding speech [1] [2].
However, because of limited channel capacity and storage constraints, it is not fea-
sible for the videophones to send every visual frame over the transmission channel.
The solution is to extract certain speech parameters that would help in visualizing

speech, which is the objective of this project.

In literature, Waters and Levergood 8| developed DECface as a real time
facial animation capable of generating synchronous speech and mouth motion from
text. Liéven and Luthon [12] have used RGB information of the speaker’s mouth
for synthesizing lip-movements without any reference to audio information. Other
approaches include HMM-based visual speech synthesis [1] [10] [11]. Some of the
requirements of the above methods are the colour video sequence of the speaker’s
face and the availability of audio-visual speech database containing visemes related
to all known phonemes, which in turn requires a lot of storage capacities, thereby
increasing the cost. Massaro et al [13] developed an audio to visual speech synthesis
using neural network, which synthesized visual speech from the cepstral coefficients
extracted directly from acoustic speech waveform. McAllister et al [7] [15] [25]
have used spectral moments of the pitch synchronously computed speech spectra

for generating the lip shapes.

In this project, a GUI package in Matlab has been developed for imple-
mentation and evaluation of the various analysis techniques. Speech segments

for vowels /a/, /e/, /i/ , Jo/, /u/ were recorded from different speakers as part
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of research for training sounds. Also segments containing semivowels, fricatives
and stops preceded and succeeded by vowels and vowel-vowel combination were
recorded from the same speakers. The implementation of the pitch period tracker
is based on the algorithm, as proposed by McAllister et al [15], that the sum of the
amplitudes of the odd samples of the magnitude spectrum of a speech segment is
zero for a window length of twice the pitch period. Modifications in McAllister et
al’s approach have been made for finding the correct estimate of the pitch period
if the pitch period range contains the pitch period and its multiples. The pitch
period tracker is able to identify the changes in the pitch for vowels, semivowels
and voiced fricatives. For syllables containing low energy content phonemes like
unvoiced fricatives, voiced, and unvoiced stops, the pitch period tracker is able to
detect the pitch changes in the strong voiced portions of the speech, and shows the
voice onset time contrast for unvoiced and voiced stops. The tracker works well
for speech segments with SNR as low as 20 dB. For segments with SNR below 20

dB, the effect of noise causes the tracker to give random values.

In accordance with McAllister et al’s approach, mass, weighted mean, and
weighted variance of the average magnitude spectrum estimated with a window
length equal to the pitch period P, and actual frequencies of the samples as the
weights have been calculated. When the mean and variance of the vowels were
plotted on a mean-vs-variance space, we observed that vowels, whether synthe-
sized or natural, occupy similar but different positions for different speakers. This

implies that the spectral moments can be used for finding the lip parameters.

In accordance with McAllister et al’s approach [7], four parameters such as
jaw, edges, flare and corners have been used for generating the lip shapes. Cer-
tain values have been pre-defined for these parameters for the training sounds.
Krothapalli et al [7] [30] have used 2D Delaunay triangulation method for finding
the lip shape parameters from the spectral moments. We have used least squares
approximation and 3D Delaunay triangulation methods and compared the results
with that obtained from 2D Delaunay triangulation method. Speech segments
/a/, /e/, /i/, /o/ and /u/ were used in the analysis stage. Spectral moments
of these training sounds were used as the reference data for Delaunay triangu-

lation in the synthesis stage. For least squares approximation and 2D Delaunay
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triangulation methods, the spectral moments of the noise segments were forced
to zero in accordance with the predefined values of the mouth parameters. In
the synthesis stage, vowel-vowel and vowel-semivowel-vowel segments were used to
verify the correctness and accuracy of the methods. Results have shown that 3D
Delaunay triangulation method gives more smoother and correct results than the
other two. It was also observed that the parameters obtained using 2D Delaunay
triangulation method were non-zero for the noise segments, thus deviating from
the predefined values. Moreover, the results obtained using the least squares ap-
proximation method were closer to that obtained using 3D Delaunay triangulation
method. Our conclusion is that for storage constraints, the least squares approx-
imation method with appropriate filtering can be used for mapping the spectral

moments to the lip shape parameters.

5.2 Suggestions for future work

After the extraction of mouth parameters, animation of the mouth shape depicting
the lip-movements has to be designed. Such animation can be both in 2D and
3D space. Further, the facial motion tracking can be implemented to add facial
expressions to the animated mouth shape. It is to be noted here that during stop
closures, analysis cannot give us lip shape. Techniques developed in our lab [5] for
estimation of vocal tract shape during stop closure may be extended to lip shape

estimation during stop closures.
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