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ABSTRACT 

 

The objective of this project is to study speech analysis parameters to improve the 

performance of speaker recognition systems. Towards this end, peak amplitudes of the 

speech signal and Harmonic plus Noise Model (HNM) parameters are investigated. The 

investigated HNM parameters include maximum voiced frequency (Fm), pitch (F0), and 

relative noise band energy (α). Distribution of these parameters is studied, using statistical 

moments and correlation coefficients. HNM parameters have shown good variation 

across the speakers and may be useful for speaker recognition. Speaker recognition 

experiments were conducted on HNM parameters using VQ algorithm, with Mahalanobis 

distance measures. The experiments have shown that the performance of speaker 

recognition based on HNM parameters is comparable to that of well established Mel 

Frequency Cepstral Coefficients (MFCC). Further, the performance of the speaker 

recognition is improved by using MFCC and the three HNM parameters together. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Project overview 

Speaker recognition is the process of identifying a speaker from the speaker information 

contained in the speech utterance. It is a pattern recognition problem and it is divided into 

two stages: training stage and testing stage [1], [2], [3]. Training stage consists of 

extraction of speaker dependent features from the training utterance and creation of a 

model representing the speaker, from the extracted features. Testing stage consists of 

comparison of speaker dependent features, extracted from the test utterance, with the 

existing models of the speakers in the database to recognize the target speaker. Hence, 

extraction of speaker dependent features plays an important role in speaker recognition. 

Speaker dependent features are the parameters that contain specific speaker information 

useful for speaker recognition.  

The specific speaker information in speech is due to the differences in 

physiological and behavioral aspects of the speech production system of the speakers [2], 

[4], [5]. Mel frequency cepstral coefficients (MFCC) and linear prediction cepstral 

coefficients (LPCC) are the well established speaker dependent features for speaker 

recognition [6]. The performance of the speaker recognition systems based on these 

features is still not satisfactory. The speaker recognition systems employing MFCC or 

LPCC features do not perform well in text-independent environment with limited training 

data [6]. Further, the performance of these systems is generally affected by background 

noise, transmission medium characteristics, etc [1]. In order to improve the performance 

of the speaker recognition systems for real world applications, additional parameters that 

can separate speaker dependent information from the linguistic information should be 

investigated.  

After extracting the speaker dependent features, the next step in speaker 

recognition process is to create a model representing the speaker. Minimum distance 
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classifier (or long term averaging), vector quantization (VQ), hidden Markov model 

(HMM), and Gaussian mixture model (GMM) are the commonly used techniques for 

speaker modeling [1], [7]. Among these techniques, VQ method performs better than 

minimum distance classifier technique, while HMM and GMM techniques perform well 

(better than VQ method) only when large amount of data are available for training [7], 

[8]. 

 

1.2 Project objective 

The objective of this project is to investigate various sets of parameters and to establish 

the most suitable set of parameters for improving the performance of speaker recognition 

systems. The parameters to be investigated should contain speaker information separated 

from the linguistic information. Towards this end, investigations are carried out on the 

peak amplitudes of the speech signal and the parameters of the Harmonic plus Noise 

Model (HNM). The investigated parameters are studied using statistical methods, namely, 

histogram analysis, statistical moments, and correlation, in order to compare their intra-

speaker and inter-speaker variability. Finally, speaker recognition experiments are 

performed on these parameters using VQ algorithm for speaker modeling. 

 

1.3 Dissertation outline 

The next chapter describes the speaker recognition overview, which includes different 

types of speaker recognition systems and their applications, extraction of well established 

features for speaker recognition, and different speaker modeling techniques. Chapter 3 

describes the investigated parameters for speaker recognition: peak amplitudes of the 

speech signal and HNM parameters (maximum voiced frequency (Fm), pitch (F0), and 

relative noise band energy (α)). In Chapter 4, the investigated parameters are studied 

through different statistical methods, namely, histogram analysis, statistical moments, and 

correlation, to determine their possible use in speaker recognition. Chapter 5 describes the 

VQ algorithm for speaker modeling and discusses the results of speaker recognition 

experiments conducted on HNM parameters and MFCC features. In Chapter 6, a 

summary of the work carried out and suggestions for the future work of the project are 

presented. Appendix A provides the results of multi-sample histogram analyses on the 

investigated parameters (peak amplitudes and HNM parameters). 
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Chapter 2 

 

SPEAKER RECOGNITION 

 

Speaker recognition consists of two stages namely training stage and testing stage [1], [2], 

[3]. During the training stage, the features relevant to the speaker, also called speaker 

dependent features, are to be extracted from the training utterance and a model of the 

speaker is to be created. During the testing stage (i.e. recognition stage), the features 

extracted from the test utterance are to be compared with the existing models of the 

speakers in the database to recognize the speaker. Extraction of speaker dependent 

features plays an important role in speaker recognition. Well established speaker 

dependent features for speaker recognition are mel frequency cepstral coefficients 

(MFCC), linear prediction cepstral coefficients (LPCC), etc [6]. After extracting the 

speaker dependent features, a model representing the speaker is to be created. Most 

commonly used techniques to create a model of the speaker are minimum distance 

classifier, vector quantization (VQ), hidden Markov model (HMM), and Gaussian 

mixture model (GMM) [1], [7]. This chapter gives an overview of speaker recognition 

systems and their applications, extraction of established speaker dependent features, and 

most commonly used techniques for speaker modeling. 

 

2.1 Speaker recognition systems 

A block diagram of a speaker recognition system is shown in Fig. 2.1, containing two 

stages; training stage and testing stage [1], [2], [3]. The tasks in the training stage are: 

a. Extraction of speaker dependent features from the training utterance. 

b. Creation of a model representing the speaker from the extracted features. 

c. Storing the speaker models in the database. 

Similarly, the tasks in the testing stage are: 

a. Extraction of speaker dependent features from the test utterance. 
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b. Comparison of the extracted features with the existing speaker models in the 

database by calculating the match score using different techniques such as 

distance measure, maximum likelihood, etc. 

c. Finally, making a decision based on the matching score obtained in the 

previous step. 

 

 

Training stage 

 

 

Testing stage 

Fig 2.1 Block diagram of speaker recognition system, from [1] 

 

Commonly used features for speaker recognition are formants, MFCC, LPCC, etc. 

The techniques used for speaker modeling are VQ method, HMM, GMM, etc. The details 

of extraction of speaker dependent features and the techniques to create a model of the 

speaker are described in Sections 2.2 and 2.3 respectively.  

 

2.1.1 Types of speaker recognition systems 

The speaker recognition systems are divided into two categories based on their task [1], 

[9]: 

• Automatic speaker verification (ASV) 

• Automatic speaker identification (ASI) 

In case of automatic speaker verification, the task is to verify whether the person claiming 

is the correct speaker or not. In this process, the person initially claims an identity in the 

database. Then, the system compares the features of the test utterance with the claimed 
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speaker model. Finally, the match score will be compared with a threshold and the system 

will accept or reject the claim depending on the comparison result. 

In case of automatic speaker identification, the task is to recognize one speaker 

from many speakers. Hence, the features of the test speaker will be compared with all the 

speaker models in the database and the one which gives the best match will be identified 

as the target speaker. Speaker identification can be either closed set or open set 

identification. In closed set speaker identification, system determines to which member of 

the database of speakers the voice belongs to. In open set speaker identification, the 

system has also to decide whether the person identified actually belongs to the existing 

speaker database or not. Open set identification is a closed set identification with an 

additional verification. In open set identification, if the verification fails, the test speaker 

will be declared as an unknown speaker. 

Based on the sentences used in training and testing stages, the speaker recognition 

systems are divided into three categories [9]: 

• Text dependent speaker recognition systems 

• Text independent speaker recognition systems 

• Text prompted speaker recognition systems 

In text dependent speaker recognition, voice recordings (utterances) of the same sentence 

will be used in both training and testing phases. Text dependent recognition is easier to 

implement and more reliable than text independent recognition [10]. Also, text dependent 

speaker recognition systems require fewer training sentences. The performance of text 

dependent systems is highly correlated with the vocabulary that is chosen [10]. These 

systems are used where speakers are cooperative such as in security application for 

accessing computer system and for control access to a physical facility. 

In text independent speaker recognition, the test sentence will be different from 

the training sentence. Text independent speaker recognition systems use long-term 

statistical data. These systems require more duration of training data (approximately 30 s) 

to ensure that a wide variety of sounds are spoken, providing more information to build a 

voice model for the speaker [8], [10], [11]. Text independent systems are suitable for 

applications where speakers are uncooperative such as in forensic and law and order 

applications. In both text dependent and text independent speaker recognition systems, 

there is a possibility of capturing of the voice by imposters. This problem can be solved in 

text prompted speaker recognition systems. 
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In text prompted speaker recognition, the utterance to be produced by the speaker 

is not predetermined. In each access to the system, the system will prompt the speaker to 

say a particular sentence or a word. In this case, the system will initially verify the 

sentence uttered and then will verify the speaker. If the sentence spoken by the person 

does not match with the one prompted by the system, the system will reject the speaker. 

 

2.1.2 Applications of speaker recognition systems 

Speaker recognition systems have many applications [1], [2], [3], for example, 

1. Security: Voice controlled access to secure facilities such as access to 

buildings, bank accounts etc. 

2. Remote authentication: Financial transaction/ banking where authorization is 

done by telephone voice. 

3. Forensics: In law enforcement, speaker recognition systems can be used to 

identify the suspect from the voice. 

4. Multi-speaker environment: Identification of a particular person’s voice in the 

cases where many speakers are present such as teleconferencing, panel 

discussions, etc. 

5. Gender recognition can be used to improve the performance of the speech 

recognizer. 

6. Speaker recognition approach can be used to estimate a person’s age 

approximately. 

 

2.1.3 Evaluation of speaker recognition systems 

The performance of a speaker recognition system depends on many factors such as 

background noise, transmission channel characteristics, etc [1]. The performance of a 

speaker recognition system can be evaluated from the errors produced by the system in 

different tests. These errors can be controlled by a threshold value used in the testing 

phase [1], [9], [12]. The threshold value plays an important role in speaker recognition. In 

both ASI and ASV systems, the match score (assumed distance measure) will be 

compared to a threshold below which the speaker will be accepted. Therefore, the 

estimation of the optimal threshold is an important task in the case of a good performance 

system. If the decision threshold is too low, too many speakers will be rejected as 

imposters, such an error is referred to as false rejection [9], [12]. Such a threshold will 

screen imposters very well, but at the cost of high rejection rate. If the threshold is too 
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high, too many imposters will be accepted, such an error is called as false acceptance or 

false alarm [9], [12]. Such a threshold will accept valid speakers with little difficulty, but 

at the cost of high imposter acceptance rate. Low thresholds are generally preferred 

because false acceptances are usually more expensive. The performance of speaker 

recognition systems is often measured in terms of equal error rate (EER), corresponding 

to the decision threshold in which the false rejection rate is equal to the false acceptance 

rate [12]. 

 

2.2 Features for speaker recognition 

As discussed earlier, extraction of speaker dependent features from the speech plays an 

important role in speaker recognition. Speaker dependent features are the parameters 

containing the information related to a particular speaker. For the application of speaker 

recognition, these features should vary as much as possible across the speakers and must 

be consistent within the speaker [1], [2], [4], [13]. 

In general, speech contains the information related to both the speaker and the 

linguistic message. Hence, the performance of a speaker recognition system depends on 

how well the speaker information (speaker dependent features) is separated from the 

linguistic information [4]. 

 Due to the differences in physiological and behavioral aspects of the speech 

production system across speakers [2], [4], [5], speech contains specific characteristics 

that are related to a particular speaker. The physiological features representing the 

speaker in speech are vocal tract shape, pitch and nasality [2], [4]. The differences in the 

shape of the vocal tract will cause the differences in the characteristic resonances (also 

called formants) of the spectrum of the speech signals. Similarly, the differences in the 

pitch are due to the variations in the size of the vocal chords and the differences in the 

nasalized speech are due to the variations in the size of the velum. Hence, some of the 

speaker dependent features are indicated by the formant frequencies and pitch. 

It is common in speaker recognition systems to make use of the features derived 

only from the vocal tract, because vocal tract shape is the one very difficult to be imitated 

by a second person. The formant frequencies of the speech are directly related to the 

unique shape of the vocal tract and supplies important information about the speaker's 

identity. In a study by Sambur [4], it is shown that F2 in nasals, F2, F3, and F4 in vowels, 

and mean F0 are useful for speaker recognition. Sambur carried out the investigation by 

first determining an initial set of acoustic parameters which, on the basis of theoretical 
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considerations and past experimental details [4], can indicate the unique properties of a 

speaker’s vocal apparatus. Then, the investigated features are evaluated by using 

probability of error criterion. This criterion is a method of feature evaluation in which the 

relative performance of each feature is estimated to determine the ordered list of feature 

effectiveness. There is a difficulty in calculation of the formant frequencies accurately. 

Several other sets of parameters which indirectly represent the formants, namely LPC 

coefficients, cepstral parameters, MFCC, LPCC, PLP coefficients, delta cepstrum, etc, 

have been investigated [1], [6], [13], [14]. Among these, MFCC and LPCC are the well 

established parameters for speaker recognition. An overview of LPC analysis, cepstral 

analysis and mel frequency cepstral analysis is described in the following subsections. 

 

2.2.1 Linear predictive coding analysis 

Linear predictive coding (LPC) analysis is a powerful tool used to separate vocal tract 

filter from the glottal excitation [2], [4], [15]. The basic assumption of LPC analysis is the 

representation of the transfer function of the vocal tract H(z) by an all-pole model as: 

 

1

( )

1
P

k

k

k

G
H z

a z
−

=

=

−∑
                                (2.1) 

where P represents the order of the filter, G is a gain scaling factor, and ak, for 

1, 2,....,k P= are the LPC filter coefficients. It has been empirically found 

that 2( 1)P B= + , where B is the speech signal bandwidth in kHz, is adequate. From the 

above equation, the discrete time response x(n) to an excitation signal e(n) is given by, 

1

( ) ( ) ( )
P

k

k

x n Ge n a x n k
=

= + −∑                     (2.2) 

The coefficients for the second term of the above expression are generally computed to 

give an approximation to the original sequence, which will yield a spectrum for H(z) that 

is an approximation to the original speech spectrum. Thus, the speech signal is predicted 

by a weighted sum of its previous values, given by, 

1

( ) ( )
P

k

k

x n a x n k
=

′ = −∑                                  (2.3) 

The difference between the predicted value and the actual value is referred to as 

the error signal (also called residual error) given by ( ) ( ) ( )n x n x nε ′= − . The coefficients 

{ak} are chosen to minimize the mean squared error. The resulting error signal can be 

viewed as an approximation to the excitation function. 
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The LPC coefficients {ak} contain vocal tract filter related speaker information 

and are useful for speaker recognition [2], [4]. These coefficients are meaningful only as a 

set in describing the vocal tract filter and can not be individually smoothened across 

analysis frames. Hence, they are often transformed into other parameters, namely, 

reflection coefficients, log area ratios, cepstral coefficients, etc. The details of these 

transformations are given in [6], [13], [14], [15]. Among these, LP derived cepstral 

parameters are the most commonly used features for speaker recognition [6], [13], [14]. 

The cepstrum parameters, c(n), can be calculated from the LPC coefficients using the 

following formula [15]: 

              

1 1

1

1

1 1
n

n n k n k

k

c a

k
c a a c n p

n

−

−

=

= 

 

= + − ≤ ≤  
  

∑
       (2.4) 

The main advantage of all-pole model of vocal tract filter is the efficient 

computations involved in estimating the coefficients. However, this model is suitable 

only for non-nasalized sounds, with glottal excitation. For sounds involving nasal 

pathway and sound segments with frication as excitation source, the vocal tract filter 

contains both poles and zeros. During these segments, an all-pole model with higher order 

reduces the errors [2], [4]. 

 

2.2.2 Cepstral analysis 

The basic idea behind the cepstral analysis is the de-convolution of the excitation and the 

vocal tract response [12], [14]. Using source-filter model of speech production, the 

spectrum of the speech signal, ( )X ω , can be represented as the product of the excitation 

spectrum, ( )E ω , and the vocal tract filter spectrum, ( )V ω : 

   ( ) ( ) ( )X E Vω ω ω=                                                   (2.5) 

Taking the logarithm of the magnitude on both sides of the above equation, we get 

log ( ) log ( ) log ( )X E Vω ω ω= +                              (2.6) 

From the above equation, it is clear that the logarithmic spectrum is separated as two 

parts, namely, the log spectral components that vary rapidly with ω  (high-time 

components; first term in the right side of the above equation) and the log spectral 

components that vary slowly with ω  (low-time components; second term in the right side 

of the above equation). This process is called de-convolution. The cepstrum is given by 

taking the inverse Fourier transform of the log magnitude spectrum [12], [16]. 
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1

( ) log ( )
2

i n
c n X e d

π
ω

π
ω ω

π −
= ∫                                 (2.7) 

where c(n) is the n-th cepstral coefficient. Thus, the contribution of the excitation and the 

vocal tract filter can be separated in cepstral domain. Both components can be inverted to 

generate the original spectral magnitudes. However, separation of these two components 

is very difficult, due to the possibility of overlapping of the two components in the 

cepstrum. Fig. 2.2 describes the cepstral analysis method. 

For speaker recognition, LPC method is more suitable than cepstral analysis 

method because LPC scheme is directly related to the formant frequencies of the 

spectrum. In addition, cepstral analysis scheme involves more computations than that of 

the LPC analysis. The advantage of cepstral analysis is that it does not refer to any model 

as happened in the case of LPC analysis. However, cepstral analysis is practically used 

for F0 (pitch) or formant estimation especially in speech recognition [9]. For speaker 

recognition systems, a modified form of cepstral analysis called mel frequency cepstral 

analysis is useful as described in the following subsection. 

 

 

Fig 2.2 Description of cepstral analysis, from [9] 

 

2.2.3 Mel Frequency Cepstral Coefficients (MFCC) 

Mel frequency scale is a mapping of the real pitch to the pitch perceived by the listeners 

[5], [12]. Most of the researchers modeled the data by a linear fit for the frequency below       

1 kHz and by a logarithmic fit for higher frequency. Frequency f in Hz can be related to 

mel frequency FM as [12]: 

2595log 1
700

M

f
F

 
= + 

 
                              (2.8) 
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The auditory system perceives information based on the energy in a band of frequencies 

rather than at a single frequency [5]. A filter bank analysis, as shown in Fig. 2.3, with the 

filters having higher center frequency have a wider bandwidth as compared to a filter 

having a lower center frequency, is used to approximate the response of the auditory 

system. 

 

Fig 2.3 Mel scale filter bank, from [12] 

The mel filter bank weights the speech spectrum ( , )kX n ω , and the energy output 

of each filter in the filter bank is calculated by using the following equation. 

( ) ( )
21

( , ) ,
l

l

U

Mel l k k

k Ll

E n l V X n
A

ω ω
=

= ∑           (2.9) 

where Mel ( , )E n l represents energy for speech frame at time n and for the l
th

 mel scale 

filter, ( )l kV ω  represents frequency response of l
th

 mel scale filter, ( , )kX n ω represents the 

magnitude response of the speech signal, Ll and Ul represent the lower and upper limits 

respectively of each filter in the filter bank, and Al is the band normalizing factor given as 

                             
2

( )
l

l

U

l l k

k L

A V ω
=

= ∑ .                      (2.10) 

The mel cepstrum is computed as the discrete cosine transform (DCT) of the log mel 

energy spectrum [12]. 

                                   
1

10

0

1 2
( , ) log ( ( , ))cos( ( 1/ 2) )

R

Mel Mel

l

c n m E n l l m
R R

π−

=

= +∑                (2.11) 

where R represents the number of filters in the mel filter bank and m represents the 

number of mel cepstral coefficients calculated for each frame.  

A comparison of the performances of various speaker dependent features is 

described in [1], [6], [13]. For speaker recognition, linear prediction cepstral coefficients 

perform better than MFCC in many cases (for e.g., small analysis order) [13]. Some other 
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commonly used features for speaker recognition are perceptual linear prediction (PLP) 

coefficients, line spectrum pair (LSP) frequencies, and delta cepstrum. The details of 

these techniques are given in [1], [6]. The LSP and PLP features gave better performance 

than cepstrum [6]. Among all the features LPCC and MFCC features gave overall better 

performance [1]. 

The effectiveness of a parameter for speaker recognition can be evaluated by a 

measure called the F-ratio [4], which compares inter-speaker and intra-speaker variances. 

Another way to evaluate the utility of features for speaker recognition is the probability of 

error criterion [4]. Also, the effectiveness of the features for speaker recognition can be 

compared by a method called add-on procedure [12]. 

 

2.3 Speaker modeling 

After extracting the speaker dependent features, the task of the speaker recognition 

system is to create a model of the speaker. These models can be classified as stochastic 

and template [1]. In template model, the pattern matching is deterministic while in 

stochastic model, the pattern matching is probabilistic, leading to probabilistic measures. 

These two models are described in brief here. 

 

2.3.1 Template models 

Minimum distance classifier, VQ, and DTW techniques are the commonly used template 

models for speaker recognition [1], [7]. Minimum distance classifier (or long term 

averaging) is the simplest approach to speaker modeling that involves the calculation of 

average and covariance of the feature vectors over multiple analysis frames of the training 

data, called mean and covariance vectors [17]. These mean and covariance vectors will 

represent the model for a particular speaker. The mean and covariance of N feature 

vectors xi are given by: 

• The mean vector: 

                                                
1

1 N

iN =

= ∑ iµ x              (2.12) 

• The covariance vector: 

                                   
1

1
[( ) ( )]

1

N
T

iN =

= − −
−
∑ i iC x µ x µ                    (2.13) 
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In recognition, the distance between the average test and training vectors will be 

calculated and the one with the smallest distance from that of the test speaker will be 

identified as the target speaker. Most commonly used distance measure is the Euclidean 

distance [1]. The Euclidean distance between two vectors x and y is given by: 

                          ( )( )
2

1

( , )
N

T

k k

k

d x y
=

= − = − −∑x y x y x y                 (2.14) 

The weighted Euclidean distance is defined as: 

                      ( ) ( )( , )
T

W
d = − −x y x y W x y        (2.15) 

Here W is a weighting matrix. If W is identity matrix the distance is Euclidean; if W is 

inverse covariance matrix of x, then it is Mahalanobis distance [1]. The Mahalanobis 

distance gives less weight to the components having more variance.  

Long term averaging is useful for text-independent recognition [17], where large 

amounts of data (> 20 s) are required to construct speaker models. A problem with this 

method is that it does not distinguish between acoustic speech classes (like vowels, 

fricatives, consonants, etc), i.e., it uses an average of feature vectors per speaker 

computed over all sound classes. This shortcoming can be solved using vector 

quantization.  

Vector quantization (VQ) [8], [10], [11], [13] is the most commonly used method 

for speaker modeling. In this method, the feature vectors will be divided into clusters 

using K-means clustering algorithm. Then, centroids (called mean vectors) will be 

calculated for each cluster and each centroid in the clustering represents an acoustic class, 

but without identification or labeling. These centroids are also called as code vectors and 

a collection of such code vectors is called codebook. The codebook will be represented as 

a speaker model.  

VQ method performs better than minimum distance classifiers [1], [11]. But, the 

clustering procedure averages out temporal information, leading to loss of speaker 

dependent temporal information. And also the codebook size affects the performance of 

the system. Large codebook characterizes the speaker’s voice better, thus reducing the 

recognition error, but at the cost of computational expense. More details of this technique 

are presented in Chapter 5. 

The above two methods belong to the template model category. There is another 

method that comes under template model called Dynamic Time Warping (DTW). It is a 
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text dependent model used to compensate for speaking rate variability. The details of this 

model are given in [1], [7], [14]. 

 

2.3.2 Stochastic models 

Stochastic model of speakers involves modeling by probability distribution rather than 

average features, and the recognition decisions are based on probabilities or likelihoods 

rather than distances to average features. Stochastic model for speaker recognition offers 

more flexibility and results in more theoretically meaningful probabilistic likelihood score 

[1]. The pattern-matching problem is formulated as measuring the likelihood of an 

observation, given the speaker model. Hidden Markov Model (HMM) and Gaussian 

Mixture Model (GMM) will come under stochastic models [7], [8], [10], [18]. In HMM, 

the speakers are modeled by the information relating to hidden state probabilities and the 

state transition probabilities. In GMM, the speakers are modeled by different Gaussian 

probability density functions represented with Gaussian mixtures that contain mean, 

variance, and probabilities (more exactly weights) corresponding to each Gaussian 

probability density function. These two models are discussed in detail in [8], [18]. 

In speaker identification, the scoring is based on minimum distance for VQ and 

maximum likelihood for HMM and GMM. In speaker verification the minimum distance 

should be less than threshold for VQ and maximum likelihood should be more than 

threshold for GMM and HMM. A comparison of the speaker modeling techniques 

discussed above with various speaker dependent features is given in [1]. For text 

dependent recognition, DTW outperforms both VQ and HMM [7], [19]. While HMM is 

as robust as VQ method, and when amount of available data are limited, VQ method is 

more robust than HMM [7], [10]. Also, VQ is numerically stable and fast, but recognition 

performance is low compared to GMM [8]. When trained with small amount of data, 

GMM can get numerically unstable [6], [8]. 

 

2.4 Problems with the existing speaker recognition systems 

A complete speaker recognition system consists of extraction of speaker dependent 

features, creation of speaker models from the extracted features, and comparison of test 

features with existing models. The performance of the speaker recognition system 

depends mainly on the speaker dependent features and then on the speaker modeling 

techniques used. The recognition systems with MFCC and LPCC features have shown 

good performance using VQ, GMM and HMM modeling techniques [1], [6], [13]. The 



 15 

existing speaker recognition systems perform well under laboratory conditions. But, they 

do not provide satisfactory results in real world situations. The main reason for this is that 

the speech features used may not be providing sufficient separation of speaker 

information from linguistic information. Further, the estimation of the speaker dependent 

features may get affected by background noise, transmission medium characteristics, 

microphone variability, etc [1], [20]. 

Hence, for developing a recognition system that will perform well even under 

adverse conditions, there is a need to investigate new speaker dependent features 

containing more speaker information and less variation with background noise, channel 

characteristics, etc. For this purpose, speaker dependent features should have the 

following properties: 

• They should be easily measurable and occur frequently in normal speech. 

• They should have a large variation across the speakers and low variation in the 

speech of a single speaker. 

• They should be minimally affected by a moderate level of background noise or 

specific transmission channel characteristics. 

• They should not be affected by the health of the speaker. 

• They should not be modifiable by conscious effort of the speaker. 

Thus, the objective of this project is to investigate some of the speaker dependent features 

for speaker recognition applications. 
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Chapter 3 

 

 PARAMETERS INVESTIGATED FOR SPEAKER RECOGNITION 

 

The well established parameters for speaker recognition are mel frequency cepstral 

coefficients (MFCC) and linear prediction cepstral coefficients (LPCC). These parameters 

are primarily associated with vocal tract. The difficulty with these parameters is in 

separating speaker information from linguistic information. Hence, more parameters are 

to be investigated for speaker recognition. For this purpose, two sets of parameters have 

been investigated: peak amplitudes of the speech signal and some of the parameters of 

Harmonic plus Noise Model (HNM) analysis [21], [22], which are related to both the 

vocal tract and vocal chords. 

 

3.1 Peak amplitudes of the speech signal 

Because of the variations in size and shape of the vocal tract from speaker to speaker, the 

resonance frequency and formant bandwidth of the speech signal vary. Narrow resonance 

bandwidth will cause more ringing of the speech signal and wider bandwidth will cause 

less ringing, with a glottal pulse duration. A high formant frequency will emphasize 

higher harmonic of the pitch fundamental. Thus, the variations in resonance frequencies 

and formant bandwidths will cause the variations in ringing and decay patterns and hence 

the peak amplitudes of the speech signal. So, the peak amplitudes of the speech signal are 

associated with vocal tract that will vary due to the variations in size and shape of the 

vocal tract. 

Positive peak amplitude is defined as a positive sample value, which is greater 

than the preceding and the following samples. Negative valley is defined as a negative 

sample, which is less than the preceding and the following samples. Peak amplitude is 

either a positive peak or a negative valley. 

As the peaks and positive peaks are associated with vocal tract, they may be 

useful for speaker recognition. For application to speaker recognition, the pattern of 

variations in peaks and positive peaks should be studied across speakers. Some of the 
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techniques to study certain variation in a parameter are histogram analysis, statistical 

moments, and correlation. These techniques are discussed in Chapter 4. 

 

3.2 Harmonic plus Noise Model (HNM) 

Harmonic plus Noise Model (HNM) was applied by Stylianou for concatenative text-to-

speech (TTS) synthesis [21], [23], [24]. HNM is a parametric model of speech and it 

contains various parameters that are used during the synthesis of speech. The parameters 

of this model are relatively less susceptible to additive background noise and hence may 

be suitable for speaker recognition application. 

HNM assumes the speech signal to be composed of two parts, namely, harmonic 

part and noise part [21], [22]. The harmonic part accounts for the quasi-periodic 

components of the speech signal while the noise part accounts for the non-periodic 

components of the speech signal such as fricatives or aspiration noise, period-to-period 

variations of the glottal excitation, etc. These two components are separated in the 

frequency domain by a time varying parameter, referred to as maximum voiced 

frequency, Fm. The lower band of the spectrum, below the maximum voiced frequency, is 

assumed to be solely represented by the harmonics while the upper band, above the 

maximum voiced frequency, is represented by a modulated noise component. The 

synthesized speech signal ˆ( )s t  is given by:  

                               ˆ( ) ( ) ( )s t s t n t′= +                     (3.1) 

where ( )s t′ and ( )n t represent synthesized harmonic and noise parts. The harmonic part 

(below Fm) is represented by harmonically related sine waves with slowly varying 

amplitudes and frequencies [22]: 

( )

( ) Re ( )exp( [ ( ) ])o0
1

K t
t

s t a t j k dk k
k

ω σ σ θ′ = +

=

∑ ∫                             (3.2) 

where 0 ( )tω is the fundamental frequency, ( )ka t  and ( )k tθ  are the amplitude and phase 

of k
th

 harmonic, and ( )K t is the number of harmonics included in the harmonic part. 

 The upper band which contains the noise part is modeled by an autoregressive 

(AR) model, by filtering a white Gaussian noise g(t) by a time varying normalized all-

pole filter ( , )h tτ and multiplying the result by an energy envelope function w(t): 

                                               ( ) ( )[ ( , ) ( )]n t w t h t g tτ= ∗                                                  (3.3) 
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3.3 Estimation of HNM parameters  

The analysis using HNM is carried on frame-by-frame basis [21]. The analysis scheme of 

HNM is shown in Fig. 3.1. In this figure, speech signal is applied to the voicing detector, 

which declares the frames either voiced or unvoiced. As the analysis and synthesis in 

HNM is pitch-synchronous, the glottal closure instants (GCIs) need to be estimated 

precisely. For each voiced frame, the maximum voiced frequency (Fm) is calculated. The 

analysis frame is taken as twice the local pitch period. This voiced frame of the speech is 

analyzed at each GCI for calculating amplitudes and phases of all the pitch harmonics up 

to Fm.  

 

Fig. 3.1 Analysis of speech using HNM, from [22] 

For calculating the noise parameters, the synthesized voice part of speech is 

obtained using Eq.3.2 and noise part is obtained by subtracting this from the original 

speech. After passing the noise part through a high pass filter having cut off frequency 

Fm, it is analyzed for obtaining LPC coefficients and energy envelope. The length of the 

analysis window for noise part is taken as two local pitch periods for both voiced and 
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unvoiced frames. For voiced frames, the local pitch is the pitch of the frame itself. For 

unvoiced frames, the pitch of the last voiced frame is taken. The estimation techniques for 

the parameters related to harmonic part are described in the following subsections. The 

HNM analysis program used has been earlier developed in our laboratory by Parveen K. 

Lehana [22]. 

 

3.3.1 Voiced/unvoiced decision 

The analysis using HNM is carried out on frame-by-frame basis. Hence, the speech signal 

is first divided into frames of equal length. Then each frame is tested for voiced/unvoiced 

decision using the method proposed by Childers [25]. In this method, two parameters 

namely the energy (E) and the first order reflection coefficient (r1) are used. 

 We know that the amplitudes of unvoiced speech segments are much lower than 

the amplitudes of voiced speech segments. Hence, the energy of unvoiced segment is 

much lower than the energy of voiced segment. Thus, the energy of a speech segment 

provides a basis for distinguishing voiced speech segments from unvoiced speech 

segments. For voiced/unvoiced decision, a threshold value (Te) of 10
7
 for input signal 

range of 152±  is used. The first order reflection coefficient ( 1r ) is defined as the ratio of 

autocorrelation value of first lag Rss(1) and autocorrelation value of zeroth lag Rss(0). This 

ratio is significantly high for voiced speech segments than for unvoiced speech segments. 

Thus, 1r  also gives significant information for distinguishing the voiced and unvoiced 

frames. The algorithm of this method is described in the following steps. 

1. Define 1
st
 order reflection coefficient as: 
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2. Declare the frame as voiced or unvoiced using the following criterion [4]: 

IF (r1 > 0.2 AND E > 2Te) OR ((r1 > 0.3 AND E > Te) AND Previous frame is 

voiced)  

{Frame is voiced} 

ELSE  

{Frame is unvoiced} 

END 
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Finally, the voiced and unvoiced frames are denoted by ‘1’ and ‘0’ respectively. The 

impractical sequences such as 101 and 010 are replaced by 111 and 000 respectively. 

 

3.3.2 Estimation of glottal closure instants 

The analysis and synthesis in HNM are pitch-synchronous, and hence it is necessary to 

accurately estimate the glottal closure instants (GCIs). Calculation of GCIs involves two 

steps. In the first step, the pitch periods are estimated. In the second step, these are further 

refined. Childers and Hu's algorithm is used for these calculations [25]. In this method, 

the estimation of GCI is based on the concept of LPC residual signal (ep). GCI is 

estimated as the location of the first peak in the real cepstrum of the low-pass filtered 

prediction error (LPC residual). This method of estimation of the pitch is described in the 

following steps. 

1. Low pass ep to get LPe  

2. Calculate ce(n) = IFFT ( |FFT ( LPe )| ), 0 ≤ n ≤ N-1, where N = frame length 

3. Find index m for maximum value of ce(n) in the range 25 ≤ n ≤ N 

4. Find index k for maximum value of ce(n) in the range 25 ≤ n ≤ m-25 

5. If ce(k) > 0.7ce(m) then k is taken as the pitch period otherwise m is retained 

The estimated pitch periods are median filtered to get a smooth pitch period 

contour. The pitch periods estimated in the first phase are further refined using the peak 

picking algorithm [25], using following steps. 

1. Find most negative peak of LPe  in the frame 

2. Take 15 samples before and 30 samples after this peak 

3. Find the cross correlation of LPe  and the segment obtained in step 2 

4. Positive peaks of the above sequence are taken as GCIs 

5. If the difference between two successive GCIs (obtained in this phase) is less than 

25 samples (corresponding to the pitch value of 400 Hz), pitch obtained in the first 

phase is considered. Otherwise, the GCIs obtained in this phase are considered.  

 

3.3.3 Estimation of maximum voiced frequency 

Maximum voiced frequency, Fm, is defined as the boundary between harmonic part and 

noise part of the speech signal. The harmonic part of the spectrum has a well defined 

harmonic structure and the part of the spectrum where the harmonic structure is 
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completely lost is attributed to the noise part. Thus, Fm denotes the frequency of the last 

harmonic peak (i.e., the last peak declared as voiced), in the spectrum of the speech 

signal. Identification of harmonic peaks is based on peak magnitude, its position, and area 

under the log magnitude spectrum segment between the valleys on either side of the peak. 

The implementation used is essentially the same as used by Stylianou [21], [26]. For 

identifying the harmonic peaks, we first locate all the peaks. Operations for locating the 

peaks are carried out on the log magnitude spectrum of each voiced frame. For this 

purpose, the signal segment in the frame is padded with zero-valued samples to obtain log 

magnitude spectrum A(f) with a fine sampling of frequency f. The algorithm can be 

described as the following. 

1. Set the starting test voiced frequency fc = 0. 

2. Find the highest peak in the frequency range [fc+0.5F0, fc+1.5F0]. The location of 

this peak is fc and the magnitude is Am. Let the peak next to the maximum peak be 

termed as A1. 

3. Locate all the peaks in the frequency range [fc-0.5F0, fc+0.5F0]. For each of the 

peak location, calculate the area under the spectral segment between the valleys on 

either side of the peak. Let the area for the maximum peak be Ac and average of 

the areas for all the other peaks be cA .  

4. Declare fc as voiced if it is within ± 20 % of an integer multiple of F0 and the 

harmonic test  

(
c

c

A

A
 > 2 )  or (Am – A1> 13) 

 is satisfied. 

5. Go to step 2 with the new value of fc, until the entire band [0, fs/2] is covered. 

 

The above search gives us a set of peak locations fc(m) and each is declared as 

voiced (1) or unvoiced (0). In many cases, the voiced regions of the spectrum are not 

clearly separated from the unvoiced regions [26]. These two regions are separated by 

filtering the voiced/unvoiced decision binary vector using a three-point median smoothing 

filter. The last frequency, in the filtered vector, declared as voiced is labeled as Fm. 
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3.3.4 Estimation of amplitudes and phases of the harmonics 

For analyzing the voiced frames, an analysis window of length twice the local pitch 

period is centered at the GCIs and amplitudes and phases are calculated by minimizing a 

weighted time domain least-squares criterion [21] with respect to ( )k ia t . The weighted 

squared error signal (ε) is given by: 

                             
0

0

2 2
H ( )[ ( ) ( )]

i

i

t t T

t t T

w t s t s tε

= +

= −

′= −∑                                         (3.5) 

where T0=local pitch period, H ( )w t = Hanning window, ( )s t = original speech, and h ( )s t = 

harmonic signal to estimate, and it is the centre of the frame. The details of the 

minimization process are given in [21]. 

 

3.4. HNM parameters for speaker recognition 

The advantage of the HNM scheme for speaker recognition is the representation of the 

speech signal as sum of harmonic part and noise part. Since, the effect of contaminations 

such as background noise on estimation of harmonic magnitudes of the speech signal will 

be less, the parameters related to harmonic part may be useful for speaker recognition. 

Among the HNM parameters discussed earlier, maximum voiced frequency and pitch 

may be useful for speaker recognition. 

Maximum voiced frequency (Fm) distinguishes the harmonic part of the speech 

signal from the noise part in the frequency domain. This means, Fm is the boundary 

between the harmonic part and the noise part in frequency domain. In general, this 

boundary will vary from speaker to speaker due to the variations in size and shape of the 

vocal tract. Thus, maximum voiced frequency is associated with vocal tract and to a 

certain extent with the excitation and hence contains speaker information that may be 

useful for speaker recognition. A new parameter, α, defined as the ratio of energy of 

spectral segment above Fm and total energy, may also give speaker dependent 

information. Pitch is another parameter useful for speaker recognition. Pitch varies with 

the size of the vocal chords and hence it also contains speaker information.  

The random variations in the parameters Fm and F0 are speaker dependent and 

hence may be useful for speaker recognition. These random variations are called as jitter 

in a parameter. Jitter in a parameter, p, for the n
th

 frame is defined as: 
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( 1) ( )
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p n p n
J n

p n

+ −
=         (3.6) 

Jitter in pitch ( 0F∆ ) and jitter in maximum voiced frequency ( mF∆ ) can be obtained by 

using (3.6), where p is replaced by pitch (F0) and maximum voiced frequency (Fm) 

respectively. The random variations in sound intensity ( 0A ) are also speaker dependent. 

These random variations are called as shimmer in intensity ( 0A∆ ). Shimmer in intensity 

for n
th

 frame is defined as: 

0 0

0

0

( 1) ( )
100

( )

A n A n
A

A n

+ −
∆ =         (3.7) 

The harmonic amplitudes and phases contain basically the same information as 

provided by LPCC or MFCC, and hence these are not investigated at this stage. The study 

of variations of the HNM parameters (Fm, F0, α, 0F∆ , mF∆ , and 0A∆ ) through histogram 

analysis, moments, and correlation is described in Chapter 4. It is to be noted that all 

these parameters relate only to the voiced frames. In the present study, we are not using 

parameters from unvoiced frames. 
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Chapter 4 

 

STUDY OF PARAMETERS FOR SPEAKER RECOGNITION 

 

For a parameter to be useful for speaker recognition, its inter-speaker variation should be 

much more than the intra-speaker variation [1], [12]. In order to observe these variations, 

the study of selected parameters needs to be carried out through statistical methods. Some 

of the techniques described in this chapter are histogram analysis, statistical moments, 

and correlation. The results obtained using these techniques are also discussed. 

 

4.1 Histogram analysis 

The variation of a parameter can be studied through frequency distribution [27], as a 

compact representation of the data. In frequency distribution, the frequency of distinct 

values of the data will be counted. Hence, this technique is suitable for the parameters 

containing small number of distinct values. But, in our case, each parameter varies over a 

large continuous range and hence grouped frequency distribution technique [27] can be 

used. In grouped frequency distribution, the values of a parameter are grouped into 

classes (also called bins) and the frequency of each class will be counted. The graphical 

form of this type of distribution is called histogram plot [27], [28], which gives a picture 

of the general shape of the distribution.  

The number of bins will affect the shape of the histogram and should be chosen 

carefully while obtaining the histograms. The variation in a parameter can be observed 

clearly with more number of bins. But, this will cause more random variations in the 

shape of the histogram and hence more deviation from the assumed distributional model. 

The effect of variations between the successive samples of a variable can be 

studied through multi-sample histogram analysis [28]. One-sample histogram analysis is 

same as the simple histogram analysis. In case of two-sample histogram analysis, the 

present sample will be accepted into the corresponding bin only if the difference between 

the present sample and the previous sample is less than half of the bin width. In case of 

three-sample histogram analysis, the present sample will be accepted into the 
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corresponding bin only if the difference between the present sample and the previous 

sample as well as the difference between the present sample and the one before previous 

sample is less than half of the bin width. The same method can be further extended to four 

or higher sample histograms. 

 

4.2 Statistical moments 

Histogram plot provides a graphical description of variation in a parameter. Statistical 

moments, namely, mean, RMS deviation about mean, skewness, and kurtosis [27] can be 

used for quantifying the shape of the histogram. These moments can be obtained directly 

from the N samples of a variable x as follows: 

• Mean value ( x  or M1): 
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• RMS deviation about mean (M2 or x
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• Skewness (M3) : 
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• Kurtosis (M4): 
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Skewness, given by (4.3), is a measure of the lack of symmetry of the data [28]. 

For normal distribution, skewness is zero and for any symmetric data, skewness should be 

nearly zero. Negative skewness indicates that the data are skewed left i.e., the left tail in 

the histogram will be longer than the right tail. Similarly, positive skewness indicates that 

the data are skewed right i.e., the right tail in the histogram will be longer than the left 

tail. 

Kurtosis, given by (4.4), is a measure of the peakiness of the distribution relative 

to a normal distribution [28]. For a standard normal distribution, with zero mean and unit 
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standard deviation, kurtosis is three. The data with high kurtosis (>3) will have a strong 

peak near the mean, more rapid decay and heavier tails in the histogram. 

Significant skewness and kurtosis indicate that the data are not normally 

distributed. This means, skewness and kurtosis are the measures of the amount of 

deviation of the data from the normal distribution. The above moments are used to study 

the pattern of variations in speech parameters across speakers, to investigate their possible 

use in speaker recognition. 

 

4.3 Correlation coefficient 

Another parameter to measure the closeness of a parameter to an assumed distributional 

model is correlation coefficient (r) and is defined as follows [27]: 
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whereO and E are the mean values for the observed and estimated distributions 

respectively. Correlation coefficient (r) is a pure number without units or dimensions and 

it always lies between -1 and +1. Positive values of r indicate a tendency of the two 

variables (O and E) to increase together and negative values of r indicate that large values 

of one variable are associated with small values of the other variable. The value 0r =  

indicates that there is no correlation between the two variables. The parameter is said to 

have an assumed distribution if the value of r is close to unity. The distribution of various 

analysis parameters showed that some of them could be approximated by an exponential 

distribution while others could be approximated by normal distribution. For exponential 

distribution, the approximation is given as: 
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with 1/ xλ =  obtained from the observed values. For normal distribution, the 

approximation is given as: 
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with x  and xσ  obtained from the observed values. In both cases, the Ei values were 

calculated for the corresponding bin by integrating the function over the bin.  
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4.4 Analysis results 

For observing the variations in the histograms and statistical parameters (discussed 

above) of the speech analysis parameters, namely, peak amplitudes, Fm, F0, α, 0F∆ , mF∆ , 

and 0A∆ , different speech recordings were made at the sampling rate of 10 kSa/s, for 10 

male speakers labeled as Speaker-1 to Speaker-10. As the statistical parameters may vary 

for the same speaker in different utterances of the same phrase (due to various factors 

such as background noise, variations in handling the microphone and most importantly, 

the linguistic information in the utterance), the same utterance was recorded five times for 

each speaker. Then, the histograms and statistical moments were obtained for these 

utterances. From this, the inter-speaker and intra-speaker variations were calculated. 

Finally, F-ratio test was carried out on each statistical parameter. The results for the 

speech analysis parameters (as described in Chapter 3), using histograms and statistical 

parameters, are presented in the following subsections. 

 

4.4.1 Histogram analysis on peak amplitudes 

For analyzing the peak amplitudes using histograms, the speech signal “where were you a 

year ago” was recorded five times for each of the 10 speakers. The recorded signal was 

normalized such that the magnitude of the highest peak was scaled to unity. For this 

normalized signal, peak amplitudes were calculated. Then, multi-sample histograms for 

the peak amplitudes were obtained. 

One-sample histograms of peak amplitudes are shown in Fig 4.1, with one plot for 

each of the speaker, with the plots of different utterances superimposed together. The y-

axis represents the frequency in percentage and x-axis represents the normalized 

amplitude, divided into 60 bins (an empirically selected number). The variations within 

the histogram for different utterances by a single speaker are observed in Fig 4.1. There 

are clear differences in the plots across speakers. However, differences across the 

speakers do not appear much larger than the differences across utterances. 

The variations in the histogram plots are characterized through statistical 

parameters. The statistical parameters, namely, moments and correlation coefficients were 

calculated for peak amplitudes of each normalized signal. Correlation coefficients were 

calculated by assuming exponential distribution. The mean and standard deviation of each 

statistical parameter for 10 speakers are given in Table 4.1. It is observed from the table 

that the inter-speaker variations of each statistical parameter are of the same order as 
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intra-speaker variations. But, for the application of speaker recognition, the inter-speaker 

variations should be significantly higher than the intra-speaker variations. F-ratio test 

shows that the variation across speakers is statistically highly significant (p < 0.005). 

However, F-ratio values in this case are not as large as for HNM parameters for which 

results are described later. This indicates that although peak amplitude may be indicative 

of a speaker, their usefulness in speaker recognition is much lower than that of HNM 

parameters. 

 

 

Fig 4.1 One-sample histograms of peak amplitude 

 

 

The variations in M1 of peak amplitudes for 10 speakers are shown in Fig 4.2. In 

this figure, each vertical line represents the variation of M1 for a particular speaker, center 

of the line represents mean value of M1, and length of the line represents standard 

deviation of M1 within the speaker for different utterances. It is observed that the speakers 

are not well separated. The results of two-sample and three-sample histogram analyses 

are given in Appendix A. They exhibit the same pattern as one-sample histograms. 
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Table 4.1 Mean and standard deviation of moments for peak amplitude. The correlation 

coefficient r is with respect to exponential distribution. No. of utterances = 5, 

No. of speakers = 10. Mn = mean, Sd = std. dev., MSA = mean square among 

speakers, MSW = mean square within speakers. D.F. for F-ratio test: 9, 40. 

(F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 0.19 0.02 0.17 0.02 1.29 0.15 4.73 0.71 0.89 0.04 3.66 0.17 0.98 0.01 

2 0.23 0.03 0.20 0.02 1.06 0.29 3.75 0.91 0.86 0.05 3.58 0.27 0.93 0.06 

3 0.21 0.01 0.20 0.01 1.12 0.16 3.78 0.67 0.94 0.03 3.36 0.13 0.90 0.01 

4 0.18 0.02 0.16 0.01 1.35 0.16 5.02 0.62 0.90 0.05 3.72 0.11 0.98 0.01 

5 0.18 0.03 0.17 0.01 1.41 0.23 4.94 0.92 0.96 0.09 3.50 0.11 0.98 0.01 

6 0.19 0.01 0.19 0.01 1.28 0.13 4.17 0.55 1.02 0.03 3.25 0.11 0.91 0.01 

7 0.16 0.01 0.15 0.01 1.69 0.17 6.95 1.11 0.95 0.01 4.09 0.27 0.98 0.02 

8 0.14 0.01 0.13 0.01 2.00 0.17 8.86 1.21 0.99 0.05 4.43 0.32 0.97 0.02 

9 0.17 0.02 0.17 0.01 1.48 0.13 5.30 0.68 1.03 0.08 3.57 0.18 0.92 0.07 

10 0.17 0.01 0.17 0.01 1.47 0.12 5.26 0.62 1.02 0.02 3.57 0.15 0.92 0.01 

Mn 0.18 0.17 1.41 5.27 0.95 3.67 0.95 

Sd 0.03 0.02 0.27 1.56 0.06 0.35 0.03 

MSA 0.0035 0.0021 0.3726 12.171 0.0167 0.6038 0.0057 

MSW 0.0003 0.0001 0.0313 0.6845 0.0025 0.0392 0.0009 

F 10.6 15.1 11.9 17.8 6.70 15.4 6.15 

p 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
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Fig 4.2 Variation of M1 of peak amplitude for 10 speakers 

 

Hence, peak amplitudes of the speech signal may not be useful for speaker 

recognition. The sensitiveness of peak amplitudes to various factors such as background 

noise, variations in handling the microphone, etc., may be causing the difficulty with 

these parameters for speaker recognition. 
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4.4.2 Histogram analysis on HNM parameters 

For observing the variations in HNM parameters (Fm, F0, α, 
0F∆ , 

mF∆ , and 
0A∆ ) using 

histograms, the English sentences given in Table 4.2 were recorded five times for each of 

the 10 speakers. These sentences have been specifically formed to emphasize certain 

speech features [29]. 

Histogram analysis was carried out on the concatenation of the 8 sentences given 

in Table 4.2. The concatenated speech signal was divided into frames of equal length and 

each frame was analyzed to get the parameters, Fm, F0, and α. Then, 0F∆ , mF∆ , and 0A∆  

were calculated. Finally, multi-sample histograms for these parameters were obtained. 

Table 4.2 Sentences recorded for the study of HNM parameters 

One-sample histograms of Fm, F0, α, 0F∆ , mF∆ , and 0A∆ are shown in Fig 4.3 to 

4.8 respectively. In each case, there is one plot for each of the 10 speakers, with the plots 

corresponding to different recordings superimposed together. The y-axis of the plots 

represents the frequency in percentage; with x- axis representing the analysis parameters, 

with the range divided into 60 bins. For Fm, F0, and α, the variations within the histogram 

for different utterances by a single speaker can be observed in Fig 4.3 to 4.5. But, these 

are small compared to variations across speakers. Each speaker appears to have a 

different characteristic in the plot. For 0F∆ , mF∆ , and 0A∆ , the variations across speakers 

are not as large as for Fm, F0, and α. 

The variations in the histogram plots are characterized through statistical 

parameters. The statistical parameters, namely, moments and correlation coefficients were 

calculated for the HNM parameters (Fm, F0, α, 0F∆ , mF∆ , and 0A∆ ). Correlation 

S. No. Sentence type Sentence or phrase 

Bright sunshine shimmers on the ocean. 
1. Fricatives/Whispers/Affricatives 

His vicious father has seizures. 

Get a calico cat to keep away. 
2. Unvoiced Consonants 

Primitive tribes have an upbeat attitude. 

Did dad do academic bidding? 
3. Voiced Consonants 

Doctors prescribe drugs too freely. 

He will allow a rare lie. 
4. 

Predominantly Voiced 

(Vowels/Diphthongs/Semivowels) Will Robin wear a yellow lily? 
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coefficients were calculated by assuming normal distribution for Fm, F0, and α, while 

exponential distribution for 0F∆ , mF∆ , and 0A∆ . The mean and standard deviation of 

each statistical parameter for 10 speakers are given in Tables 4.3 to 4.8. For Fm, F0, and α, 

it can be observed that the inter-speaker variations of each statistical parameter are 

significantly higher than the intra-speaker variations. F-ratio test shows that the variation 

across speakers is statistically highly significant (p < 0.005). Also, the F-ratio values 

(particularly for M1) are very large compared to that of peak amplitude. This indicates 

that the parameters Fm, F0, and α are good indicative of a speaker and hence may be 

useful for speaker recognition. For 0F∆ , mF∆ , and 0A∆ , the inter-speaker variations are 

not as large as for Fm, F0, and α. Also, the values of F-ratio are not as large as for Fm, F0, 

and α. 

The variations in M1 of HNM parameters for 10 speakers are shown in Fig 4.9 to 

4.14. In these figures, each vertical line represents the variation of M1 for a particular 

speaker, center of the line represents mean value of M1, and length of the line represents 

standard deviation of M1 within the speaker for different utterances. It is observed that the 

characteristics of speakers are well separated. Most importantly, α has shown good 

indications for speaker recognition when compared to other parameters, through very 

high inter-speaker variations compared to intra-speaker variations. This is also confirmed 

by very high F-ratio value and a good separation of speakers shown in the plot in Fig 

4.11. The results of two-sample and three-sample histogram analyses for Fm, F0, and α are 

given in Appendix A. They show the same pattern as the one-sample histograms. 

Hence, HNM parameters (Fm, F0, α, 0F∆ , mF∆ , and 0A∆ ) may be useful for 

speaker recognition. The speaker recognition tests with HNM parameters are carried out 

in Chapter 5 using vector quantization (VQ) technique. 
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Fig 4.3 One-sample histograms of Fm (Hz) 

 

 

 
Fig 4.4 One-sample histograms of F0 (Hz) 
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Fig 4.5 One-sample histograms of α (dB) 

 
Fig 4.6 One-sample histograms of  0F∆  
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Fig 4.7 One-sample histograms of  mF∆  

 

 
Fig 4.8 One-sample histograms of  0A∆  
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Table 4.3 Mean and standard deviation of moments for Fm (Hz). The correlation 

coefficient r is with respect to normal distribution. No. of utterances = 5, No. 

of speakers = 10. Mn = mean, Sd = std. dev., MSA = mean square among 

speakers, MSW = mean square within speakers. D.F. for F-ratio test: 9, 40. 

(F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 4493 33.7 452 48.7 -2.9 0.54 18.4 5.60 0.10 0.01 -6.3 1.00 0.85 0.03 

2 4621 18.6 430 36.4 -3.7 0.62 24.9 7.39 0.09 0.01 -6.6 1.00 0.73 0.03 

3 4242 53.7 696 43.6 -2.1 0.38 9.47 2.52 0.16 0.01 -4.4 0.41 0.79 0.03 

4 4744 13.0 259 33.9 -6.7 1.62 75.9 28.8 0.05 0.01 -11 1.94 0.81 0.01 

5 4733 23.5 261 83.0 -5.5 2.75 66.8 62.3 0.06 0.02 -10 5.41 0.78 0.05 

6 4694 6.44 223 6.19 -2.9 0.40 16.7 5.27 0.05 0.00 -5.7 1.10 0.81 0.03 

7 4494 62.6 705 105 -4.0 0.50 22.1 5.74 0.16 0.03 -5.5 0.79 0.68 0.05 

8 4491 39.2 505 104 -3.2 0.69 21.3 4.22 0.11 0.02 -6.6 0.58 0.81 0.03 

9 4239 9.51 462 26.6 -2.3 0.47 17.9 3.64 0.11 0.01 -7.9 0.27 0.96 0.00 

10 4523 8.05 312 31.1 -2.3 1.46 20.3 19.4 0.07 0.01 -7.4 2.47 0.94 0.01 

Mn 4527 430 -3.56 29.4 0.10 -7.15 0.82 

Sd 181 173 1.51 22.6 0.04 2.02 0.08 

MSA 16.3E+04 14.8E+04 11.327 2549.3 0.0085 20.438 0.0350 

MSW 1073.2 3713.3 1.4226 527.04 0.0002 4.3517 0.0009 

F 152 40.1 7.96 4.84 41.5 4.70 40.2 

p 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

 

 

Table 4.4 Mean and standard deviation of moments for F0 (Hz). The correlation 

coefficient r is with respect to normal distribution. No. of utterances = 5, No. 

of speakers = 10. Mn = mean, Sd = std. dev., MSA = mean square among 

speakers, MSW = mean square within speakers. D.F. for F-ratio test: 9, 40. 

(F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 136 1.86 24.7 2.24 3.17 0.53 25.2 4.88 0.18 0.02 7.96 0.78 0.87 0.04 

2 131 3.93 26.2 5.56 2.48 0.74 17.6 6.60 0.20 0.04 7.06 2.14 0.87 0.05 

3 140 2.72 32.2 8.92 2.04 1.32 14.0 7.87 0.23 0.06 7.18 0.71 0.86 0.07 

4 156 3.62 42.0 4.62 2.60 0.21 14.4 3.18 0.27 0.02 5.51 0.77 0.79 0.06 

5 131 3.91 23.7 8.31 3.70 0.88 26.1 9.76 0.18 0.06 6.93 1.24 0.77 0.09 

6 184 2.43 19.9 1.63 1.14 0.71 12.5 3.79 0.11 0.01 13.9 6.41 0.88 0.03 

7 136 5.96 50.1 8.97 2.40 0.41 10.8 3.71 0.37 0.05 4.42 0.71 0.71 0.03 

8 144 5.41 46.0 12.2 2.72 0.48 14.8 3.91 0.32 0.07 5.39 0.57 0.81 0.05 

9 174 1.45 37.4 1.13 0.97 0.24 6.41 1.63 0.21 0.01 6.59 0.55 0.92 0.01 

10 185 2.58 27.6 3.91 0.76 0.88 10.2 1.80 0.15 0.02 -2.8 42.0 0.91 0.03 

Mean 152 33.0 2.20 15.2 0.22 6.22 0.84 

Sd 21.6 10.4 0.97 6.29 0.08 4.08 0.07 

MSA 2339.1 536.28 4.7084 197.69 0.0303 83.078 0.0230 

MSW 13.407 45.494 0.5123 28.410 0.0017 181.05 0.0025 

F 174 11.8 9.19 6.96 17.8 0.46 9.13 

p 0.005 0.005 0.005 0.005 0.005 - 0.005 
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Table 4.5 Mean and standard deviation of moments for α (dB). The correlation 

coefficient r is with respect to normal distribution. No. of utterances = 5, No. 

of speakers = 10. Mn = mean, Sd = std. dev., MSA = mean square among 

speakers, MSW = mean square within speakers. D.F. for F-ratio test: 9, 40. 

(F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 -7.6 0.08 1.67 0.08 2.45 0.19 9.50 1.08 -0.2 0.01 3.86 0.17 0.66 0.03 

2 -7.0 0.07 1.95 0.09 1.85 0.09 7.07 0.61 -0.3 0.02 3.82 0.18 0.74 0.03 

3 -7.9 0.07 1.44 0.11 2.49 0.08 11.7 1.01 -0.2 0.02 4.71 0.36 0.74 0.03 

4 -6.1 0.09 1.70 0.04 1.07 0.17 4.20 0.59 -0.3 0.01 3.96 0.19 0.87 0.02 

5 -7.4 0.09 1.77 0.11 1.79 0.09 6.79 0.61 -0.2 0.02 3.80 0.22 0.80 0.04 

6 -6.8 0.05 1.47 0.04 1.32 0.03 4.91 0.19 -0.2 0.01 3.73 0.12 0.84 0.02 

7 -11.0 0.17 2.14 0.08 1.23 0.11 5.82 0.34 -0.2 0.01 4.75 0.34 0.92 0.03 

8 -11.0 0.18 1.71 0.12 1.11 0.16 6.16 0.96 -0.2 0.01 5.60 0.65 0.95 0.01 

9 -8.1 0.08 1.69 0.05 0.71 0.14 5.84 0.32 -0.2 0.01 8.55 1.86 0.91 0.02 

10 -9.9 0.08 1.81 0.09 0.95 0.13 5.01 0.45 -0.2 0.01 5.29 0.29 0.95 0.01 

Mean -8.3 1.73 1.50 6.70 -0.2 4.81 0.84 

Sd 1.69 0.21 0.62 2.29 0.04 1.48 0.10 

MSA 14.226 0.2118 1.9273 26.212 0.0077 10.907 0.0498 

MSW 0.0106 0.0075 0.0166 0.4672 0.0001 0.438 0.0007 

F 1340.0 28.4 116.0 56.1 51.9 24.9 76.0 

p 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

 

 

Table 4.6 Mean and standard deviation of moments for 0F∆ . The correlation coefficient r 

is with respect to exponential distribution. No. of utterances = 5, No. of 

speakers = 10. Mn = mean, Sd = std. dev., MSA = mean square among 

speakers, MSW = mean square within speakers. D.F. for F-ratio test: 9, 40. 

(F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 8.04 0.60 23.8 4.59 9.77 4.41 162 163 2.95 0.40 14.1 6.86 0.94 0.04 

2 7.58 1.32 19.2 3.00 7.06 1.00 76.9 24.2 2.54 0.19 10.7 2.05 0.92 0.03 

3 9.58 0.66 24.4 1.35 7.23 1.06 79.9 27.8 2.55 0.13 10.8 2.16 0.92 0.02 

4 11.9 1.53 30.2 5.76 7.96 4.02 122 136 2.54 0.34 12.6 6.66 0.92 0.04 

5 7.16 1.28 18.2 3.62 7.49 1.58 87.4 36.9 2.53 0.22 11.2 2.67 0.92 0.03 

6 4.60 0.26 10.3 1.32 7.09 0.89 75.4 16.8 2.23 0.18 10.5 1.18 0.96 0.01 

7 14.3 2.13 35.2 7.30 5.94 1.50 57.6 29.9 2.45 0.21 9.18 2.65 0.88 0.05 

8 9.99 2.74 25.0 5.87 5.98 0.41 54.3 8.16 2.52 0.14 9.04 0.79 0.90 0.01 

9 8.20 0.78 19.0 1.80 7.71 2.23 104 68.2 2.32 0.16 12.5 4.16 0.94 0.03 

10 6.07 0.27 15.3 0.93 7.37 1.17 77.9 24.6 2.51 0.15 10.4 1.63 0.95 0.01 

Mean 8.75 22.0 7.36 89.6 2.51 11.1 0.92 

Sd 2.83 7.26 1.08 32.1 0.19 1.57 0.02 

MSA 40.170 263.70 5.7824 5166.5 0.1759 12.335 0.0029 

MSW 1.9324 17.176 4.9786 5418.0 0.0522 13.642 0.0010 

F 20.8 15.4 1.16 0.95 3.37 0.90 2.99 

p 0.005 0.005 - - 0.005 - 0.01 
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Table 4.7 Mean and standard deviation of moments for mF∆ . The correlation coefficient 

r is with respect to exponential distribution. No. of utterances = 5, No. of 

speakers = 10. Mn = mean, Sd = std. dev., MSA = mean square among 

speakers, MSW = mean square within speakers. D.F. for F-ratio test: 9, 40. 

(F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 9.65 2.22 72.9 42.9 23.1 10.8 670 399 7.00 3.56 25.1 10.4 1.00 0.01 

2 7.89 1.48 51.5 31.0 27.5 5.69 875 317 6.28 3.17 31.1 4.99 1.00 0.00 

3 17.8 4.15 114 56.9 18.6 3.16 408 162 6.06 1.73 21.3 4.50 1.00 0.00 

4 4.96 1.50 35.7 34.4 21.1 12.8 626 563 6.09 4.77 24.5 10.9 1.00 0.01 

5 4.91 1.82 30.2 30.4 18.2 13.7 530 606 5.39 5.06 22.0 12.0 0.99 0.01 

6 4.28 0.10 5.60 0.28 4.54 1.40 44.5 26.9 1.31 0.08 9.00 3.28 0.99 0.00 

7 24.7 8.31 183 37.4 15.1 5.70 295 257 7.70 1.49 17.4 7.31 1.00 0.00 

8 12.8 6.04 84.0 65.7 23.4 5.91 656 320 5.74 2.38 26.7 7.44 1.00 0.00 

9 13.9 3.97 106 47.2 31.1 10.8 1E3 690 7.36 1.65 33.0 11.7 1.00 0.00 

10 7.88 1.93 29.9 44.5 13.7 13.5 407 505 3.06 3.74 19.3 13.4 1.00 0.00 

Mean 10.9 71.3 19.6 564 5.60 22.9 1.00 

Sd 6.55 52.8 7.52 304 1.98 6.91 0.00 

MSA 214.30 13.9E+03 282.50 46.1E+04 19.607 239.03 2.26E-05 

MSW 15.489 1807.3 87.958 18.7E+04 9.8742 85.213 1.49E-05 

F 13.8 7.70 3.21 2.46 1.99 2.81 1.51 

p 0.005 0.005 0.01 - - - - 

 

Table 4.8 Mean and standard deviation of moments for 0A∆ . The correlation coefficient r 

is with respect to exponential distribution. No. of utterances = 5, No. of 

speakers = 10. Mn = mean, Sd = std. dev., MSA = mean square among 

speakers, MSW = mean square within speakers. D.F. for F-ratio test: 9, 40. 

(F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 23.9 1.05 51.4 6.53 7.78 2.85 110 90.7 2.14 0.21 12.7 5.07 0.95 0.02 

2 24.9 2.23 53.5 6.62 8.48 1.53 124 42.8 2.16 0.23 14.3 2.62 0.97 0.01 

3 27.5 1.11 68.1 9.88 8.83 4.18 138 151 2.47 0.25 13.0 6.89 0.96 0.02 

4 27.7 1.32 49.6 3.08 5.93 1.37 61.5 30.2 1.79 0.12 9.93 2.39 0.96 0.01 

5 26.6 1.13 53.5 4.36 6.34 0.76 61.2 18.6 2.01 0.11 9.49 1.85 0.96 0.01 

6 19.0 0.78 37.1 2.18 5.77 0.34 46.2 4.89 1.96 0.06 8.00 0.39 0.97 0.01 

7 24.3 0.67 65.5 16.1 13.4 7.41 310 327 2.69 0.60 19.3 8.79 0.98 0.01 

8 23.6 1.88 88.6 14.9 24.9 4.65 781 257 3.75 0.51 30.6 4.90 1.00 0.00 

9 19.8 1.15 49.3 10.5 10.7 3.93 194 134 2.48 0.43 16.4 5.73 0.98 0.01 

10 20.1 0.46 55.3 10.5 12.3 5.90 257 243 2.74 0.50 17.7 8.46 0.98 0.02 

Mean 23.7 57.2 10.4 208 2.42 15.2 0.97 

Sd 3.19 14.0 5.72 219 0.57 6.56 0.01 

MSA 50.870 979.56 163.65 24.0E+04 1.6019 214.98 0.0009 

MSW 1.6401 91.911 15.732 28.4E+03 0.1243 29.497 0.0002 

F 31.0 10.7 10.4 8.46 12.9 7.29 4.90 

p 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
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Fig 4.9 Variation of M1 of Fm (Hz) for 10 speakers 
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Fig 4.10 Variation of M1 of F0 (Hz) for 10 speakers 
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Fig 4.11 Variation of M1 of α (dB) for 10 speakers 
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Fig 4.12 Variation of M1 of 0F∆  for 10 speakers 
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Fig 4.13 Variation of M1 of  mF∆  for 10 speakers 
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Fig 4.14 Variation of M1 of  0A∆  for 10 speakers 
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Chapter 5 

 

SPEAKER MODELING AND RECOGNITION 

 

The techniques for extracting the speaker dependent features, namely, peak amplitudes 

and HNM parameters (Fm, F0, and α) were discussed in Chapter 3. Also, the use of these 

parameters for speaker recognition was studied through histogram analysis and statistical 

parameters in Chapter 4. The next step in training stage of the speaker recognition 

process, after extracting the speaker dependent features, is to create a model of the 

speaker from the extracted speaker dependent features. Some of the commonly used 

techniques for speaker modeling are minimum distance classifier, vector quantization 

(VQ), HMM and GMM [1], [7]. Among these, the first two are template models in which 

the pattern matching is deterministic and the latter two are stochastic models in which the 

pattern matching is probabilistic leading to probabilistic measure.  

A problem with the minimum distance classifier is that it does not distinguish 

between acoustic classes, i.e., it uses an average of feature vectors per speaker computed 

over all sound classes [1], [20]. Hence, individual speech events are blurred. This results 

in low performance of the system using this technique. This problem can be solved using 

VQ technique in which the average of feature vectors is taken over distinct sound classes, 

but without identification or labeling. Hence, VQ performs better than minimum distance 

classifier [11]. In case of HMM and GMM, large amount of data are required for training. 

In case of GMM, if amount of data are small, the system can get numerically unstable. 

Also, GMM requires a lot of time for training. With limited amount of data available, VQ 

method is more robust and faster than HMM and GMM [8], [7]. Hence, VQ method is 

considered for speaker modeling in this project. In this chapter, training and testing 

algorithms using VQ technique are described. The recognition experiments carried out on 

HNM parameters using VQ method are also discussed and the results are compared with 

well established MFCC features. For this work, the HNM analysis software developed by 

Parveen K. Lehana [22] and the software of VQ and MFCC algorithms developed by P. 

Pradeep Kumar [30] have been used. 
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5.1 Vector quantization (VQ) 

Vector quantization is the most commonly used technique for speaker modeling [8], [10], 

[11], [13]. In this method, the feature vectors extracted from the training utterance of a 

particular speaker are divided into clusters using K-means clustering algorithm. Then, 

mean vectors, also called centroids, are calculated for each cluster. Each centroid in the 

clustering represents an acoustic class, but without identification or labeling. These 

centroids are also called as code-vectors and the collection of such code-vectors is known 

as codebook. The number of code vectors represents the size of the codebook. The 

codebook represents the model for a particular speaker. The K-means clustering 

algorithm for creating the codebook of a speaker is described in the following steps. 

1. The size of the codebook is assumed as K, i.e., K number of clusters will be 

formed. Also, K feature vectors are randomly chosen from the training feature 

vectors as initial centroids to represent K number of clusters. 

2. The nearest neighbors of each centroid are determined by using Mahalanobis (or 

Euclidean) distance measure. A particular feature vector is determined as the 

neighbor of i
th

 centroid, if the distance between the feature vector and the i
th

 

centroid is small compared to the distances with other centroids. 

3. The centroids of the new clusters formed in the above step are again determined. 

4. The above two steps (step 2 and step 3) are repeated until the centroids of 

previous and present iterations are same, i.e., until the process converges. 

Thus, a group of centroids called codebook is formed that represents the model for a 

particular speaker. The codebooks are determined for all speakers and are stored in the 

database. 

The training stage of the speaker recognition process is completed with the 

creation of the speaker models from the extracted speaker dependent features. The next 

stage of the speaker recognition process is testing stage. During the testing stage, the 

features extracted from the test utterance are to be compared with the existing models of 

speakers in the database and a decision is to be taken based on the comparison. The 

algorithm for the testing stage of the recognition process using VQ technique [6], [19] is 

described in the following steps. 

1. The speaker dependent feature vectors are extracted from the test utterance.  
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2. An acoustic class (represented by centroid) is chosen for each test feature vector 

from the codebook of a particular speaker by finding the minimum distance with 

respect to various centroids. 

3. The average of the minimum distances over all test feature vectors is computed. 

4. The above three steps are repeated for all known speakers. 

5. Finally, the speaker with smallest average minimum distance is identified as the 

claimed speaker. 

The speaker recognition experiments were conducted on various speaker 

dependent features, namely, HNM parameters (Fm, F0, and α) and MFCC using VQ 

method and the results are described in the following section. 

 

5.2 Results and discussion 

As discussed in Chapter 4, HNM parameters have shown good indications for the 

application of speaker recognition. Hence, speaker recognition experiments (by assuming 

closed set identification) are carried out on these features using VQ algorithm. For this 

purpose, the sentences shown in Table 4.2 were recorded for 10 male speakers at the 

sampling rate of 10 kSa/s. These sentences are repeated, for convenience, in Table 5.1. 

Each speaker has uttered these sentences five times. The procedure of the experiments 

carried out on these 10 speakers during training and testing stages are described in the 

following subsections. 

Table 5.1 Sentences recorded for speaker recognition experiments (same as Table 4.1) 

S. No. Sentence type Sentence or phrase 

Bright sunshine shimmers on the ocean. 
1. Fricatives/Whispers/Affricatives 

His vicious father has seizures. 

Get a calico cat to keep away. 
2. Unvoiced Consonants 

Primitive tribes have an upbeat attitude. 

Did dad do academic bidding? 
3. Voiced Consonants 

Doctors prescribe drugs too freely. 

He will allow a rare lie. 
4. 

Predominantly Voiced 

(Vowels/Diphthongs/Semivowels) Will Robin wear a yellow lily? 
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5.2.1 Training 

During the training stage, the HNM parameters, namely, Fm, F0, and α were extracted 

from the training utterance using the methods described in Chapter 3. These features, for 

each frame of the training utterance, were converted into a vector denoted 

by 0[ ]mF F α . These vectors are called as feature vectors. The feature vectors were 

then applied to the VQ training algorithm (also called K-means clustering algorithm) by 

considering the codebook size as 18. This codebook was represented as a model for a 

particular speaker. The codebooks were created for 10 speakers and were stored in 

database. 

 

5.2.2 Testing 

During testing, the HNM parameters namely Fm, F0, and α were extracted from the test 

utterance. The extracted features, for each frame of the test utterance, were then converted 

into a feature vector denoted by 0[ ]mF F α . The feature vectors were then applied to 

VQ testing algorithm in which the average of minimum distances for test feature vectors 

with each speaker model in the database were calculated. Finally, the one with smallest 

average minimum distance was identified as the target speaker. The results of different 

recognition experiments are discussed below. 

 

5.2.3 Speaker recognition results with HNM parameters 

Initially, the recognition experiments were conducted on the training sentence that 

consists of concatenation of the 8 sentences given in Table 5.1. Each speaker is tested on 

4 different utterances of the same concatenated sentence. In order to observe which one of 

the three HNM parameters (Fm, F0, and α) contains more speaker information, the 

experiments were conducted on different feature combinations such as 0[ ]mF F , 

[ ]mF α , and 0[ ]F α . The experiments were carried with both Euclidean and 

Mahalanobis distance measures that are used in VQ clustering algorithm. The 

performance of recognition with Mahalanobis distance measure was better than Euclidean 

distance measure. This is due to the fact that the HNM feature vector contains the 

parameters, Fm, F0, and α with different variances. Hence, results from Mahalanobis 

distance only will be discussed.  
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 The experiments conducted using the feature vectors 0[ ]mF F , [ ]mF α , 

0[ ]F α , and 0[ ]mF F α  have produced 80 %, 95 %, 85 %, and 95 % recognition 

respectively. From this result, the following observations can be made. 

• The above experiment has shown that HNM parameters contain some useful 

information for speaker recognition. 

• The feature combinations that contain α have produced good recognition 

compared to other feature combinations. Hence, the parameter α may contain 

more speaker information compared to other HNM parameters. 

In order to know how far the HNM parameters are useful for speaker recognition, 

the performance of speaker recognition using HNM parameters is compared with MFCC 

features. For this purpose, the experiments are carried out on the HNM feature vector 

0[ ]mF F α using Mahalanobis distance measure. The comparison tests are described 

below. 

 

5.2.4 Comparison of HNM parameters with MFCC features 

For comparing the performance of HNM parameters in speaker recognition with well 

established parameters, the recognition experiments were also carried out on MFCC 

features. For this purpose, MFCC features were extracted using the method described in 

Chapter 2. The length of the MFCC feature vector was considered as 13, i.e., 13 mel 

cepstral coefficients were calculated for each frame of the sentence. The specifications of 

the mel filter bank used in MFCC calculation are given below [30]. 

Lowest frequency: 133 Hz 

Number of linear filters: 13 

Linear frequency spacing: 66.7 Hz 

Number of log filters: 27 

Log frequency spacing: 1.06 

Initially, the experiments were conducted on 10 speakers with training on 

concatenated sentence. Testing is carried out with different features such as HNM 

parameters, MFCC features, and the combination of HNM parameters and MFCC 

features, on the following four different sentences. 

Sentence-1: Bright sunshine shimmers on the ocean. 

Sentence-2: His vicious father has seizures. 
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Sentence-3: He will allow a rare lie. 

Sentence-4: Will Robin wear a yellow lily? 

As stated earlier in Section 3.4, all the HNM parameters investigated for their 

usefulness for speaker recognition correspond to voiced frames only. HNM parameters 

correspond to unvoiced frames have not been used. When we combine HNM parameters 

with MFCC parameters, we leave the unvoiced frames. The results of this test are shown 

in Table 5.2. From this test, the following can be observed. 

• MFCC features have performed better than HNM parameters. 

• Combination of HNM parameters and MFCC features has performed better than 

HNM parameters alone. But, the combinational features have not shown much 

improvement in the performance compared to MFCC features alone. Even in 

some cases, the performance with the combinational features is degraded 

compared to MFCC features alone. This may be due to the fact that the MFCC 

features were ignored for the unvoiced frames while using along with the HNM 

parameters. 

 

Table 5.2 Results of speaker recognition on different sentences, with training on 

concatenated sentence 

 

 

From the above observations, it is clear that MFCC features perform very well in 

the cases where the duration of the training utterance is around 20 s. In these cases, the 

HNM parameters or the combination of HNM parameters with MFCC are not of much 

use for speaker recognition. Hence, the recognition experiments with small duration 

training sentences were carried out. For this purpose, the experiments were conducted in 

such a way that training is carried out on one of the four sentences mentioned above as 

Sentence-1 to Sentence-4 and testing is carried out on all the 4-sentences. The results of 

these tests are shown in Table 5.3. From these results, the following observations can be 

made. 

Performance in percentage 

Test 

sentence 
HNM 

parameters 

(Fm, F0, α) 

MFCC 

features 

HNM (Fm, F0, 

α) and MFCC 

parameters 

Sentence-1 75 95 95 

Sentence-2 77.5 100 90 

Sentence-3 75 100 92.5 

Sentence-4 80 100 100 
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• MFCC features have performed better than HNM parameters only in text-

dependent cases, i.e. when the training and test sentences are the same. But, 

MFCC features have not performed better than HNM parameters in text-

independent experiments, when the training and test sentences are different. 

• The combination of HNM parameters and MFCC features has shown good 

improvement in the performance in text-independent recognition. 

 

Table 5.3 Results of speaker recognition with different combinations of training and test 

sentences. Row with the same training and test sentences is indicated in bold. 

Performance in percentage 

Training 

sentence 

Test 

sentence 
HNM 

parameters 

(Fm, F0, α) 

MFCC 

features 

HNM (Fm, 

F0, α) and 

MFCC 

parameters 

Sentence-1 80 100 100 

Sentence-2 74 74 82 

Sentence-3 74 58 84 
Sentence-1 

Sentence-4 64 62 76 

Sentence-1 78 54 84 

Sentence-2 95 97.5 100 

Sentence-3 72 60 68 
Sentence-2 

Sentence-4 76 72 80 

Sentence-1 64 54 74 

Sentence-2 58 42 84 

Sentence-3 72.5 100 100 
Sentence-3 

Sentence-4 66 80 88 

Sentence-1 56 46 66 

Sentence-2 64 66 76 

Sentence-3 66 78 78 
Sentence-4 

Sentence-4 90 97.5 97.5 

 

The above experiments were carried out only on the three HNM parameters, Fm, 

F0, and α. The jitter in Fm and F0, and shimmer in intensity are also speaker dependent 

features and hence recognition experiments were carried out on 0F∆ , mF∆ , and 0A∆ . The 

results of speaker recognition experiments carried out with different combinations of 

0F∆ , mF∆ , and 0A∆  along with Fm, F0, α, and MFCC are presented in Table 5.4. In this 

table, S-1 represents Sentence-1; S-2 represents Sentence-2, and so on. The results lead to 

the following observations. 
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• The performance of speaker recognition is improved with the use of parameters, 

0F∆ , mF∆ , and 0A∆  along with Fm, F0, α, and MFCC. 

• The performance of recognition is in particular good with two combinations, 

namely, Fm, F0, α, 0F∆ , mF∆ , and MFCC, and Fm, F0, α, 0F∆ , mF∆ , 0A∆ , and 

MFCC.  

Table 5.4 Results of speaker recognition using 0F∆ , mF∆ , and 0A∆  along with Fm, F0, α,  

 and MFCC, with different combinations of training and test sentences. Row 

with the same training and test sentences is indicated in bold. 

Performance in percentage 

Tr. 

Sen. 

Test 

sen. MFCC 

Fm, F0, 

α, 

MFCC 

Fm, F0, 

α, 0F∆ , 

MFCC 

Fm, F0, 

α, 0F∆ ,

mF∆ , 

MFCC 

Fm, F0, 

α, 0F∆ ,

0A∆ , 

MFCC 

Fm, F0, 

α, mF∆ ,

0A∆ , 

MFCC 

Fm, F0, 

α, 0F∆ , 

mF∆ , 0A∆  

MFCC 

S-1 100 100 100 100 100 100 100 

S-2 74 82 86 92 88 70 94 

S-3 58 84 82 88 80 82 82 
S-1 

S-4 62 76 76 84 88 70 86 

S-1 54 84 80 88 78 82 88 

S-2 97.5 100 100 100 100 100 100 

S-3 60 68 70 76 70 74 80 
S-2 

S-4 72 80 84 86 76 80 90 

S-1 54 74 66 70 68 68 72 

S-2 42 84 90 86 88 86 82 

S-3 100 100 97.5 100 97.5 97.5 100 
S-3 

S-4 80 88 92 92 94 90 96 

S-1 46 66 58 64 62 64 64 

S-2 66 76 80 80 76 76 74 

S-3 78 78 78 82 76 80 76 
S-4 

S-4 97.5 97.5 97.5 97.5 97.5 97.5 97.5 

Generally, MFCC fails in text independent speaker recognition systems that use 

small duration utterances for training. For better performance with MFCC, the duration of 

training utterance should be at least 24 s and the test utterance should be 5 s [6], [13]. 

From our results, it is clear that the performance of the system can be improved by using 

the combination of HNM and MFCC parameters, particularly in the cases where MFCC 

fails. 
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Chapter 6 

 

SUMMARY AND CONCLUSION 

 

6.1 Summary 

Objective of this project was to study speech parameters for improving the performance 

of speaker recognition system. For this purpose, peak amplitudes of the speech signal and 

three parameters of HNM analysis (Fm, F0, and α) were selected. In order to study intra-

speaker and inter-speaker variability of these parameters, distribution of these parameters 

were obtained as histograms, and these were characterized through statistical moments 

and correlation coefficients with an exponential or normal distributions, on speech 

recordings from 10 male speakers.  

For speaker modeling, VQ method was used. The speaker recognition experiments 

were carried out on HNM parameters using VQ method for 10 speakers. In order to 

establish relative usefulness of the parameters for speaker recognition, the performance 

was compared with that of the MFCC features, and a combination of HNM parameters 

and MFCC features. 

 

6.2 Conclusion 

The study of the investigated parameters, peak amplitudes of the speech signal and three 

HNM parameters (Fm, F0, and α), using several statistical measures on the distribution has 

shown that peak amplitudes of the speech signal may not be useful for speaker 

recognition. This may be due to the fact that the peak amplitudes of the speech signal are 

highly sensitive to various factors such as background noise, transmission medium 

characteristics, etc. But, the HNM parameters have shown significant variations across 

the speakers as compared to intra-speaker variations and hence may be useful for speaker 

recognition. 

The speaker recognition experiments conducted on HNM parameters using VQ 

method have shown that HNM parameters are useful for speaker recognition. Also, the 

parameter α contains more speaker information compared to the other two investigated 



 49 

HNM parameters, Fm and F0. The performance of speaker recognition based on HNM 

parameters is comparable to that of MFCC features. However, the speaker dependent 

feature vector with HNM parameters contains only 3 elements while the MFCC feature 

vector contains more number of elements (13 in our case). Hence, the recognition with 

MFCC involves more number of computations (particularly in testing stage) than with 

HNM parameters. Also, MFCC features do not perform well when limited amount of data 

are available for training. It has been observed that in addition to Fm, F0, and α; we can 

also use jitter in F0 and Fm as additional parameters. The performance of the speaker 

recognition system can be improved by using the HNM parameters along with MFCC 

features, particularly in the cases where MFCC fails. 

 

6.3 Suggestions for future work 

The speaker recognition experiments, with HNM parameters, are to be carried out on 

large databases. Further, the performance of the speaker recognition systems based on 

HNM parameters may be improved by using GMM for speaker modeling, provided large 

amount of data are available for training. The amplitudes and phases of the harmonics 

obtained in the harmonic part of the HNM may also be used for speaker recognition by 

representing them with GMM. The performance of recognition based on HNM 

parameters has to be compared with that of MFCC, in the cases where speech contains a 

moderate level of background noise. 
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Appendix A 

 

RESULTS OF MULTI-SAMPLE HISTOGRAM ANALYSIS 

 

The experimental results of two-sample and three-sample histogram analyses carried out 

on peak amplitudes and HNM parameters (Fm, F0, and α) for 10 male speakers are 

presented here. Also, the statistical parameters, namely, moments and correlation 

coefficients, calculated for characterizing the two-sample and three-sample histograms 

are presented. The variation of each statistical parameter across 10 speakers was observed 

through different plots. The plots showing the variation of M1 only are presented here. 

Similar results were observed from the plots showing the variation of other statistical 

parameters. 

 

A.1 Two-sample and three-sample histogram plots 

 

Fig. A.1 Two-sample histograms of peak amplitude 
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Fig. A.2 Three-sample histograms of peak amplitude 

 

 

Fig. A.3 Two-sample histograms of Fm (Hz) 
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Fig. A.4 Three-sample histograms of Fm (Hz) 

 

 

Fig. A.5 Two-sample histograms of F0 (Hz) 
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Fig. A.6 Three-sample histograms of F0 (Hz) 

 

 

Fig. A.7 Two-sample histograms of α (dB) 
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Fig. A.8 Three-sample histograms of α (dB) 

 

A.2 Variation of first moment (M1) across speakers 
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Fig. A.9 Variation of M1 of peak amplitude for two-sample histograms 

 

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 5 6 7 8 9 10

Subject no. -->

 

Fig. A.10 Variation of M1 of peak amplitude for three-sample histograms 
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Fig. A.11 Variation of M1 of Fm (Hz) for two-sample histograms 
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Fig. A.12 Variation of M1 of Fm (Hz) for three-sample histograms 
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Fig. A.13 Variation of M1 of F0 (Hz) for two-sample histograms 
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Fig. A.14 Variation of M1 of F0 (Hz) for three-sample histograms 
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Fig. A.15 Variation of M1 of α (dB) for two-sample histograms 

 

-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

-7.4

1 2 3 4 5 6 7 8 9 10

Subject no. -->

M
1
 (
α

) 
--

>

 

Fig. A.16 Variation of M1 of α (dB) for three-sample histograms 
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A.3 Statistical parameters for histograms 

Table A.1 Mean and standard deviation of moments for two-sample histograms of peak 

amplitude. The correlation coefficient r is with respect to exponential 

distribution. No. of utterances = 5, No. of speakers = 10. Mn = mean, Sd = std. 

dev., MSA = mean square among speakers, MSW = mean square within 

speakers. D.F. for F-ratio test: 9, 40. (F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 0.08 0.01 0.11 0.01 2.27 0.15 9.15 1.35 1.30 0.09 4.03 0.46 0.91 0.01 

2 0.10 0.02 0.14 0.02 2.08 0.29 7.74 1.28 1.39 0.21 3.72 0.28 0.78 0.05 

3 0.07 0.01 0.11 0.01 2.61 0.21 10.9 1.07 1.57 0.09 4.16 0.13 0.80 0.02 

4 0.07 0.01 0.09 0.01 2.34 0.33 10.3 3.75 1.33 0.08 4.31 0.97 0.87 0.06 

5 0.07 0.01 0.10 0.01 2.92 0.55 14.7 5.99 1.39 0.09 4.89 0.93 0.90 0.03 

6 0.07 0.01 0.11 0.01 2.65 0.31 10.6 2.44 1.57 0.06 3.94 0.42 0.85 0.02 

7 0.06 0.00 0.08 0.01 2.09 0.22 8.38 1.65 1.26 0.09 3.99 0.50 0.89 0.02 

8 0.06 0.01 0.07 0.01 2.53 0.59 13.7 6.97 1.23 0.11 5.17 1.36 0.91 0.02 

9 0.05 0.01 0.08 0.01 3.18 0.40 14.8 3.30 1.67 0.17 4.62 0.42 0.90 0.01 

10 0.04 0.00 0.07 0.00 3.46 0.14 18.8 2.66 1.78 0.07 5.43 0.59 0.88 0.01 

Mean 0.07 0.10 2.61 11.9 1.45 4.43 0.87 

Sd 0.02 0.02 0.46 3.49 0.19 0.57 0.05 

MSA 0.0014 0.0023 1.0502 60.831 0.1742 1.6524 0.0105 

MSW 7.3E-05 0.0001 0.1238 12.973 0.0131 0.4923 0.0009 

F 19.0 20.8 8.48 4.69 13.3 3.36 12.1 

p 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

 

Table A.2 Mean and standard deviation of moments for three-sample histograms of peak 

amplitude. The correlation coefficient r is with respect to exponential 

distribution. No. of utterances = 5, No. of speakers = 10. Mn = mean, Sd = 

std. dev., MSA = mean square among speakers, MSW = mean square within 

speakers. D.F. for F-ratio test: 9, 40. (F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 0.03 0.01 0.05 0.02 3.65 1.09 21.9 11.7 1.48 0.25 5.68 1.41 0.95 0.02 

2 0.02 0.00 0.06 0.01 4.67 1.23 28.5 12.9 2.28 0.54 5.88 1.16 0.91 0.03 

3 0.02 0.00 0.04 0.02 3.98 1.19 23.0 12.0 1.91 0.42 5.50 1.31 0.93 0.02 

4 0.02 0.00 0.04 0.00 2.88 0.85 13.4 6.67 1.50 0.16 4.39 1.13 0.94 0.02 

5 0.03 0.00 0.04 0.01 3.98 1.75 30.3 26.0 1.57 0.18 6.60 2.93 0.94 0.02 

6 0.03 0.00 0.05 0.01 5.61 1.42 48.7 23.8 1.84 0.20 8.29 2.18 0.95 0.01 

7 0.03 0.00 0.04 0.01 2.99 0.65 13.6 6.27 1.51 0.18 4.38 1.05 0.94 0.02 

8 0.03 0.00 0.04 0.00 2.85 1.60 16.6 20.5 1.38 0.23 4.65 2.61 0.94 0.01 

9 0.02 0.00 0.03 0.01 8.09 1.23 105 44.8 1.90 0.14 12.6 3.66 0.97 0.02 

10 0.01 0.00 0.02 0.00 7.15 2.28 87.7 45.1 1.74 0.23 11.5 3.41 0.99 0.00 

Mean 0.02 0.04 4.59 38.9 1.71 6.94 0.94 

Sd 0.01 0.01 1.83 32.2 0.28 2.93 0.02 

MSA 0.0002 0.0005 16.686 5173.3 0.3815 42.902 0.0022 

MSW 1.3E-05 0.0001 1.9594 622.86 0.0789 5.2568 0.0003 

F 12.7 4.70 8.52 8.31 4.83 8.16 7.15 

p 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
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Table A.3 Mean and standard deviation of moments for two-sample histograms of 

Fm(Hz). The correlation coefficient r is with respect to normal distribution. 

No. of utterances = 5, No. of speakers = 10. Mn = mean, Sd = std. dev., MSA 

= mean square among speakers, MSW = mean square within speakers. D.F. 

for F-ratio test: 9, 40. (F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 4602 36.5 319 43.2 -1.5 0.57 6.05 3.03 0.07 0.01 -3.9 0.52 0.72 0.04 

2 4755 29.8 252 72.3 -3.7 0.70 21.1 7.01 0.05 0.02 -5.5 0.91 0.66 0.07 

3 4422 23.4 536 44.9 -1.8 0.21 6.79 1.34 0.12 0.01 -3.7 0.32 0.70 0.05 

4 4822 8.99 80.7 9.96 -2.1 0.66 12.5 5.88 0.02 0.00 -5.7 0.87 0.92 0.03 

5 4818 5.54 90.7 10.0 -2.3 0.37 10.2 2.96 0.02 0.00 -4.4 0.59 0.83 0.02 

6 4781 5.35 111 9.77 -2.2 0.50 11.1 3.57 0.02 0.00 -4.9 0.55 0.89 0.01 

7 4758 16.9 232 64.7 -5.8 3.74 67.5 65.9 0.05 0.01 -9.2 4.64 0.75 0.05 

8 4712 15.7 308 42.1 -5.1 2.21 47.0 35.1 0.07 0.01 -8.1 3.00 0.70 0.02 

9 4382 18.9 438 45.8 -1.1 0.87 7.55 5.76 0.10 0.01 -6.9 0.98 0.70 0.01 

10 4566 36.0 313 25.4 -0.9 0.15 2.94 0.44 0.07 0.01 -3.2 0.07 0.72 0.03 

Mean 4662 268 -2.7 19.3 0.06 -5.6 0.76 

Sd 161 149 1.68 21.2 0.03 1.99 0.09 

MSA 12.9E+04 11.1E+04 14.060 2239.8 0.0059 19.792 0.0398 

MSW 509.62 1810.3 2.1310 571.85 8.86E-05 3.4109 0.0015 

F 255 61.1 6.60 3.92 66.4 5.80 26.3 

p 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

 

 

 

Table A.4 Mean and standard deviation of moments for three-sample histograms of 

Fm(Hz). The correlation coefficient r is with respect to normal distribution. 

No. of utterances = 5, No. of speakers = 10. Mn = mean, Sd = std. dev., MSA 

= mean square among speakers, MSW = mean square within speakers. D.F. 

for F-ratio test: 9, 40. (F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 4671 30.4 261 25.9 -1.3 0.28 4.17 1.25 0.06 0.01 -3.1 0.46 0.61 0.05 

2 4809 21.5 157 91.7 -3.1 1.56 15.5 11.6 0.03 0.02 -4.5 1.27 0.69 0.10 

3 4586 46.7 511 43.6 -2.6 0.26 9.86 1.50 0.11 0.01 -3.7 0.21 0.53 0.06 

4 4842 6.19 51.8 3.92 -1.0 0.33 4.76 1.86 0.01 0.00 -4.5 0.49 0.96 0.01 

5 4841 6.01 57.0 5.62 -2.4 0.77 12.3 5.82 0.01 0.00 -4.9 0.74 0.89 0.05 

6 4824 3.00 57.3 4.61 -2.1 0.13 10.8 1.24 0.01 0.00 -5.1 0.58 0.92 0.02 

7 4821 14.1 110 43.1 -2.7 0.82 11.5 5.87 0.02 0.01 -4.0 0.79 0.75 0.08 

8 4811 13.2 134 39.6 -3.1 0.68 14.6 5.32 0.03 0.01 -4.6 0.67 0.71 0.07 

9 4560 28.8 432 57.1 -1.5 0.76 6.03 6.10 0.09 0.01 -3.5 1.42 0.39 0.01 

10 4672 41.2 296 47.3 -1.6 0.26 4.83 1.17 0.06 0.01 -2.9 0.24 0.47 0.05 

Mean 4744 207 -2.20 9.42 0.04 -4.10 0.69 

Sd 110 163 0.75 4.21 0.04 0.75 0.19 

MSA 60.8E+03 13.3E+04 2.7875 88.555 0.0065 2.8087 0.1889 

MSW 654.49 1996.1 0.5073 27.867 9.60E-05 0.6132 0.0032 

F 92.9 66.8 5.49 3.18 67.6 4.58 58.2 

p 0.005 0.005 0.005 0.01 0.005 0.005 0.005 
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Table A.5 Mean and standard deviation of moments for two-sample histograms of 

F0(Hz). The correlation coefficient r is with respect to normal distribution. 

No. of utterances = 5, No. of speakers = 10. Mn = mean, Sd = std. dev., MSA 

= mean square among speakers, MSW = mean square within speakers. D.F. 

for F-ratio test: 9, 40. (F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 133 2.72 12.6 0.82 0.59 1.11 9.11 12.8 0.09 0.01 11.7 17.9 0.97 0.03 

2 129 2.13 14.4 1.20 0.41 0.64 6.27 4.27 0.11 0.01 -12 44.3 0.97 0.01 

3 137 1.24 16.9 3.21 2.98 2.87 32.3 44.6 0.12 0.02 8.55 3.05 0.95 0.03 

4 147 1.99 20.6 1.21 3.11 0.75 29.1 11.7 0.14 0.01 9.07 1.80 0.93 0.03 

5 131 1.10 15.3 0.87 2.35 0.41 12.9 6.65 0.12 0.01 5.25 1.63 0.82 0.04 

6 167 1.06 29.0 2.18 -0.3 0.19 2.76 0.78 0.17 0.01 -11 9.87 0.72 0.07 

7 128 1.84 24.9 6.20 2.34 1.71 15.8 17.4 0.19 0.05 5.77 1.72 0.91 0.03 

8 134 1.08 24.7 5.21 2.33 2.66 22.3 35.2 0.18 0.04 7.07 2.85 0.92 0.01 

9 166 2.78 29.5 1.78 1.03 0.13 4.79 1.05 0.18 0.01 4.63 0.45 0.91 0.03 

10 182 1.75 23.9 2.19 1.15 0.48 9.66 1.94 0.13 0.01 8.87 1.47 0.91 0.02 

Mean 145 21.2 1.60 14.5 0.14 3.79 0.90 

Sd 19.4 6.13 1.18 10.3 0.03 8.33 0.08 

MSA 1880.3 187.88 6.9928 525.87 0.0061 347.16 0.0292 

MSW 3.5077 9.3038 2.0890 389.87 0.0005 240.39 0.0011 

F 536 20.2 3.35 1.35 12.9 1.44 26.5 

p 0.005 0.005 0.005 - 0.005 - 0.005 

 

 

 

Table A.6 Mean and standard deviation of moments for three-sample histograms of 

F0(Hz). The correlation coefficient r is with respect to normal distribution. 

No. of utterances = 5, No. of speakers = 10. Mn = mean, Sd = std. dev., MSA 

= mean square among speakers, MSW = mean square within speakers. D.F. 

for F-ratio test: 9, 40. (F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 133 2.48 12.1 0.87 0.02 0.16 2.83 0.38 0.09 0.01 26.8 21.8 0.96 0.04 

2 129 2.19 12.8 1.07 -0.0 0.32 4.01 2.07 0.10 0.01 13.1 49.0 0.96 0.02 

3 137 1.15 13.6 1.34 0.55 0.64 7.98 4.82 0.10 0.01 -17 44.9 0.97 0.01 

4 145 1.96 16.4 0.95 1.03 0.62 6.62 4.37 0.11 0.01 6.6 1.45 0.94 0.03 

5 131 0.98 13.9 0.24 1.68 0.24 6.61 0.78 0.11 0.00 3.96 0.17 0.84 0.05 

6 151 1.85 29.7 1.03 0.44 0.17 1.94 0.20 0.20 0.01 4.83 1.13 0.61 0.05 

7 128 0.86 22.6 3.06 4.47 2.99 60.5 49.8 0.18 0.02 10.8 5.10 0.93 0.03 

8 133 1.66 19.1 0.76 0.67 0.32 4.69 2.05 0.14 0.01 7.17 0.90 0.95 0.03 

9 157 4.55 26.7 2.70 1.07 0.24 5.59 1.75 0.17 0.01 5.25 1.23 0.92 0.03 

10 172 1.51 25.3 1.71 0.65 0.35 7.43 1.73 0.15 0.01 12.7 2.94 0.88 0.01 

Mean 142 19.2 1.05 10.8 0.13 7.42 0.90 

Sd 14.8 6.46 1.30 17.6 0.04 10.9 0.11 

MSA 1088.0 208.83 8.4810 1544.9 0.0071 592.97 0.0581 

MSW 4.6959 2.5840 1.0221 253.62 0.0001 493.08 0.0009 

F 232 80.8 8.30 6.09 63.8 1.20 62.6 

p 0.005 0.005 0.005 0.005 0.005 - 0.005 
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Table A.7 Mean and standard deviation of moments for two-sample histograms of α(dB). 

The correlation coefficient r is with respect to normal distribution. No. of 

utterances = 5, No. of speakers = 10. Mn = mean, Sd = std. dev., MSA = mean 

square among speakers, MSW = mean square within speakers. D.F. for F-ratio 

test: 9, 40. (F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 -8.2 0.06 0.87 0.13 5.02 1.07 36.8 11.0 -0.1 0.02 7.19 0.86 0.77 0.06 

2 -7.9 0.06 1.18 0.09 3.53 0.56 19.9 5.17 -0.1 0.01 5.54 0.69 0.69 0.03 

3 -8.3 0.04 0.76 0.20 5.87 1.62 50.9 22.3 -0.1 0.02 8.36 1.86 0.82 0.09 

4 -7.5 0.09 1.37 0.12 1.74 0.27 6.44 1.59 -0.2 0.02 3.67 0.34 0.73 0.05 

5 -8.2 0.09 0.86 0.21 2.66 0.67 14.0 5.00 -0.1 0.03 5.18 0.68 0.82 0.06 

6 -7.7 0.03 1.07 0.07 1.90 0.26 7.45 1.57 -0.1 0.01 3.88 0.33 0.78 0.03 

7 -9.8 0.12 1.98 0.07 -0.3 0.11 2.12 0.23 -0.2 0.01 -7.3 2.15 0.56 0.06 

8 -9.5 0.03 1.63 0.05 -0.2 0.06 2.66 0.16 -0.2 0.01 -11 2.38 0.67 0.04 

9 -8.2 0.12 1.04 0.15 0.24 0.75 8.18 2.97 -0.1 0.02 -31 66.9 0.90 0.03 

10 -9.0 0.10 1.54 0.05 0.20 0.14 4.03 0.19 -0.2 0.00 63.3 102 0.88 0.03 

Mean -8.4 1.23 2.06 15.2 -0.1 4.80 0.76 

Sd 0.74 0.39 2.20 16.3 0.04 23.8 0.10 

MSA 2.7569 0.7692 24.263 1334.9 0.0068 2835.6 0.0534 

MSW 0.0065 0.0163 0.5257 68.253 0.0003 1484.5 0.0026 

F 421 47.2 46.2 19.6 27.4 1.91 20.7 

p 0.005 0.005 0.005 0.005 0.005 - 0.005 

 

 

 

Table A.8 Mean and standard deviation of moments for three-sample histograms of 

α(dB). The correlation coefficient r is with respect to normal distribution. No. 

of utterances = 5, No. of speakers = 10. Mn = mean, Sd = std. dev., MSA = 

mean square among speakers, MSW = mean square within speakers. D.F. for 

F-ratio test: 9, 40. (F)0.005 = 3.22, (F)0.01 = 2.89. 

M1 M2 M3 M4 M2/M1 M4/M3 r Spk. 

No. Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd Mn Sd 

1 -8.3 0.06 0.42 0.34 1.57 3.03 13.4 21.4 -0.1 0.04 7.56 11.9 0.89 0.14 

2 -8.2 0.07 0.48 0.20 1.93 1.06 8.81 4.37 -0.1 0.02 4.72 0.68 0.86 0.10 

3 -8.4 0.05 0.44 0.32 1.56 2.90 12.3 21.7 -0.1 0.04 1.59 11.8 0.89 0.14 

4 -8.2 0.06 0.67 0.11 1.71 0.65 7.09 3.11 -0.1 0.01 4.08 0.45 0.85 0.05 

5 -8.4 0.05 0.51 0.12 1.37 0.97 7.07 6.22 -0.1 0.01 4.93 0.96 0.87 0.05 

6 -8.2 0.09 0.66 0.22 1.83 1.14 8.86 5.08 -0.1 0.03 5.23 1.04 0.83 0.08 

7 -9.2 0.09 1.55 0.10 -1.4 0.17 3.65 0.63 -0.2 0.01 -2.6 0.15 0.55 0.05 

8 -9.0 0.04 1.27 0.06 -1.4 0.14 4.03 0.79 -0.1 0.01 -3.0 0.28 0.62 0.05 

9 -8.3 0.13 0.75 0.24 -1.1 0.21 4.53 0.47 -0.1 0.03 -4.2 0.73 0.87 0.05 

10 -8.6 0.13 1.01 0.10 -1.1 0.15 3.70 0.83 -0.1 0.01 -3.3 0.40 0.82 0.01 

Mean -8.5 0.78 0.50 7.34 -0.1 1.50 0.80 

Sd 0.35 0.38 1.51 3.52 0.04 4.37 0.12 

MSA 0.6249 0.7314 11.367 61.846 0.0080 95.441 0.0713 

MSW 0.0068 0.0415 2.1473 102.61 0.0006 28.388 0.0068 

F 92.0 17.6 5.29 0.60 13.4 3.36 10.5 

p 0.005 0.005 0.005 - 0.005 0.005 0.005 
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