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ABSTRACT 

 

The objective of this project is to investigate the use of stop landmark durations for improving 

speaker recognition. The variations of stop closure and burst durations across speakers are studied 

using variance tests. The results indicate that stop closure and burst durations may be used in 

combination with the spectral features for improving speaker recognition. Rate-of-rise (ROC) of 

mel-filtered squared magnitude spectrum is investigated for locating spectral transitions in the 

speech signal. Mel-filtering along the frequency axis improves landmark detection by enhancing 

the perceptually significant spectral transitions and smoothing harmonic structure and noise. Two 

automated methods for detecting stop closure, burst and frication offset landmarks are developed 

based on the ROC of mel-filtered spectrum. In the first method, the ROC peaks are selected using 

peak picking algorithm based on local threshold, and spectral slope, Wiener entropy and average 

magnitude spectrum are used as additional features to detect stop landmarks. In the second 

method, closure intervals in the speech signal are located based the product of Wiener entropy and 

log energy, and stop landmarks are detected by picking ROC peaks around the end points of the 

closures. The Wiener entropy and log energy are computed from the magnitude spectrum, while 

the spectral slope is computed from the mel-filtered squared magnitude spectrum. Landmark 

detection tests are carried out on VCV syllables and TIMIT sentences. Stop landmarks in VCVs 

are detected at rates of 53%, 75%, 90%, 95% and 97% respectively within 3, 5, 10, 15 and 30 ms 

of the manually labeled landmarks. The detection rates for TIMIT sentences are 52%, 69%, 83%, 

87%, 90% and 93% within 3, 5, 10, 15, 20 and 30 ms of the manual landmarks, respectively.  

Text-independent speaker recognition tests are conducted using Gaussian mixture 

modeling of closure and burst durations, and MFCC parameters. The performance of the duration 

features alone is not satisfactory, but an improvement of up to 4% is obtained using combination 

of MFCC and duration features. The results indicate that stop closure and burst durations convey 

speaker-dependent information and they could be potential candidates for improving speaker 

recognition. 
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Chapter 1 

 

INTRODUCTION 

 

1.1  Problem Overview 

Voices of different speakers have different acoustic and perceptual characteristics that enable us 

to distinguish between speakers just by listening to their voices. Speaker recognition is the task of 

determining the speaker of a sample utterance using speaker-dependent information extracted 

from it [1], [2]. The variations in the characteristics of speech utterances of different speakers 

result from differences in the anatomy of the speech production system and learned speaking 

habits of the speakers [1] - [5]. Anatomical differences are related to the fixed structural 

differences in the shape and size of the speech production organs, mainly vocal tract and vocal 

folds. Learned speaking habits, on the other hand, refer to the way individuals use their speech 

mechanism, the movements of the organs and their language usage [2]. Speaker recognition 

systems use both physiological and learned characteristics of speakers to extract speaker-

dependent features such as mel-frequency cepstral coefficients (MFCC) or linear prediction 

cepstral coefficients (LPCC) and their dynamics,  and pitch and timing patterns [1], [2], [6]. 

Speaker recognition is a pattern matching problem which involves two phases: training 

and testing [2], [7]. In the training phase, speaker discriminating features are extracted from 

sample utterances of a known speaker and a model representing the speaker is generated. Speaker 

models can be templates (deterministic) such as vector quantization (VQ) and dynamic time 

warping (DTW), or stochastic such as hidden Markov models (HMM) and Gaussian mixture 

models (GMM). In the testing phase, speaker-dependent feature vectors are extracted from the 

unknown test utterance and compared with existing speaker models to recognize the speaker. 

Comparison is based on distance or similarity measures for template models, and probability 

measures for stochastic models. 

The main difficulty in speaker recognition is the lack of explicitly measurable attributes 

of speech signal that can effectively discriminate among speakers. Therefore, identifying, 

extracting, and efficiently modeling the embedded speaker-dependent features of speech signal is 

crucial to reliably distinguish speakers. Existing speaker recognition systems commonly use linear 

prediction and cepstral analysis to extract vocal tract features such as LPCCs and MFCCs. These 

systems perform well with normal speech under favorable conditions, but their performance 

degrades under practical environmental conditions and various speaker efforts such as mimicking. 
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Therefore, studying additional features of the speech signal, and suitable front-end processing and 

extraction techniques will be important to improve the performance of speaker recognition 

systems. 

1.2  Project Objective 

The objective of this project is to investigate the use of stop duration features for improving 

speaker recognition and to develop a landmark detection method for extracting the duration 

parameters. Towards this end, the variation of stop closure and frication burst durations within 

and across speakers is studied on recorded speech using analysis of variance. The effects of 

speaking rate and context variability on stop durations are also studied using two-way analysis of 

variance tests. A method for detecting stop landmarks and measuring their durations is developed 

based on rate-of-change of mel-filtered magnitude spectrum, spectral slope, spectral flatness 

measure, and energy parameters. The performance of the method is evaluated on VCV syllables 

and TIMIT sentences. A text-independent speaker recognition system based on Gaussian mixture 

modeling of stop duration and MFCC features is investigated and evaluated using TIMIT 

database. 

1.3  Thesis Outline  

The next chapter gives a review of the basic steps in speaker recognition. The various 

classifications, applications, and the basic components of speaker recognition such as feature 

extraction, feature selection, speaker models, pattern matching and moralization techniques are 

explained. In Chapter 3, speaker recognition features such as linear prediction cepstral 

coefficients (LPCC), mel-frequency cepstral coefficients (MFCC), harmonic plus noise model 

(HNM) parameters, and high level features are discussed. Statistical analysis of variation of stop 

closure and burst durations across speakers is given in Chapter 4. In Chapter 5, a method for 

detecting spectral transitions based on the rate-of-change (ROC) of mel-filtered magnitude 

spectrum is investigated. A stop landmark detector based on ROC, spectral flatness measure, 

spectral slope and signal energy is discussed. Evaluation results on VCV syllables and TIMIT 

sentences are presented. Chapter 6 discusses GMM speaker recognition system using stop closure 

and burst durations, and MFCC features. Speaker recognition results on TIMIT database are 

presented. A summary of the work done and conclusion are given in Chapter 7. Detailed results 

obtained from the analysis of variance of stop closure duration at different speaking rates are 

given in Appendix A. 
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Chapter 2 

 

SPEAKER RECOGNITION 

 

2.1  Introduction  

There are two types of speaker recognition tasks: automatic speaker verification (ASV) and 

automatic speaker identification (ASI) [1], [2]. Fig. 2.1 gives a block diagram representation of 

the verification and identification processes. In ASV, the objective is to determine if a claimant is 

the person s/he claims to be [1], [2], [5]. The system compares features from a sample utterance of 

the claimant with the speaker model representing the claimed identity and the decision is to accept 

or reject the person by comparing the similarity measure with a threshold. In ASI, on the other 

hand, the task is to determine the speaker of a given speech sample [2], [3].  If it is known that the 

model of the unknown speaker exists in a given set of reference models, the test is called closed-

set identification, and the goal is to identify the talker of the sample utterance from the set of 

known speakers, also called customers. The unknown feature vector is compared with each of the 

models to determine the best match.  When it is possible that the model of the unknown speaker 

does not exist in the given reference set, the test is called open-set identification. In this case, the 

recognition process combines the tasks of verification and closed- set identification. The system 

has to determine whether the unknown speaker belongs to the given set of customers 

(verification), and identify which particular person s/he is [1], [8]. The performance of ASI 

system degrades as the number of reference models increases, while ASV can perform well 

independent of the population size [3]. 

 

 
 

Fig. 2.1  Speaker verification and identification [9] 
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Based on whether the training and test utterances are the same or not, speaker recognition 

systems are classified as text-dependent (TD) and text-independent (TI) [1], [2]. In TD system, 

the same utterance is used for training and testing. This method is used for high security 

applications with cooperative users. The use of the same text for training and testing simplifies 

system complexity and improves the recognition accuracy. In situations where users are not 

cooperative or when the speaker recognition is to be done without the knowledge of the target 

person, TI system is used, in which the training and test utterances are different. Compared to TD, 

TI systems are more complex and require more training data to achieve good performance due to 

the additional task of overcoming text-dependent variations [3]. 

Speaker recognition has been extensively used for security and authentication 

applications such as [1], [2], [3] 

• verifying the identity of individuals prior to admission to secure area, 

• remote authentication of customers for telephone banking, telephone credit cards and 

access to secure information system, 

• identifying talkers in audio conferences, 

• alerting speech recognition systems of change of speakers, and  

• checking if a user is already enrolled in a system. 

Speaker recognition is also used to identify the gender or accent of a speaker, language spoken 

[3], and in forensic applications to verify or identify a criminal from a given criminal voice 

sample [5]. Use of biometric recognition for security applications has some advantages over the 

classical methods which depend on something you own such as key and card, or something you 

know such as password and code, as these can be stolen, lost or forgotten [3], [5]. Compared to 

other biometric traits such as fingerprint, iris, and face, speech offers a greater flexibility and 

different levels of recognition can be used for different applications [5]. Speaker recognition 

systems can ask the user to speak in a particular way, and the system can use a variety of 

parameters to differentiate speakers. Besides, speech data can be collected easily without the 

knowledge of the speakers or over the telephone. 

The performance of a speaker recognition system gets affected by noise and various 

mismatch conditions which can lead to two types of recognition errors [3]: false acceptance (FA 

or Type I error) and false rejection (FR or Type II error). FA occurs when the system incorrectly 

recognizes an impostor as the claimed speaker while FR occurs when the system rejects a true 

claimant in ASV or incorrectly finds no match in ASI. The trade-off between FA and FR is used 

to determine the decision threshold, which is chosen to minimize the overall risk. Usually FA 

errors are more risky, hence low thresholds are preferred to minimize false acceptance of 

malicious impostors. 
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Fig. 2.2  Block diagram of a speaker recognition system [2] 
 

There are a number of factors that cause recognition errors, which can be grouped under 

algorithmic and non-algorithmic factors. Algorithmic factors include among others the use of 

insufficient or poor speaker-dependent parameters and less fitting models. The non-algorithmic 

factors are intra-speaker variability, noise, and mismatches in recording and transmission 

environments. Intra-speaker variations result from variations in speaker conditions due to 

sickness, emotional state, aging, etc. Noise and channel mismatch errors can be minimized by 

applying normalization and adaptations techniques on the features and the recognitions scores 

[10] - [14]. 

 

2.2   Feature Extraction/Selection 

Speaker recognition involves the following basic steps [2], [15]: speech data acquisition, feature 

extraction and selection, pattern matching (modeling) and classification, decision logic, and 

enrolment to generate speaker models. Figure 2.2 shows a general block diagram of a speaker 

recognition system. The analog speech signal obtained from microphone is converted into digital 

form through sampling and quantization. Filtering, silence removal and channel compensation 

techniques are applied before further processing [2], [8], [15]. The resulting signal is split into 

frames of 10-30 ms and a speaker-dependent feature vector is extracted for each frame to create 

speaker models. In the testing phase, feature vectors computed from the test utterance are 

compared with the reference speaker models and recognition decision is made based on the 

matching score. 

The performance of a speaker recognition system critically depends on the extraction of 

features which are effective in discriminating speakers. A feature is effective if it has low intra-

speaker and high inter-speaker variability [2], [3]. A careful selection of independent parameters 

that are capable of efficiently representing the speaker-dependent features permits the use of 

simplified mathematical tools for pattern matching and classification. Features for speaker 

recognition should [1], [3] 

 have low intra-speaker and high inter-speaker variances, 

 be efficient in representing the speaker-dependent information, 
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 be easy to extract, 

 be stable over time, 

 be frequently and naturally occurring in speech, 

 be robust to noise, and 

 be less susceptible to mimicry. 

One measure of the effectiveness of recognition parameters is comparing the inter-

speaker and intra-speaker variances using F-ratio defined as [1], [2], [3] 

riancesspeaker va ofmean 
meansspeaker  of variance  =F       (2.1) 

The F-ratio value will be large if the values of the parameter are widely spread for different 

speakers and less variable within a speaker. F-ratio fails when the speaker means are by chance 

the same in which case the difference in mean becomes zero and the parameters would be 

regarded as unimportant. F-ratios are most useful for eliminating poor features rather than 

selecting the best [3].The best way to evaluate the effectiveness of a feature is in terms of the 

probability of error in recognizing a speaker [2], [3]. However, probability of error also depends 

on the model used; hence computation becomes complex and time-consuming. F-ratio does not 

take into account the correlations among parameters which might result in the selection of 

redundant parameters [2], [3]. A generalization of the F-ratio measure, called divergence is used 

for estimating the combined effectiveness of a set of features in discriminating among speakers. It 

is computed as [2] 

[ ] [ ]
ji

T
jijiD

,
1 μμΣμμ −−= −     (2.2) 

where iμ  is the mean feature vector for speaker i, ji,  represents average over all speakers, 1 ≤ 

i,  j ≤ N, and 1−Σ  is the intra-speaker inverse covariance matrix. Divergence is a measure of 

dissimilarity among the feature vectors of speakers, including the interdependence between 

individual features. 

 

2.3  Speaker Modeling 

After extracting speaker-dependent features, the next step in speaker recognition is pattern 

matching (modeling and classification). During enrolment, a model of the speaker is created from 

the training features vectors, and stored. In the testing stage, a match score which is a measure of 

similarity between the test feature vector and reference model is computed. Establishing effective 

and computationally efficient speaker models is a difficult problem in speaker recognition, 

because speech signal and the environmental conditions which affect it are highly variable and 

unpredictable. 
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There are two categories of models used in speaker recognition [1], [2], [9]: template 

models and stochastic models. A template model consists of a sequence of feature vectors 

extracted from the training utterance. The test feature vector is assumed to be a distorted copy of 

the template vector, and they are aligned using a warping function that minimizes the distance 

between them [2], [3]. Examples of template models include dynamic time warping (DTW) and 

vector quantization (VQ). Stochastic models represent a speaker in terms of probability 

distributions estimated from the training data. The match score is computed as the likelihood or 

conditional probability of the test feature vectors given the speaker model. Hidden Markov 

models (HMM) and Gaussian mixture models (GMM) are among the common stochastic models. 

DTW outperforms VQ and the stochastic models when sparse training data are used. However, 

the computational complexity in DTW increases as the square of the template duration which 

makes it difficult to use for long training utterances [3]. VQ performs better than HMM and 

GMM under moderate amount of training data; however, GMM is generally preferred because it 

is more robust to noise, and is capable of modeling the distribution of unconstrained speech [12], 

[16], [17].  

2.3.1  Template Models 

Template models are used for text-dependent speaker recognition. Speakers are modeled in a non-

parametric manner by sequences of feature vectors extracted from repeated utterances of the same 

phrase. The pattern matching algorithm tries to align similar features of the model and the 

observation sequence such that the separation between the two templates is minimized. Euclidian 

and Mahalanobis distances are commonly used to measure the similarity between the templates. 

The Euclidian distance between two feature vectors x and y is given by [2], [3] 

Td ))((),( yxyxyx −−=      (2.3) 

The Mahalanobis distance between the two vectors is defined as  

Td )()()( 1 yxΣyxyx, −−= −      (2.4) 

where Σ  is the covariance matrix of the two vectors [2], [3], given as 

]))([( TE yx μyμxΣ −−=      (2.5) 

where E[.] represents expectation (first moment) operation, and xμ  and yμ  are the mean vectors 

of x and y respectively. The multiplication factor 1−Σ  in (2.4) gives greater weights to the vector 

parameters which are more effective in distinguishing speakers. When 1−Σ  is identity matrix, 

Mahalanobis distance reduces to Euclidian distance. Euclidian distance is the optimal measure 

when the parameters are mutually independent and have equal variances, but Mahalanobis 

distance has the advantage that it is invariant to non-singular transformations [2]. 
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Template models that have been extensively used since the early investigations of speech 

and speaker recognition are dynamic time warping (DTW) and Vector quantization (VQ) [18]. 

DTW involves alignment and distance computation, and is used for text-dependent speaker 

recognition. It addresses the problem of speaking rate variability by warping the time scale of the 

reference template in order that similar events in the two templates occur at the same time [3]. 

Given variable length reference templates {R1, R2… RT} and a test template T, DTW finds a 

warping function n = w(m) which maps the principal time axis of T to the time axis of R. In 

comparing multiframe templates, Bellman optimality principle is used to determine the best path 

among numerous possibilities. The warping function is computed to minimize the total distance 

measure between the test and reference templates, defined by 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=

T

nnw
nwRnTdD

1)(
)))((),((min       (2.6) 

where each d term is a frame distance between the nth test frame and the w(n)th reference frame, 

and D is the minimum overall distance measure corresponding to the best path [3].  

The warping function must satisfy the end point constraints and monotonicity. Given a 

feature vector of a test utterance, DTW determines the optimum alignment warping function and 

computes the distance or distortion of the feature vector from all the reference templates to find 

the best match. In speaker identification, the decision rule is to select the reference template R* 

with the smallest alignment distortion or distance. For verification, the distortion between the 

claimant’s feature vector and the model of the claimed identity is evaluated and scored against 

threshold to make a decision. DTW works well when the number and duration of reference 

templates is small. As the size of the population increases, computation of the warping function 

and comparison of the test template with all the reference templates becomes complex. 

In text-independent speaker recognition, a set of feature vectors extracted from short 

training utterances can be used directly as the speaker model [8]. However, such a direct 

representation becomes difficult when a large number of feature vectors are used as memory 

requirement and computational complexity makes the system costly. In addition, there is a large 

dependence between successive feature vectors of an utterance, and hence redundancy in 

representation. Vector quantization model is a reduced representation of the speaker’s feature 

vectors, which is commonly used for text-independent speaker recognition. The space of the 

feature vectors extracted from the person’s utterances is split into a finite number of regions and 

each region is represented by its center, called a codeword. Each speaker is represented by a 

unique collection of codewords, called a codebook, generated from the training data using 

standard clustering algorithms. One method for designing a codebook is the K-means clustering 
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algorithm, an iterative procedure that converges to a final codebook by minimizing the average 

distortion across the training set [19]. The algorithm has the following steps: 

1. The number of required clusters, also called the size of the codebook, K, is fixed. 

2. Initial codewords, also called cluster centroids, are randomly selected from the input 

vectors. 

3. The Mahalanobis or Euclidean distance between each input feature vector and each 

centroid is determined. Each vector joins the cluster of the centroid that gives the 

minimum distance. 

4. New centroids are computed for the clusters formed by taking the average of each cluster. 

5. Steps 3 and 4 are repeated until there is no change in the centroids or the change is small. 

In this way, the entire space of feature vectors is partitioned into K regions. Any input feature 

vector is classified as belonging to one of the regions. The centroids form the codewords of the 

codebook that represents the reference model of the particular speaker. One codebook of K 

codewords is created for each of the enrolled speakers during the training phase. 

During the testing, a set of T feature vectors are extracted from the test utterance and each 

feature vector is quantized using the codebooks of all reference models in the database. Next, the 

average quantization distortion Qs for each reference speaker s is computed as 

( )∑
=

∗=
T

n
ss nd

T
Q

1
),(1 vx       (2.7) 

where x(n) is the input feature vector, ∗
sv  is a codeword vector, from the codebook of the 

reference speaker, which is closest to x(n), and )),(( ∗
snd vx  is the distortion measure between the 

two vectors. Finally, the speaker with the minimum average distortion is identified as the claimed 

speaker. 

VQ performs well in both text-dependent and text-independent recognition systems with 

relatively short utterances [3]. Compared to DTW, VQ requires less computation and storage. The 

clustering algorithm used to create the codebook averages out temporal information from the 

codewords [2]. This simplifies the system by avoiding the need for time alignment, but it may 

also degrade the system performance by removing speaker-dependent temporal information. 

 

2.3.2  Stochastic Models 

Template models are deterministic pattern matching approaches that have been used dominantly 

in the early works of speaker recognition. These methods are intuitively reasonable and perform 

well with small amount of training data [2], [3].  However, currently they are being replaced by 

stochastic models which provide more flexibility and theoretically meaningful likelihood scores. 

In stochastic models, the sequence of feature vectors extracted from the training data are assumed 
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as random processes, and a parametric or non-parametric density function is estimated from the 

feature vectors to represent each speaker. During testing, the likelihood or conditional probability 

of the test feature vectors given the reference model is computed to make recognition decision. In 

a closed-set identification, the decision rule is to choose the reference speaker which has the 

greatest probability of generating the test feature vectors. Suppose λs is the stochastic model for 

speaker s in a system with S speaker models; each speaker is represented by one stochastic model 

generated from the training data. Let X be a sequence of feature vectors obtained from a test voice 

sample Speaker s* is identified as the target speaker if 

ss*S,  s, s* pp ss ≠≤≤≥  1  ),/()/( * λλ XX    (2.8) 

where p(.) represents probability. For verification, the computed likelihood value is compared 

with a threshold to make a decision. The main problem in stochastic models is the estimation of 

appropriate joint probability density function for the sequence of feature vectors and computation 

of the test likelihood. Usually, the likelihood computation is simplified by assuming successive 

feature vectors to be independent [2]. 

Stochastic models provide a better model of acoustic events and allow the application of 

newly developed noise and channel adaptation methods [12]. There are a number of stochastic 

models used for modeling random observation sequences, of which Gaussian mixture models 

GMM [12], [16] and hidden Markov models (HMM) [2], [18, [20] are often used for speech and 

speaker recognition. HMMs are finite state machines where the observation vectors in each state 

are probabilistic functions of the state. They are used for both text-dependent and independent 

speaker recognition [2], [8], [21]. An HMM model is specified by [8] 

1. the number of states in the model, K; 

2. the number of distinct observation symbols per state, L; 

3. the state transition probability distribution, A; 

4. the observation symbols probability distribution in each state, B; and 

5. the initial state distribution, π. 

During training, the HMM parameters are estimated from the feature vectors of the 

training data. This involves computation of the state-transition and the observation symbol 

probabilities for each state using established algorithms such as Viterbi segmentation and 

forward-backward algorithm [15], [18]. In the testing stage, the likelihood of the test feature 

vectors given the speaker model is computed using Viterbi algorithm to make verification or 

identification. The performance of HMM is in most cases (except with sparse training data) 

comparable to that of VQ, and the stochastic Markovain transitions between states in HMM 

provide the advantage of representing temporal variations in the parameters of the speech signal 

[2], [8], [18]. 
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GMM is used for text-independent speaker recognition and provides high performance for 

real-time applications [12], [16]. In this case, the distribution of the feature vectors extracted from 

a speaker’s utterance is modeled as a weighted sum of uni-modal multivariate Gaussian density 

functions [12]. The speaker model is represented by the mean vectors, covariance matrices and 

mixture weights of the component functions, which are estimated from the speaker’s training 

feature vectors using expectation maximization (EM) algorithm. During testing, the likelihood of 

the test feature vector given the speaker model is computed, and the decision is made based on 

comparing with a threshold for verification and maximum likelihood for identification. We have 

used GMM for our speaker recognition and it will be discussed further in the next section. 

 

2.4  Gaussian Mixture Models (GMM) 

In GMM, the conditional probability density function of a D-dimensional observation vector x, 

given a model λ, denoted as p(x/λ), is approximated by a weighted sum of multivariate Gaussian 

density functions. This is mathematically defined as [12] 

∑
=

=
M

i
ii pwp

1
)()/( xx λ       (2.9) 

where M is the number of mixtures, and pi(x) and wi, 1≤ i≤ M, are the component Gaussian 

functions and their mixture weights, respectively. Each component Gaussian function pi(x) is 

given by 
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where iμ is a D-dimensional mean vector and iΣ  a D×D covariance matrix. The mixture weights 

(priors) satisfy the constraint  

1
1

=∑
=

M

i
iw       (2.11) 

The GMM model λ for each speaker is represented in terms of the means, covariances and 

mixture weights of the component functions as 

Miw iii ≤≤= 1},,,{ Σμλ       (2.12) 

During training, the GMM parameters are estimated from the training feature vectors 

using expectation maximization (EM) algorithm [12]. The EM algorithm iteratively modifies the 

GMM parameters such that the likelihood of the feature vectors given the model increases 

monotonically. Given a sequence of T training feature vectors X = {x1, x2, …, xT}, the likelihood 

score p(X/ λ ) is computed as 



12 

 

∏
=

=
T

n
npp

1
)/()/( λxλX      (2.13) 

The product comes from the assumption that the individual feature vectors are statistically 

independent. The objective in EM estimation is to find new parameters λ̂  such that the likelihood 

of the training vectors is maximized, i.e.,  

)/()ˆ/( λλ XX pp ≥      (2.14) 

Starting with an initial model, the EM computes the new model parameters using a two step 

iterative process. In the first step, called the expectation-step, the a posterior probabilities of each 

component i to all the training vectors to is computed using [12] 
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In the second step, called the maximization-step, new component weights, means and covariances 

are computed from the initial parameters and a posterior probabilities, as follows: 
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The algorithm is terminated when the likelihood increment is below a certain threshold or by 

fixing the maximum number of iterations. The initial model is often selected using K-means 

clustering or vector quantization, and the number of mixtures depends on the amount of training 

data. 

In the testing stage, the log likelihood of the test feature vector given a speaker model is 

computed for all the speakers in the database and the speaker with the maximum likelihood is 

recognized as the speaker of the test utterance. For a sequence of test feature vector X = {x1, x2, 

…, xT}, the log likelihood given a model λk is calculated as  

)/(log1)/(log
1

k

T

n
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T
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This expression is obtained from the a posterior probability by assuming equally likely speakers 

and independent feature vectors. Given a set of S speaker models λ1, λ2, …,  λS, the decision rule is 

to choose the speaker λk such that  

ikS,  i, k pp ik ≠≤≤≥  1  ),/(log)/(log λλ XX     (2.20) 

In order to compensate for score variability due to difference in test utterances, the distribution of 

scores is often normalized using T-norm [10] as described in the next section. The test feature X 

is scored against a set of imposter models, and the mean and variance of the imposter log 

likelihood scores is computed. The test normalized log likelihood score for a given speaker λk, 

ST(X/ λk), is obtained as follows: 
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where μT(X) is the mean and σT(X) is square root of variance of the imposter scores. 

 

2.5  Feature and Score Normalization  

The performance of a speaker recognition system is affected by the variability of speech between 

training and testing sessions. This variability is caused by mismatches between training and 

testing environments such as differences in the recording and transmission media, noise, and 

changes in the person’s speech due to health problem or aging [10] - [14]. The primary approach 

to tackle this problem is to use recognition features and modeling techniques which are robust to 

the various mismatches. In addition, depending on the type of mismatch, various enhancement 

and normalization methods are used to improve recognition performance. These normalization 

techniques are categorized as feature normalization and score normalization. 

In feature normalization, the individual feature vectors or their distribution is modified. 

Some of the feature normalization methods include spectral subtraction [22], cepstral mean 

subtraction (CMS) and ceptral mean and variance subtraction (CMVS) [14], relative spectra 

(RASTA) filtering [11] and feature warping [23]. In spectral subtraction [14], noise is assumed to 

be additive, uncorrelated with the speech signal and slowly varying, and an estimate of the noise 

obtained from non-speech interval is subtracted from the speech signal in the power spectrum 

domain. CMS [14] is used to reduce linear channel effects and involves subtracting a long-term 

average of cesptral features from each feature vector. In CMVS [13], mean and standard deviation 

of the feature vectors are estimated over specific segments and the distribution of the feature 

vectors is normalized by subtracting the mean and dividing by the standard deviation to minimize 

additive noise. RASTA processing [11] is a kind of modulation spectrum technique applied to 

reduce non-speech spectral components which vary faster or slower than the changes in the 

speech signal. In feature warping [23], the distribution of the individual feature streams is mapped 
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to a standardized distribution (typically normal distribution) to reduce additive noise and linear 

channel effects. 

In speaker verification, score normalization is applied to compensate for recognition score 

variations among speakers and test utterances so that a global decision threshold can be used. 

Score normalization methods include model normalization, cohort normalization [10], Z-norm 

[13], T-norm [10] and H-norm [17], etc. A background model is a speaker-independent model 

generated using a collection of training utterances from different speakers. The normalization is 

carried out by dividing the likelihood score of the target speaker by the likelihood score of the 

background model [17]. In cohort normalization [10], instead of a single model, a set of imposter 

speakers who have similar characteristics to the target speaker are used to scale the likelihood 

score of each speaker.  

Zero normalization (Z-norm) is used to reduce score variability due to different test 

utterances [13]. In this case, a speaker model λk is scored against a number of imposter utterances 

and mean and variance of the scores is estimated. During testing, the speaker’s score against the 

test feature vectors X, S(X/λk) is computed and it is normalized as 
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X      (2.22) 

where SZ(X/λk) is the normalized score, and kμ and kσ  are the speaker-specific mean and square 

root of variance of the imposter scores [13]. Test normalization (T-norm) is similar to Z-norm, but 

the normalization mean and variance are estimated from scoring the test utterance against a 

number of imposter speakers [10]. Handset normalization (H-norm) [17] is also a kind of Z-norm 

used to compensate for handset variability, in which the normalization parameters are estimated 

from handset-dependent imposter utterances. 
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Chapter 3 

 

FEATURES FOR SPEAKER RECOGNITION 

 

3.1  Introduction 

The main task in speaker recognition is to identify, extract, and characterize the speaker-

dependent information in speech signal for recognizing speakers. Extracting and selecting 

parameters which can effectively and efficiently represent the speaker distinguishing 

characteristics of speech is crucial for the success of speaker recognition systems. The desirable 

characteristics of speaker recognition parameters are mentioned in section 2.2. Particularly, 

independent parameters that have high inter-speaker and low intra-speaker variances are 

preferred. 

There are two sources of speaker-dependent characteristics of speech: physiological and 

learned speaking styles [1] - [5]. Physiological differences are related to the geometric 

characteristics of the speech production system, mainly the shape and size of the vocal tract and 

vocal folds. These physical variations are manifested in the acoustic and perceptual features of the 

speech signal. Vocal tract characteristics refer to the formant frequencies and formant bandwidths 

which are dependent on the length, area and shape of the vocal tract. The length, tension and mass 

of the vocal folds determine the fundamental frequency [2]. Learned speaking habits, on the other 

hand, refer to the way individuals use their speech mechanism, the movements of the organs and 

language usage. Some of the learned speaking habits used for speaker recognition include 

speaking and pause rate, pitch and timing patterns, idiosyncratic word/phrase usage, idiosyncratic 

pronunciations, etc [1], [2], [3].  

The most successfully used speaker recognition parameters are linear prediction cepstral 

coefficients (LPCC) and Mel-frequency cepstral coefficients (MFCC). These parameters are 

extracted using linear predictive coding analysis and cepstral analysis. The following sections 

give a review of the commonly used speaker recognition features and their extraction techniques.  

3.2  Linear Prediction (LP) Analysis 

Linear prediction is a powerful speech analysis technique used for estimating vocal tract and 

excitation parameters [2], [3], [24], [25]. It is based on the discrete-time model of the speech 

production system in which the vocal tract is assumed as a linear, time-varying filter excited by a 

quasi-periodic impulse train for voiced speech or random noise for unvoiced speech. In most of 
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the applications of LP, the vocal tract is modeled as an all-pole filter, defined in the frequency 

domain by [3] 
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where G is a scaling factor (gain), p is the prediction order, and {ak} k = 1, …, p are the prediction 

coefficients. In the time domain, the output speech sample s(n) is given as the linear combination 

of p previous output speech samples and a scaled excitation: 
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where u(n) is the excitation and {s(n-k)} k= 1, . . ., p are the past outputs. Since the input sequence, 

u(n), is generally unknown [1], the prediction equation is simplified to 
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The difference between the actual and the predicted values is called prediction or residual error 

e(n), and is calculated as 
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It can be observed that the error signal is directly related to the source excitation which carries 

speaker-dependent characteristics; and hence it is an important parameter for speaker recognition.  

The prediction coefficients {ak} are chosen such that the prediction error is minimized in 

the mean squared sense. One reason for using mean squared error prediction is that it allows 

simple and efficient computation of the gain and prediction coefficients. Depending on the range 

of the interval considered, the autocorrelation, covariance or lattice methods can be used to 

compute the LP coefficients from the sampled speech signal [2], [3], [24], [25]. The all-pole 

model of speech production is appropriate for non-nasalized voiced sounds [3]. For nasals and 

fricative sounds, the model needs to include both poles and zeros to account for the anti-

resonances introduced during nasalization and frication (trapping of energy at the mouth end). 

However, an all-pole filter with high prediction order provides a good approximation of the 

production of almost all speech sounds. 

The LP coefficients convey vocal tract characteristic that are inherent to each speaker [2], 

[3], [26]. They are suitable for speaker recognition because they contain combined information 

about formant frequencies, formant bandwidths and the glottal wave. LP coefficients provide 

useful information about the vocal tract only as a set, and cannot be individually smoothed across 

analysis frames [2]. Therefore, they are often transformed into acoustically or perceptually  
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meaningful parameters such as reflection coefficients, log area ratios, linear spectral pair 

frequencies, and cepstral coefficients (LPCC). Description and comparison of these parameters is 

given in [2]. Among these parameters, LPCCs have been most effective for speaker recognition 

[1], [16], [28]. Figure 3.1 shows the block diagram of LPCC extractor.  

The LP cepstral coefficients, defined as the inverse Fourier transform of the logarithm of 

the overall LPC system H(z), are computed from the LP coefficients using the following recursive 

formula [1], [16]: 
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where aj’s and cj’s are the jth order LP and LP cepstral coefficients respectively. A modified LP 

analysis called perceptual linear prediction (PLP) is used for improved speaker recognition, but at 

the cost of additional computational complexity [24], [28], [29]. In modeling the vocal system, 

PLP takes into account the human perception of sound such that greater emphasis is given to the  

 

 
 

Fig. 3.1 LPCC extraction [16] 
 

 
Fig. 3.2 Extraction of perceptual linear prediction cepstral coefficients (PLPC) [26] 
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perceptually important portions of the spectrum. As shown in Fig. 3.2, computation of PLP 

cepstral coefficients involves linear prediction cepstral extraction preceded by the following three 

steps [26]: 1) Bark frequency warping, 2) equal-loudness pre-emphasis, and 3) intensity-to-

loudness conversion. Perceptual log area ratios derived from PLP coefficients have linear spectral 

sensitivity and are more robust to quantization noise [29]. 

 

3.3  Cepstral Analysis 

Cepstral analysis is a homomorphic transformation primarily used to convert a product expression 

into summation [3]. Under the assumption that short duration speech segments are 

quasi-stationary, speech signal is modeled as the output of slowly time-varying linear vocal tract 

filter excited by quasi-periodic pulses (during voiced speech) or random noise (during unvoiced 

speech) [3], [25]. This operation is linear convolution in time domain and multiplication in the 

frequency domain given by 
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where s(n), e(n) and  v(n)  are the output speech samples, the excitation and the vocal tract 

impulse response, and S(ω), E(ω) and V(ω)  are their spectra, respectively.  The excitation and 

vocal tract characteristics can be deconvolved by taking the logarithm of the speech spectrum: 

)V(log)(log)(log ωωω += ES     (3.7) 

Since vocal tract characteristics (formant structures) change slowly compared to the 

excitation signal, the two spectra are quite different. Hence, they can be easily separated by linear 

filtering of the log speech spectrum, in which the low frequency components relate to the vocal 

tract envelope and the high frequency components to source information. The magnitude 

cepstrum is defined as the inverse Fourier transform of the logarithm of the magnitude spectrum 

given by [1], [3] 
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where c(n) is the nth cepstral coefficient. Applications of cepstral analysis include pitch and 

formant estimation, and in speech coding (vocoders). 

For speaker and speech recognition, cepstral coefficients derived from linear prediction 

coefficients or directly from the short-time speech spectrum are used. The derivation of LP 

cepstral coefficients (LPCC) is given by the recursive formula in (3.5). The popular FFT cepstral 

coefficients called Mel-frequency cepstral coefficients (MFCC) are computed using Mel-filter 

bank analysis. Filter bank analysis is employed because our hearing system is sensitive to a band 

of frequencies rather than to each single frequency [2], [26]. The Mel-scale filter bank is designed 
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to capture the perceptually significant spectral components of speech based on the human 

perception. In the linear frequency scale, the center frequencies of the filters are linearly spaced in 

the lower frequency and logarithmically spaced in the higher frequency. The Mel-scale frequency 

is related to the linear-scale frequency f in Hz by [3], [30] 
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Figure 3.3 illustrates the computation of MFCC. First the input speech sample is 

segmented into frames of length N, and N-point FFT of each frame is computed. The magnitude 

of the spectrum is then weighted by Mel-filter bank. The output Xm of the mth filter bank is given 

by: 
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where Sn(k) is the FFT of the speech frame, Hm(k) is the mth filter and M is the number of filters in 

the filter bank, typically 20. The MFCCs are calculated as discrete cosine transform (DCT) of the 

logarithm of the square of Xm, also called the log-energy, using the following formula [3]: 
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where cj is the jth cepstral coefficient. 

 

 
 

Fig. 3.3 MFCC extraction 
 

LPCCs and MFCCs are both effective in representing speaker-dependent characteristics 

of speech. However, LPCCs are more often used because they are directly related to the formant 

structure of the vocal tract. Beside, cepstral analysis is more computation intensive as compared 

to LPC analysis. The advantage of cepstral analysis is that there is no assumed model of the vocal 

tract system and cepstral parameters can be modeled well by Gaussian mixture densities [2]. The 

first and second time derivatives of MFCC, called delta and delta-delta coefficients, respectively 

are also independent of the MFCCs and carry dynamic speaker information [2]. 

 



20 

 

3.4  Harmonic Plus Noise Model (HNM) Parameters 

HNM is a parametric model often used for synthesizing high quality, speech. In this model, the 

speech signal is assumed to be composed of a time-varying harmonic part and a modulated noise 

part [19], [31]. The synthesized speech signal )(ˆ ts  is given as the sum of the two components: 

)()()(ˆ h tntsts +=       (3.12) 

where sh(t)is the harmonic part and n(t) is the noise part. The harmonic part accounts for the 

voiced components of speech and is represented as the sum of harmonically related sinusoids, 

given by 
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where )(0 tω , ak(t) and )(tkθ are the time varying fundamental frequency, amplitude and phase 

of the kth  harmonic, respectively, and K(t) is the number of harmonics required to represent the 

harmonic component. The noise part which represents the remaining unvoiced speech 

components is given by autoregressive model: 

[ ])(*),()()( tgthtwtn τ=      (3.14) 

where g(t) is white Gaussian noise, h(τ, t) is a time-varying normalized all-pole filter and )(tw is 

an energy envelope function.  

HNM assumes that the lower band of speech spectrum can be represented solely by 

harmonics and the upper band solely by noise [31]. The bands are separated by a time-varying 

cut-off frequency called maximum voiced frequency. This provides a simple model for speech 

synthesis and modification. The complete HNM model requires the estimation of the harmonic 

part parameters, the maximum voiced frequency and the pitch from the speech samples. The noise 

part is obtained by subtracting the harmonic part from the speech signal. 

The use of HNM parameters for speaker recognition was investigated by Gangula et al 

[7], [19]. Their work included the study of the maximum voiced frequency Fm, pitch F0, the ratio 

of the noise part energy to the total energy 22 / AAn , jitter in Fm (ΔFm), jitter in F0 (ΔF0), and 

shimmer in intensity (ΔA0). The motivation was that HNM parameters contain speaker-dependent 

information related to the vocal tract and vocal folds, and are less susceptible to noise. The 

variation of the HNM parameters within and across speakers was studied using histogram 

analysis, statistical moments, correlations and F-ratio tests. The investigation was carried out 

using a speech database of 8 sentences recorded from 10 speakers. The duration of the senetcnes 

varied from 2-3 s, and each sentence was spoken 5 times by each speaker. The results showed that 
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HNM parameters vary more across speakers than within each speaker, and they could be useful 

for speaker recognition. 

Speaker recognition experiments were conducted using VQ modeling of the HNM and 

MFCC parameters extracted from short test utterances. The performance of the HNM parameters 

was comparable to that of MFCC features. Text-dependent tests using only HNM parameters 

resulted in recognition rates of 72%-100% for different test utterances. Recognition rates of 56%-

78% were obtained using different training and testing utterances. Recognition tests using 

combination of MFCC and HNM parameters resulted in an improvement of up to 40% over 

MFCC features alone. 

 

3.5  High Level Features 

Spectral features of speech extracted from short segments are commonly used for speech and 

speaker recognition because they i) are easy to extract, ii) contain inherent speaker characteristic 

which are difficult to mimic, and iii) give high recognition accuracy with small to moderate 

amount of training data [2], [5], [6], [15], [32]. However, they are affected by noise and channel 

mismatch. Recent investigations using features extracted from learned speaking habits of speakers 

have shown promising results and preferred applications, such as the use of conversational 

patterns for detecting change of speaker in continuous speech, and for grouping speech segments 

of the same speaker [5], [6], [32]. 

High level features are those features beyond the acoustic level that capture linguistic and 

long-term stylistic behavior of the speaker such as prosody, pronunciation, phonetics, lexicon, 

syntax and semantics [5], [8], [33], [34]. These features are influenced by the socioeconomic and 

educational status, and childhood environment of the speaker. High level recognition systems 

extract a sequence of symbols such as pitch and timing patterns, n-grams of pronunciations, 

phonemes, and words, and use the frequency and co-occurrence of the these symbols to 

characterize speakers [5], [34]. High level features alone have not performed better than spectral 

parameters so far; however, they significantly improve recognition performance when they are 

used in combination with LPCC or MFCC features [5], [6]. The main disadvantages with the use 

of high level features are that they:1) are difficult to extract and often require automatic speech 

recognizers; 2) require a large amount of training data; and 3) are susceptible to mimics. 
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Chapter 4 

 

STUDY OF STOP CLOSURE AND BURST DURATIONS 

 

4.1  Introduction 

For speaker recognition, spectral features such MFCCs and LPCCs perform well under suitable 

conditions. However, their performance gets degraded under noise and mismatched acoustic 

conditions. Besides, these features are extracted by assuming some simplified model of the speech 

production system. Both the all-pole model of the vocal tract and source-filter model of the 

overall speech production are approximations, and this may have a significant effect on the 

system performance. Recently, high level features such as word usage, prosody, pronunciation 

and duration have been used in combination with the short-time spectral features to improve 

recognition accuracy [15], [33], [34]. Ferrer et al [35] studied the use of word and phone duration 

features for speaker recognition using Gaussian mixture modeling, and reported significant 

improvement by combining with MFCC features. Shriberg et al [34] also used N-grams of 

syllable-level pitch, duration and energy features using support vector machine. 

 In this work, closure and burst durations in stops are investigated for speaker recognition 

using Gaussian mixture modeling. Since the closure and burst events are abrupt, speaker-

dependent characteristics derived from stop phonemes may be difficult to be mimicked by 

impostors. Moreover, compared to other types of phonemes, stop closure and burst durations are 

less influenced by changes in speaking manner of speakers such reading, conversation, and stress 

[3], hence they could provide robust performance by combining with .MFCC features. In this 

chapter, the variation of stop closure and burst durations across speakers is studied using analysis 

of variance. Details of the analyses and results are presented. 

 

4.2  Investigations 

Stops are acoustically transient phonemes produced by a process of articulation involving 

complete closure and release of the vocal tract constriction, and their spectra generally have 

closure and frication burst regions. The closure interval is silence for most stops, but in some 

cases it can have a low frequency voice bar which results from the radiation of periodic glottal 

pulses through the vocal tract walls [3]. Manual labeling of the closure and burst durations for 

different stops in VCV utterances, spoken by a male. speaker MS8, is shown in Fig 4.1.The 

closures segments have similar durations across the different stops, while burst durations for 
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voiced stops (/b/, /d/, /g/) are very short as compared to that of unvoiced stops (/p/, /t/, /k/).The 

main reason for this is that it is difficult to visually separate the closure release burst from the 

unvoiced aspiration in case of unvoiced stops, and hence the burst duration is generally the same 

as the voice onset time. 

Stop closure and burst durations are expected to vary among speakers due to anatomical 

and speaking style differences. Besides, stop closure and burst durations are affected by contexts 

(type of utterances), and speaking rate variations. Figure 4.2 shows closure and burst durations in 

the utterance /uku/ for different speakers. Figure 4.3 shows closure and burs durations for the 

utterances /aka/, /iki/ and /uku/, spoken by MS8. The plots show significant differences in the 

lengths of closure and burst durations across the speakers, vowels and stops. For these duration 

features to be used for speaker recognition, their variation among speakers should be greater than 

the variation within each speaker due to other factors. The effects of the various factors on stop 

closure and burst durations are studied using Fisher’s F-ratio analysis of variances (ANOVA). 

Compared to bursts, closure segments have longer duration for most stops and they can have 

different ranges for different speakers. Besides, closure durations are easier to extract, hence they 

may be useful for speaker recognition and other speech processing applications. 
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Fig. 4.1  Closure and burst durations for different VCV utterances spoken by male speaker MS8: a) /aba/, b) 

/ada/, c) /aga/, d) /aka/, e) /apa/, f) /ata/ 
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Fig. 4.2  Closure and burst durations in /uku/ spoken by different speakers: a) FS6, b) FS13, c) FS18, d) 

MS2, e) MS4, f) MS8; FS = female speaker, MS = male speaker 
 

Analysis of variance is used for analyzing variations among sample groups due to a given 

set of independent factors, by comparing the estimates of the within and among group variances 

[36]. When the experiment involves only one independent variable, one-way ANOVA is used for 

testing if the group means are equal. The test is carried out using F-ratio, which is calculated as 

the ratio of the variance of group means to the average of within group variances [1], [3], [36]. A 

large F-ratio value indicates significant variation of the group means, compared to the intra-group 

variation; hence each group can be represented by a separate set of values of the parameter or 

vectors of its statistics (mean, variance). When there are more than one independent sources of 

variation (factors), factorial analysis of variance is used to examine the effects of the individual 

factors and their interactions. 
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The variation of stop closure duration across speakers was studied using one-way 

ANOVA at normal speaking rate. The analysis was carried out on recorded VCVs and sentence 

utterances, and TIMIT sentences. The vacation of burst duration across speakers was also studied 

using one-way ANOVA on TIMIT sentences. The effect of speaking rate variation was 

investigated using two-way ANOVA of closure duration at different speaking rates. This was 

conducted on sentences recorded at slow, normal, and fast speech rates. In addition, the effect of 

context variation on both closure and burst durations was studied on VCV utterances, using two-

way ANOVA for different vowels and stops. In all cases, stop closure and burst durations were 

obtained manually, and the analyses involved computation and comparison of means, variances 

and F-ratio statistics for each factor. The analysis of variance method is discussed in the following 

section. 
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Fig. 4.3  Closure and burst durations for VCV utterances formed using /k/ with different vowels, spoken by 

male speaker MS8: a) /aka/, b) /iki/, c) /uku/ 
 

4.3  Analysis of Variance 

One-way ANOVA involves estimation of the within and between group means and variances 

from the sample data. Given repeated observations of a specific stop closure duration in an 

utterance for each speaker in a test set, let xs,t represent the tth trial duration of the stop closure for 

a particular speaker, s. The sample mean duration sx  of the stop closure for each speaker are 

given, respectively, by  
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where Nr is the number of repetitions. The variance of the total observation data due to variations 

within each group, is measured in terms of the sum of squares within group (SSW, computed as 
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where S is the number of speakers. This value is also referred to as the error sum of squares (SSe). 

The mean sum of squares within group (MSSW) is given by [36] 

SNT −
= W

W
SS

MSS       (4.3) 

where ∑
=

=
S

s
rT NN

1
 and NT-S is the within group degree of freedom. The mean of closure duration 

means across groups (speakers) is calculated as 
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The sum of the squares of group mean deviations from the inter-group mean is known as the sum 

of squares between groups (SSB) and is given by 
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SSB is used as measure of the differences between groups. The mean of squares between groups 

(MSSB) is obtained as 

1
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       (4.6) 

 where S-1 is the degree of freedom between groups. Finally, the F-ratio is calculated as the ratio 

of mean sum of squares between groups to means of sum of squares within groups, given by 

W

B
MSS
MSS

 =F        (4.7) 

Two-way analysis of variance is used to examine the individual and combined effects of 

two independent factors. Let the two factors be factor A with Na levels, and factor B with Nb 

levels. If we assume the factors to be speakers and speaking rates, Na will be the number of 

speakers and Nb will be the number of speaking rates. Suppose each speaker repeats a given 

utterance Nr times, i.e., number of replicates, at a given speaking rate. Let xijk be the kth trial 

closure duration of a specific stop for speaker i, at speaking rate j. The total sum of squares 
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(SSTotal) is partitioned into sum of squares due to factor A (SSa), factor B (SSb), between groups 

(SSab), and within group (error) (SSe). These values are calculated as follows [37]: 
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where NT  = NaNbNr  is the total number of observations. The formulas for computing the 

corresponding mean values and two-way ANOVA statistics are summarized in Table 4.1. 

 
Table 4.1  Computation of two-way ANOVA 

 

Source Sum of 
squares 

Degree of 
freedom Mean sum of squares F-ratio 

A (speakers) SSa Na-1 MSSa = SSa / (Na-1) MSSa / MSSe 
B (speaking rates) SSb Nb-1 MSSb = SSb / (Nb-1) MSSb / MSSe 
AB (interaction) SSab (Na-1)( Nb-1) MSSab = SSab / (Na-1)( Nb-1) MSSab / MSSe 
Error (within groups) SSe NT - Na Nb MSSe = SSe / (NT - Na Nb) - 

Total  SSTotal NT -1 - - 
 

The significance of the variation among groups is measured by F-distribution probability 

(P-value), computed using the degree of freedom between groups and degree of freedom within 

groups as the numerator and denominator degrees of freedom respectively [36]. This probability 

is calculated assuming all the group means are equal and it measures the probability of large 

random error. The significance of the variation is determined by comparing the P-value with a 

desired significance (risk) level, called α-value. A significance level of 5% (α=0.05) is often 

used. The variation between groups is statistically significant if the P-value is less than the α- 
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value [36]. Alternatively, the significance can be determined by comparing the F-ratio value 

against a critical F-value. The critical F-value for a given significance level is obtained from F-

distribution tables using the numerator and denominator degrees of freedom. In this case, F-ratio 

value greater than the critical value shows significant variation between groups. 

 

4.4  Results and Discussion  

The ANOVA results obtained for closure and burst durations, using speakers, speaking rates, and 

vowel and stop types as independent factors, are given in the following sections. 

 

4.4.1  One-Way ANOVA of Closure Duration 

One-way ANOVA was used to analyze the variation of stop closure durations among speakers at 

normal speaking rate. A recorded database of 10 VCV utterances and 6 sentences from 5 male 

speakers was used for this purpose. The data base contains 7 trials of each utterance from each 

speaker and was collected over 2 days using the same microphone. A list of the utterances is 

given in Table 4.2. Closure durations were obtained manually from waveform plots and 

spectrograms obtained using “PRAAT”. Only stop closures which are relatively easy to measure 

were taken to reduce measurement errors. Within and between speaker means and variances, and 

F-ratio values of closure durations were calculated for each stop in each utterance (text-

dependent). Text-independent F-statistics were also obtained for the recorded VCVs and 

sentences separately. 

 
able 4.2  List of utterances used for one-way ANOVA of closure duration 

 
Label Utterance 

VCV01 /aba/, /ada/, /aka/ /apa/, /ata/, 
VCV02 /ibi/, /idi/, /iki/, /ipi/, /iti/ 
S01 The editor dropped the paper. 
S02 The capital city is highly populated. 
S03 She picked up the package. 
S04 She abandoned the baby. 
S05 He photocopied the book. 
S06 We abided the educated 

 
Table 4.3  Means and square root of variances of text-independent stop closure durations in VCV utterances 
and sentences (Sp = speaker, var = variance) 
 

Utteranc
e 

Mean (in ms) var (in ms) 
Sp1 Sp2 Sp3 Sp4 Sp5 Sp1 Sp2 Sp3 Sp4 Sp5 

VCVs 113. 100.5 105.5 85.8 92.8 62.8 7.9 15.4 14.1 13.4 
Sentence 70.3 56.7 60.2 51.2 57.6 21.5 24.7 18.3 12.6 17.4 
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Table 4.4  ANOVA of text-independent stop closure durations in VCV utterances and sentences. (α = 0.05, 
SSW = sum of squares within speakers, SSB = sum of squares between speakers, MSSW = mean of squares 
within speakers, MSSB = mean of squares between speakers) 
 

Utterance SSW  
(ms) 

MSSW  
(ms) 

SSB  
(ms) 

MSSB  
(ms) F-ratio P-value Fcritical 

VCVs 53382.5 154.7 32617.2 8154.3 52.7 1.3e-34 2.4 

Sentences 345746.0 375.4 37321.4 9330.4 24.9 1.5e-19 2.4 

 

Table 4.3 shows text-independent mean and square root of variance of closure durations 

for the 5 speakers. The corresponding ANOVA results are given in Table 4.4. Text-dependent 

means and square root of variances, and ANOVA results are summarized in Table A.1 and Table 

A.2 in the appendix. For a specific stop closure in a given utterance, the mean closure durations 

for different speakers were quite different; the mean sum of squares within each speaker were also 

smaller than the between speaker mean sum of squares. The F-ratio values were significantly 

greater than the critical F-values and the P-values were much smaller than the 5% significance 

level. This indicates that there is significant variation of stop closure duration among different 

speakers, and these variations are larger than the intra-speaker variations. Therefore, closure 

duration is speaker-dependent, and hence a potential candidate for text-dependent or text-

prompted speaker-recognition. There is also a large variation in the mean closure durations for a 

specific stop in different utterances of the same speaker which shows high context dependency of 

the parameter.  

Text-independent ANOVA of stop closure and burst durations were carried out for 7 

speakers using 7 sentences from TIMIT database. Each sentence was spoken once by each 

speaker. Closure and burst duration were obtained from the manual transcriptions. The mean and 

square root of variance values and summary of the ANOVA results are given in Table 4.5 and 

Table 4.6, respectively. The closure and burst duration means are not significantly different 

among the speakers, and the variances for each speaker are large. On the other hand, the F-ratio 

values are considerably greater than the critical value, which indicates that there is an overall 

variation of stop closure and burst durations across speakers. Figure 4.3 and shows the normalized 

histogram and 3-component Gaussian mixture approximation of stop closure durations for the 7 

speakers. The histogram of each speaker has several peaks of different heights. This indicates that 

the closure duration values for each speaker may be concentrated on certain regions of the time 

axis, which correspond to the different stops. There is a difference in the location and height of 

peaks, and the overall pattern of the histogram and GMM contours among the speakers. The 

results show that distribution of stop closure durations varies across speakers and it may be used 

for text-independent speaker recognition. Figure 4.4 shows the distribution of stop burst durations 



30 

 

across the speakers. In this case, the contours for the different speakers are closely spaced, which 

indicates that burst durations may not be useful for text-independent speaker recognition. 

 
Table 4.5  Means and square root of variances of stop closure and burst durations in TIMIT sentences  

 

Parameter 
Speakers 

FAKS0 FHEW0 MJFC0 MKLT0 MNLS0 MRPC0 MTMR0 

Closure 
duration 

Mean (ms) 66.4 65.0 50.5 41.2 48.8 53.0 63.9 

var  (ms) 27.8 21.0 21.8 16.3 19.5 19.8 22.9 

Burst 
Duration 

Mean (ms) 25.4 28.0 32.5 38.8 30.5 40.7 29.2 

var  (ms) 15.6 18.2 19.2 19.3 17.2 23.9 14.1 
 

Table 4.6  ANOVA of stop closure and burst durations in TIMIT sentences, α = 0.05 
 

Paramet
er 

Source of 
Variation 

Sum of 
 squares 

(ms) 

Degree of 
freedom 

Mean of 
squares 

(ms) 
F-ratio P-value F-critical 

Closure  
Duration  

Among speakers 31872.2 6 5312.0 11.4 8.9e-12 2.1
Within speakers 184438.6 396 465.8 - - -

Burst 
duration 

Among speakers 9386.7 6 1564.4 4.58 1.8e-04 2.13
Within speakers 108589.2 318 341.5 - - -
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Fig. 4.4  Distribution of stop closure duration for 7 speakers from TIMIT database: a) normalized 
histogram, b) approximation using 3-compnent GMM 
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Fig. 4.5  Distribution of stop burst duration for 7 speakers from TIMIT database: a) normalized histogram, 
b) approximation using 3-compnent GMM 

 

4.4.2  Two-Way ANOVA of Closure Duration at Different Speaking Rates 

The variation of stop closure duration with speakers and speaking rates was studied using two-

way ANOVA at different speaking rates. For this purpose, four sentence utterances consisting of 

stops were recorded at slow, normal and fast speaking rates from 3 male speakers. Each sentence 

was spoken five times by each speaker for each speaking rate. Stop closure durations were 

obtained manually from the waveforms and spectrograms using “PRAAT”. A list of the sentences 

is given in Table 4.7. Two-way ANOVA of closure durations was computed in both text-

dependent and text-independent modes, with speakers and speaking as the independent sources of 

variation. The text-independent means and square root of variances, and ANOVA summary are 

given in Table 4.8 and Table 4.9 respectively. The results for the individual utterances are 

summarized in Table A.3 and Table A.4.  

 
Table 4.7  List of utterances used for two-way ANOVA of closure duration at different speaking rates  

 
Label Utterance 

S11 The editor photocopied the book. 

S12 The capital city is highly populated. 

S13 She abandoned the abacus. 

S14 She picked up the package 
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Table 4.8  Means and square root of variances of stop closure durations across speakers and speaking rates 
in sentences” (Sp = speaker, var = varaince) 

 

Speaking  
Rate 

Mean of speakers (ms) var  of speakers (ms) 
Sp1 Sp2 Sp3 Total Sp1 Sp2 SP3 Overall 

Slow 97.2 147.7 91.0 112.0 43.2 52.7 35.6 51.0 
Normal 59.4 69.0 62.8 63.7 18.1 18.6 22.6 20.2 
Fast 44.9 50.8 51.0 48.9 16.9 14.4 18.6 16.9 
Overall 67.2 89.2 68.2 74.9 36.2 53.6 31.4 42.7 

 
Table 4.9  Two-way ANOVA of stop closure durations across speakers and speaking rates in senetences  

(α = 0.05, Sp = speaker) 
 

Source of 
variation 

Sum of 
squares (ms) 

Degree of 
freedom 

Mean of 
squares (ms) F-ratio P-value Fcritical 

Rate 522207.8 2 261103.9 296.2 2.6e-94 3.0 
Speakers 73781.5 2 36890.8 41.9 6.5e-18 3.0 
Interaction 86550.8 4 21637.7 24.5 4.7e-19 2.4 
Within 626659.0 711 881.4 - - - 

 

Observing at the table of means and square root of variances, we see that there is 

significant variation in mean closure durations due to both speaker and speaking rate variation. 

The F-ratio values for speaking rate, speaker and their interaction are all larger than the critical F-

values in both text-dependent and independent modes. However, for most of the stop closures, the 

differences in mean closure durations of the same speaker for different speaking rates are larger 

than the differences due to speakers for a given speaking rate. The speaking rate F-ratios are also 

larger than the speaker F-ratios and the interaction F-ratios are mostly lowest. This means that the 

variation of stop closure duration due to speaking rate is higher than the variation among speaker, 

and that the performance of a speaker recognition system based on duration features might be 

poor under speaking rate changes. This problem can be reduced by normalizing the duration 

values by an estimate of the speaking rate. On the other hand, speaking rate is speaker-dependent 

[2] and it could be one reason for the variation of duration features among speakers, hence 

normalization could remove the speaker-dependent information.  

 

4.4.3  Two-Way ANOVA of Closure and Burst Durations in VCV Utterances  

In the previous sections, it was found that text-dependent stop closure duration significantly varies 

across speakers and could be helpful for text-dependent speaker recognition. The text-independent 

results on both the recorded and TIMIT data also showed considerable difference between 

speakers, which motivates us to investigate the stop duration parameters for text-independent 

speaker recognition. In order to study the variation of duration features with different contexts and  
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Table 4.10  Two-way ANOVA of stop closure and burst durations for different vowels (5 female and 5 
male speakers, α = 0.05) 

  

Parameter Source of 
variation 

Sum of 
squares (ms) 

Degree of 
freedom 

Mean of 
squares (ms) F-ratio P-value Fcritical 

Closure 
duration 

Vowels 4238.1 2 2119.1 5.6 5.0e-03 3.1 
Speakers 72839.6 9 8093.3 21.3 7e-23 1.9 
Interaction 18521.9 18 1029.0 2.7 5.0e-04 1.7 
Within 56959.0 150 379.7 - - - 

Burst 
duration 

Vowels 2058.2 2 1029.1 1.0 0.4 3.1 
Speakers 12151.4 9 1350.2 1.3 0.3 1.9 
Interaction 4401.5 18 244.5 0.2 1.0 1.7 
Within 157859.0 150 1052.4 - - - 

 
Table 4.11  Two-way ANOVA of stop closure and burst durations for different stops (5 female and 5 male 

speakers , α = 0.05) 
 

Parameter Source of 
variation 

Sum of 
squares (in ms) 

Degree of 
freedom 

Mean of 
squares (in ms) F-ratio P-value Fcritical 

Closure 
duration 

Stops 8680.7 5 1736.1 3.89 2.6e-03 2.29 
Speakers 72839.6 9 8093.3 18.14 1.0e-18 1.96 
Interaction 17495.6 45 388.8 0.87 0.7 1.47 
Within 53542.7 120 446.2 - - - 

Burst 

Stops 122900.0 5 24580.0 115.16 4.3e-44 2.29 
Speakers 12151.4 9 1350.2 6.33 2.7e-07 1.96 
Interaction 15806.0 45 351.2 1.65 1.7e-02 1.47 
Within 25612.7 120 213.4 - - - 

 

across speakers, we performed two-way ANOVA of stop closure and burst durations for different 

stops and vowel contexts. A database of 18 VCV syllables spoken by 5 female and 5 male 

speakers was used. The syllables were formed from 3 vowels (/a/, /i/, /u/) and six stops (/b/, /d/, 

/g/, /k/, /p/, /t/) and each syllable was spoken once by every speaker at normal speaking rate. 

Closure and burst durations were obtained manually. Two types of two-way ANOVA were 

computed: (i) using vowel type and speakers as the independent variable, ignoring stop type, and 

(ii) using stop type and speakers as the independent variables, ignoring vowel type. 

A summary of the two-way ANOVA of closure and burst durations for different vowels 

are given in Table 4.10. The means and square root of variances are given in Table A.5. The 

results show that there is large variation in mean closure duration due to both vowel type and 

speaker change. The F-ratio values are also greater than their respective critical values, which 

indicate that both factors have significant effect on closure duration. However, the F-ratio value 

due to speaker variation is larger than the F-ratio value due to vowel type, and the interaction F-

ratio is relatively small. This shows that stop closure durations vary more significantly across 

speakers than across different vowels and the speaker-vowel dependence has relatively small 
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effect. In case of burst duration, there is small variation in the speaker means across different 

vowels; relatively, there is larger difference across speakers. However, the square root variances 

for each vowel and each speaker are quite large and the F-ratios are smaller than the critical F-

values, which suggest that there is no remarkable difference in mean burst durations across 

speakers for different vowels. 

Table 4.11 shows the results for the ANOVA of closure and burst durations for different 

stops. The mean and square root of variances are given in Table A.6. For most of the stops, there 

is a large difference in the mean closure durations of the same stop across the speakers. There is 

also a considerable variation in the mean closure durations of the same speaker for different stops. 

The F-ratio values for both speakers and stops are larger than the critical values, indicating 

dependence of the closure duration on both stop type and speakers. One important observation 

here is that the F-ratio due to speakers is much higher than the value due to stop type; hence stop 

closure duration can be used for stop-independent speaker recognition. Looking at the results for 

burst duration, we find large difference in mean duration across stops and relatively small across 

speakers, and the F-ratio due to stop type is significantly large compared to the F-ratio due to 

speaker variation. This suggests that the burst duration is highly dependent on the type of stop, 

and it could be important for stop identification; but its use for speaker recognition may be limited 

to text-dependent systems. 

 

4.5  Summary 

Stop closure and burst durations are generally affected by speakers, type of utterances (contexts) 

and speaking rate variations. The one-way analysis of variance results showed that stop closure 

and burst durations vary across the speakers and thus convey speaker-dependent information. 

Therefore, they can be used in combination with the short-time spectral features for improving 

speaker recognition. The two-way ANOVA of closure duration at different speaking rates 

indicated that closure duration is highly dependent on speaking rate and its performance may be 

degraded when there is a mismatch in speaking rate between the training and testing utterances. 

The ANOVA results using different vowels and stops showed that the variation of stop closure 

duration across speakers is large as compared to the variation due to vowel and stop, while burst 

duration depends mainly on the stop type. The results show that closure and burst durations are 

speaker-dependent, and compared to burst duration, closure duration conveys more speaker 

information. Both parameters are generally context-dependent, and they may be more important 

for text-dependent systems. However, a text-dependent system using duration features requires a 

speech recognizer for extracting the individual phone or word duration values, which complicates 

the system. In this project, speech landmark detection is used to extract text-independent duration 

features for speaker recognition. 



35 

 

 

 

Chapter 5 

 

DETECTION OF SPECTRAL TRANSITIONS 

 

5.1  Introduction 

Recent studies have shown that speech landmarks contain significant perceptual and acoustic 

information that signify boundaries of major articulatory, acoustic, and phonetic features [38], 

[39]. These prominent spectral transitions have been used for knowledge-based automatic speech 

recognition using landmark detection, to segment the speech signal into linguistic units. In 

addition to linguistic information, speech signal contains features that characterize speakers and 

these features might be effectively extracted from selected portions of the speech signal. This 

work proposes the use of automatic landmark detection for extracting speaker-dependent temporal 

features in transient speech segments, and investigates the rate of spectral variation for locating 

the spectral transitions. 

Speech landmarks are regions in speech signal where the acoustic-phonetic properties 

change abruptly. They include closure and release instants in stops, nasals and fricatives, and 

points of maximum intensity in vowels [38]. Short-time spectral and temporal features in the 

speech signal such as rate-of-change of energy at various frequency bands, formant transitions, 

voicing and duration parameters are used to detect speech landmarks. Several automatic landmark 

detection techniques for speech recognition have been reported [38] - [44]. A brief review of 

some of these methods is given in this section. 

Liu [38] developed a method for detecting abrupt landmarks for distinctive feature-based 

speech recognition, based on the first difference of short-time dB energy in specific frequency 

bands. The spectrum of the input speech samples computed using 6 ms Hanning window every 1 

ms, was divided into 6 frequency bands (0.0–0.4, 0.8–1.5, 1.2–2.0, 2.0–3.5, 3.5–5.0, 5.0–8.0 kHz) 

which correspond to spectral prominence of different phonemic classes. Peaks in the smoothed 

squared magnitude of the spectrum in each band were used to represent the band energy for 

tracking abrupt acoustic events using coarse and fine processing. In the coarse processing, energy 

waveform in each band was smoothed using 20 ms average window, and a rate o rise function 

was calculated as the first difference of the dB energy every 1 ms with 50 ms time step. The same 

operation was applied in the fine processing using 10 ms smoothing window and 26 ms time step. 

The energy rate-of-rise peaks from the two levels of processing were combined with duration, 

phonetic-class and articulatory constraints to detect three types of landmarks: glottal which 
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marked the start and end of voicing, burst which indicated the closure and release of stops and 

fricatives, and sonorants which located the closure and release of nasals and glides. The algorithm 

was tested on a speech database of 40 sentences constructed from 250 words (69% monosyllabic, 

30% bisyllabic, 1% trisyllabic), recorded in a quiet room with signal-to-noise ratio of 30 dB. A 

landmark was considered correctly detected if it was within ±30 ms of manually labelled 

landmarks. The overall detection rates were 44%, 73%, 83%, and 88% within 5, 10, 20, and 30 

ms of manually labelled landmarks respectively. Tested on TIMIT clean speech database, 

recognition accuracies of 98% and 90% were reported for glottal and burst landmarks, 

respectively, while sonorant landmarks were found to be difficult to detect.  

Motivated by the fact that listeners use temporal cues to understand spectrally degraded 

speech, Salomon et al. [39] studied signal envelope and periodicity features for landmark 

detection using auditory filter bank analysis. The envelope of the signal from each channel was 

obtained using Hilbert transform to avoid excessive smoothing. Periodicity, pitch, and energy 

onset/offset measures were extracted for each channel. The periodicity measure included the 

classification of the signal envelope as silence, periodic, or aperiodic. Energy onset/offset 

measures were computed as the first difference of log energy between adjacent non-overlapping 

rectangular windows with adaptively varying window length. Measurements from each channel 

were combined to determine overall onset/offset, and periodic and aperiodic energy parameters. 

These parameters were used to detect three types of landmarks related to voicing onset/offset, 

sonorant consonants, and obstruent consonant boundaries. The method was evaluated using 

TIMIT speech database, and the overall detection rate was 80.2% with 8.7% insertion on clean 

speech, and 76% with 36.6% insertion on noisy speech. 

Howitt [41] used low frequency energy measures (300 Hz – 900 Hz) to detect vowel 

landmarks. The input signal was sampled at 10 kHz and 256-point DFT was computed using 16 

ms Hamming window every 5 ms. Energy measure was calculated as the sum of the log of the 

squared magnitude spectrum weighted by a trapezoidal window along the frequency axis. Peaks 

and dips in the energy function were found using a recursive convex hull peak picking algorithm 

[43]. Dips below a lower threshold were taken to be vowel boundaries and peaks above an upper 

threshold were considered as vowel landmarks (syllable centers). Testing on selected TIMIT 

database resulted in detection rate of 76% with 13.6% insertions. A landmark was considered 

correct if it was located within the manually transcribed vowel segment. 

Jayan et al. [42] used modification (time-scaling) of vowel, consonant, and vowel-

consonant (VC) transition segments for improving perception by hearing impaired listeners. They 

used rate-of-change (ROC) of peak energy and centroid frequency measures in a number of bands 

to detect VC transitions. The input speech was sampled at 10 kHz and 512-point DFT was 

computed using 6 ms Hanning window every 1 ms. The spectrum was split into five non-
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overlapping frequency bands: 0–0.4, 0.4–1.2, 1.2–2.0, 2.0–3.5, 3.5–5.0 kHz. First differences of 

dB peak energy and centroid frequency were computed using 2 ms time step to obtain two ROC 

functions in each band. The absolute ROC values of peak energy and centriod frequency were 

multiplied and normalized in order to get a single ROC contour for each band. Finally, the 

product ROC values in the five bands were added and the resulting signal was averaged using 20 

ms window to obtain an overall transition index for locating spectral transitions. Testing was done 

on 180 VCV utterances from 5 male and 5 female speakers, composed of 6 stops (/b/, /d/, /g/, /p/, 

/t/, /k)  in  3 vowel contexts (/a/, /i/, /u/). The detection rates were 34%, 49%, 87%, 95%, 96%, 

and 100% within 3 ms, 5 ms, 10 ms, 15 ms, 20 ms and 30 ms respectively, of manually labelled 

spectral transitions. 

In a recent work, Jayan and Pandey [46] used rate-of-change parameters obtained from 

Gaussian mixture modeling of short-time log magnitude spectrum for detecting stop landmarks at 

improved temporal accuracy. Fourier transform of the input speech, sampled at 10 kHz, was 

computed using 512-point DFT and 6 ms Hanning window with 1 ms shift. The magnitude 

spectrum was smoothed using a 50-point median filter along the frequency axis. Log of the 

smoothed magnitude spectrum was modelled as a weighted sum of Gaussian functions. The 

weights, means, and variances of the component functions were obtained using iterative 

expectation maximization (EM) likelihood estimation. Typically, the spectrum was modelled 

using four Gaussian functions with equal initial weights, and the means and variances were 

initialized to the average formant frequencies and extreme bandwidths of vowel. Contours of 

mean, variance and amplitude of the Gaussian envelope at mean location of each component was 

filtered using 30-point median filter to suppress transitions during steady state segments. First 

difference of each of these parameters was computed using 2 ms step for each Gaussian 

component. Rate-of-change (ROC) functions for mean, variance and envelope amplitude were 

computed as the sum over the four components of the absolute first difference values of the 

respective parameter at the same frame location. The product of the three ROC functions, in 

combination with spectral flatness measure and voicing onset/offset detector, was used for 

detecting stop landmarks. The method was tested on VCV utterances and TIMIT sentences. Stop 

burst landmarks in VCVs were detected at rates of 90%, 92%, 93%, 96% and 98% within 5, 10, 

15, 20 and 30 ms of the manual landmarks, respectively. The detection rates on TIMIT sentences 

were 73%, 90%, 95%, 97% and 98% for burst landmarks, 19%, 40%, 63%, 80% and 90% for 

closure landmarks, and 45%, 82%, 91% and 96% for voicing onset landmarks. 

 

5.2  Detection of Spectral Transitions from Magnitude Spectrum  

Spectral transitions are instants in speech signal where the signal properties change abruptly and 

significantly in some region of the speech spectrum [38]. They are particularly manifested by 
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rapid changes in signal intensity or some patterns of it (such as periodicity and location of spectral 

prominence); hence they could be detected based on parameters extracted from the magnitude 

spectrum. Rate of change of short-time energy or some defined measure of signal level is often 

used for detecting instants of signal transitions. We have studied the rate-of-change (ROC) of 

mel-filtered magnitude spectrum for detecting the spectral transitions. Before selecting this 

parameter for our investigation, we conducted a preliminary assessment on the use of ROC of (i) 

squared magnitude spectrum, (ii) spectral energy in 5 bands, and (iii) mel-filtered squared 

magnitude spectrum. A single ROC of the magnitude spectrum is expected to detect spectral 

transitions with abrupt intensity change. However, it may fail to indicate transitions between 

sounds that have different spectral locations but may not result in significant magnitude variation. 

The use of multiple ROC parameters solves this problem by looking for landmarks in specific 

frequency bands. It also gives information about the type of landmark, which is useful for speech 

recognition. However, band specific ROC function can be sensitive to narrow band noise and 

harmonic transitions within voiced phonemes. 

For the preliminary observation, the magnitude spectrum of the input signal, sampled at 10 

kHz, was computed using 6 ms Hanning window and 512-point DFT every 3 ms. The short-time 

window suppresses harmonic details and provides fine time resolution as required for improved 

temporal accuracy in locating the spectral transitions. However, wideband spectrograms of voiced 

speech segments show vertical striations corresponding to individual pitch periods which might 

lead to the detection of false landmarks. In order to smooth these variations, the magnitude 

spectrum was filtered using median and mean filters along the time axis. Typically, 7-point 

median filter was found to give good spectral smoothing without affecting the temporal 

resolution. The dB first difference of the smoothed magnitude spectra were computed using 3 ms 

time step. A single ROC function was obtained as the mean of the first 25% largest absolute 

values in each first difference frame. Taking mean of the largest difference values, instead of the 

peak in each frame, reduces the possibility of false landmark detection due to narrow band noise. 

To obtain 5 band ROC contours, the spectrum was split into the following non-overlapping bands: 

0-0.4, 0.4-1.2, 1.2-2.0, 2.0-3.5, 3.5-5 kHz, denoted as band1, band2, band3, band4 and band5 

respectively. A single ROC was obtained for each band in the same way as used to get the ROC 

for the entire magnitude spectrum. 

The techniques were tested on VCV utterances from two female speakers (FS6 and FS18) and one 

male speaker (MS2). Two-dimensional plots of the first difference and ROC contours were used 

for visual observation and comparison. Typical results for the sound |aba| spoken by female 

speaker FS6, obtained using 7-point median filter and a mel-filter bank with lowest filter 

bandwidth of 200 Hz, are given in Fig 5.1-Fig 5.3. The first difference of the raw magnitude 

spectrum resulted in high intensity difference values corresponding to variations between 
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successive pitch periods in voiced speech segments. Its ROC does not distinctly indicate the 

spectral transitions, especially the vowel ends. Median filtering reduces the periodic spectral 

variations and noise along the time axis giving relatively improved ROC peaks at spectral 

transitions. But the results are not satisfactory due to the spectral discontinuities along the 

frequency axis.  
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Fig. 5.1  Detection of spectral transitions for utterance /aba/ using magnitude spectrum in 5 bands: a) speech 
waveform, b) spectrogram, c) band5 first difference, d) band4 first differences, e) band3 first difference, f) 
band2 first difference, g) band1 first difference, h) band5 ROC, i) band4 ROC, i) band3 ROC, k)band2 
ROC, l) band1 ROC  



40 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-1
0
1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0
2
4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0
2
4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5
1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0
2
4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0
2
4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5
1

 
 

Fig. 5.2  Detection of spectral transitions for the utterance /aba/ using magnitude spectrum: a) speech 
waveform, b) spectrogram, c) first difference, d) ROC, e) median filtered spectrogram, f) first difference, g) 
ROC 
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Fig. 5.3  Detection of spectral transitions for the utterance /aba/ using mel-filtered magnitude spectrum: a) 
speech waveform, b) spectrogram, c) mel-filtered spectrogram, d) first difference, e) ROC, f) median and 
mel-filtered spectrogram, g) first difference, h) ROC 
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With 5-band ROCs of the median filtered squared magnitude spectrum, spectral 

transitions were indicated at least in one of the bands. However, the results also showed spurious 

peaks corresponding to noise and periodic spectral variations along the time axis, mainly in 

voiced speech segments, resulting in increased false detection. Spurious peaks were reduced by 

smoothing the magnitude spectrum along the time axis using a longer duration (typically 10 ms) 

median/mean filter, but at the cost of masking short duration spectral transitions and reducing the 

temporal accuracy of indicated transition points. We found out that the ROC of mel-filtered 

magnitude spectrum gives relatively better indication of spectral transitions and we studied it in 

detail for improved landmark detection. 

 

5.3  Detection of Spectral Transitions Using Mel-filtered Magnitude Spectrum  

Most of the landmark detection algorithms in the literature have been developed for applications 

in speech recognition. They depend on the analysis of speech signal in specific frequency bands 

which are related to spectral prominences of target sounds. Using multiple ROC functions (or 

other detection parameters) from specific bands can improve detection performance by tracing 

spectral transitions occurring in different bands of the spectrum. However, boundaries of the 

spectral transitions are not fixed. The locations and bandwidths for a single phoneme vary across 

speakers and speaking conditions. Instantaneous pitch variations within voiced phonemes can 

result in transition from one band to another of the spectral prominence of the phonemes, which 

would then be detected as landmarks. Therefore, choice of fixed frequency bands limits the 

performance. The ROC of median filtered magnitude spectrum discussed earlier indicates instants 

of salient signal transitions such as voicing onsets. However, it fails to clearly show gradual 

spectral changes such as voicing offsets and may lead to the detection of false landmarks due to 

harmonic transitions.  

In order to address these problems, we consider filtering of the magnitude spectrum along 

the frequency axis using a bank of filters whose bandwidth varies according to the human 

perception scale. Spectral transitions convey perceptual information important for understanding 

the different phonemic and sub-phonemic sounds [43]. Therefore, critical band filtering of 

magnitude spectrum is likely to improve detection performance by emphasising perceptually 

significant spectral components and suppressing harmonic transitions. Mel-filter bank with 

number of filters equal to the number of FFT points has been selected for this purpose. ROC 

contour of the mel-filtered (along frequency) and median smoothed (along the time axis) 

magnitude spectrum was computed as explained in the previous section, for locating the spectral 

transitions. Implementation of the mel-filter bank and spectral smoothing along the time axis are 

discussed in the following sections. 
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5.3.1  Mel-filter bank  

Mel-scale approximately maps the perceived frequency of a pitch onto the linear (acoustic) 

frequency scale. Mathematically, this mapping is given by [30] 

⎟
⎠
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⎜
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700
1log2595)(mel 10

ff     (5.1) 

where f is the linear-scale frequency in Hz and  mel(f) is the mel-scale frequency. The relation is 

approximately linear for frequencies below 1 kHz and logarithmic for frequencies above 1 kHz. A 

Mel-filter bank is designed to mimic the auditory filter which is approximated as a bank of band 

pass filters with nearly constant quality factor [1], and hence it captures the perceptually 

important frequency components of speech spectrum [12], [24], [30]. The bandwidths of the 

individual filters are chosen to obtain high frequency resolution at lower frequencies to which our 

hearing system is highly sensitive and low resolution at high frequencies. Mel-filtering is often 

used for extracting mel-frequency cepstral coefficients for speech and speaker recognition 

systems [2], [16], [30], [47]. We have used a bank of closely spaced mel-filters for smoothing 

harmonic structures and clicks along the frequency axis, and to accentuate weak and/or gradual 

spectral transitions such as vowel ends.  

In designing the filter bank, the frequency samples fk of N-point DFT were taken to be the 

center frequencies in the linear scale and they were converted to the mel-scale using 
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where fk = kFs/N, where k is the FFT index and Fs is the sampling frequency. The lower and upper 

cut-off frequencies for each filter in the mel-scale were obtained by selecting a uniform mel 

bandwidth, corresponding to the linear-scale bandwidth BL of the lowest mel-filter. The 

bandwidth BL was chosen to be about twice the pitch frequency in order to mask pitch harmonics 

while maintaining formant transitions. Different values of BL between 50 and 500 Hz were used. 

While narrowband filters did not mask the harmonic structure, large bandwidth filters (BL > 400 

Hz) masked formant transitions and resulted in wider first difference bars around signal 

boundaries. The results were less sensitive to bandwidth values between 100 and 300 Hz, and BL 

= 200 Hz was used for further investigation. For each filter with linear scale center frequency fC, 

the mel-scale lower mel(fL) and upper mel(fU) cut-off frequencies were obtained by 

mel(fL) = mel(fC) – mel(BL)/2      

mel(fU) = mel(fC) + mel(BL)/2    (5.3) 

The linear scale lower cut-off fL and upper cut-off fU values were computed using the inverse 

relation, given as  

( )110700 2595/)(mel −= kfkf     (5.4) 
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The bandwidth B of each filter is linearly related to the center frequency, which can be derived as 

follows: 
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Figure 5.4 a) shows the linear-scale upper and lower cut-off frequencies and bandwidth as 

function of the linear frequency. The magnitude response of the mel-filters is triangular. For each 

filter with center frequency index kC, lower cut-off index kL and upper cut-off index kU, the 

magnitude response was calculated using the formula 
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A part of the magnitude response of the triangular mel-filter bank is given in Fig 5.4 b). 
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Fig. 5.4  Typical mel-filter bank characteristics: a) mel warped filter parameters in the linear scale: (- - -) 
bandwidth B (Hz), (―) upper cut-off frequency fC (Hz) and (⋅ ⋅ ⋅) lower cut-off frequency fL (Hz, b) 
magnitude response of a part of the mel-filter bank 
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5.3.2  Spectral Smoothing in Time 

Short-time magnitude spectrum of speech signal shows random intensity variations along the time 

axis. Particularly, the spectrogram of voiced segments obtained using a short-time window 

displays alternating dark and light vertical regions that appear as significant transitions. As a 

result, the first difference of the magnitude spectrum gives multiple high intensity values within 

the duration of the phonemes. Using a long duration window (one that includes several pitch 

periods) can smooth periodic spectral variations and noise; however, it results in poor time 

resolution. In order to address this problem, averaging and median smoothing of the mel-filtered 

magnitude spectrum along the time-axis were investigated separately. 

Spectral averaging in time significantly minimizes spurious peaks due to periodic spectral 

variations in voiced segments. The 2-dimensional plot of the first difference of the averaged 

squared magnitude spectrum shows distinct boundaries at signal transitions. However, averaging 

is likely to cause the following problems: 1) it could result in backward and forward smearing of 

the signal resulting in timing misalignment of the detected spectral transitions and the actual 

transitions; 2) clicks and small signal variations could be widened in duration and detected as 

landmarks, and 3) low energy bursts may get masked by surrounding high intensity signal regions 

(e.g. vowels) and may not get detected. These problems were partly minimized by a careful 

choice of the averaging window length and the time shift between successive frames. Median 

smoothing of the squared magnitude spectrum was also examined in order to reduce the timing 

misalignment problem. A median filter has the useful property of suppressing low level impulse-

type noise while preserving significant signal discontinuities. However, short-time median filter 

may not be effective in removing spectral variations between pitch periods.  

In both cases, the length of the filter has a significant effect on the output. A longer 

duration (narrowband) filter can be effective in removing spectral variations, but it reduces the 

temporal accuracy in locating spectral changes. It results in masking of short spectral transitions 

and shifting of detected landmarks. A short duration (wideband) filter, on the other hand, 

preserves the fine temporal resolution but it is less effective in smoothing individual pitch period 

transitions and noise. 

 

5.3.3  Detection of Spectral Transitions  

Figure 5.5 shows the block diagram of the landmark detector using mel-filtered squared 

magnitude spectrum. The input speech signal was sampled at 10 kHz and 512-point FFT was 

computed using 6 ms Hanning window every 3 ms. The square of the magnitude spectrum was 

filtered by a 256-triangular mel-filter bank along the frequency axis. The mel-filtered squared 

magnitude spectrum )(ˆ 2 kSn  for nth frame is given by 
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where N is the FFT length, k and m are frequency indices, Sn(k) represents FFT of the input 

samples and Hk(m) is the magnitude response of the kth filter. Varying the number of mel-filters 

between 256 and 32 gave similar ROC contours, but performance of the voicing detector 

discussed later in this section, improved with increasing the number of filters. The output of the 

mel-filter was given to two separate detectors based on the type of spectral smoothing used along 

the time axis. One uses average of the mel-filtered squared magnitude spectrum computed from 

2M+1 neighbouring samples as 
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where )(~2 kSn is the output of the filter. The other uses median filtering in which the output is 

given as  

{ })(Ŝ ..., ),1(Ŝ ),(Ŝ median)(~ 2222 MkMkMkkS nnnn +−−−=   (5.9) 

The choice of the averaging and median window length (M) was based on observing the effects of 

different values, and M = 2 for averaging and M = 5 for median filtering were typically used. 

The first difference Dn(k) for nth frame was computed from the log of the filtered squared 

magnitude spectra as 

|)(~|log|)(~|log)( 22
0

kSkSkD nnnn −−=     (5.10) 

where n0 is the difference step in frames. The logarithm operation is applied to avoid the need for 

normalization for overall amplitude variation and compress small spectral variations. Different 

values of the window length, window shift and difference step (n0), were tested to study their 

effects and to select suitable values. Voiced sounds required larger values of window length, 

window shift and difference step (n0) to smooth out the spectral variations between quasiperiodic 

cycles and to locate voicing onset and offset boundaries using first difference. However, this had 

the effect of masking short duration bursts and reducing the temporal accuracy. A window shift of 

3 ms and difference step of 6 ms gave a good trade-off between spectral smoothing and temporal 

accuracy and were used for our results. 

The sum of the first 50% largest absolute first difference values in each frame was taken 

as a rate of change (ROC) parameter for landmark search. This ROC has distinct peaks at 

prominent signal transitions, but it can also give several closely spaced peaks during non-abrupt 

transitions. In order to suppress the smaller peaks and to simplify the peak picking algorithm, the 

ROC was smoothed using stationary wavelet transform (SWT) denoising [48], [49]. SWT is a 

time-invariant wavelet transform in which the transform coefficients at a given decomposition 
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level are obtained by convolving the output of the immediate lower level with the upsampled 

version of the filter coefficients. SWT denoising is used to suppress spurious peaks and to 

emphasize the prominent peaks without disturbing their temporal locations. In this step, a 3-level 

SWT decomposition of the signal was computed using Daubechies1 (Haar) wavelets and the 

detail coefficients in each level were smoothed by soft thresholding. The signal was then 

reconstructed from the approximation and modified detail coefficients using the inverse 

transform. 

 

 
Fig. 5.5  Detection of spectral transitions using mel-filtered squared magnitude spectrum 
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Fig.5. 6  Landmark detection for utterance /aka/ from female speaker FS6: a) waveform, b) spectrogram, c) 
mel-filtered spectrogram, d) median and mel-filtered spectrogram, e) first difference of median and mel-
filtered spectrogram, f) ROC, g) wavelet smoothed ROC h) landmarks 
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Fig. 5.7  Voicing detection results for utterance /aka/ from female speaker FS6: a) speech waveform, b) 
spectral slope c) speech waveform with AWGN of 5 dB SNR, d) spectral slope of noise corrupted speech 

 

During peak picking, the smoothed ROC signal was segmented into frames of 300 ms 

(maximum vowel duration) and all peaks above a local threshold in each frame were taken as 

potential landmarks. First difference of 30 ms averaged energy computed with a time step of 27 

ms centered at the time of interest was used to determine whether a peak represented falling or 

rising transition. A peak was decided as a falling transition (closure) if the first difference at the 

peak location is negative and rising (burst) otherwise. Phonetic duration constraints such as 

minimum stop closure, frication and voicing onset/offset durations were imposed on the selected 

peaks to detect the final spectral transitions. Based on observation of temporal characteristics of 

different VCV utterances, the minimum duration values were chosen to be 6 ms between 

successive positive peaks (which corresponds to minimum voicing onset and/or frication 

durations), 10 ms between consecutive negative peaks (minimum voicing offset) and 15 ms 

between successive positive and negative peaks (minimum closure/silence duration). An 
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illustration of the detection process for typical VCV utterances, with results at each stage, is 

shown in Fig. 5.6.  

Voicing onset/offset points were detected based on first difference of the mel- and median 

filtered squared magnitude spectrum along frequency, we describe as the spectral slope. For 

voiced sounds, the magnitude spectrum has strong values around harmonics and formants, and 

weak values elsewhere; hence taking the first difference along the frequency axis results in high 

intensity values in the lower frequency region. On the other hand, unvoiced sounds have almost 

uniform spectrum and hence the first difference gives small values in the entire spectrum. The 

spectral first difference at each sampling time n, an(k), was calculated as 

21 ,|)(~)(~|)( 2
0

2 N/kkSkkSka nnn ≤≤−+=     (5.11) 

where k0 is difference frequency step. Several values of difference frequency step were tried out 

and the results were almost the same for difference steps below 400 Hz. A frequency step of 2 

samples (40 Hz) was used for our analysis. The spectral slope parameter was computed as the 

sum of the largest half of the difference values in each frame, and its normalized value was used 

for voicing onset/offset detection based on a selected threshold. A value was set to 1 if it was 

above the threshold and to 0 otherwise. First difference of the resulting signal was computed 

between successive samples in time, and positive and negative peaks indicated voicing onset and 

offset, respectively. The voicing detector was tested on VCV utterances corrupted with additive 

white Gaussian noise of different signal-to-noise ratio (SNR). The spectral slope was found to 

have robust performance for SNR down to 5 dB. Figure 7 shows the spectral slope for utterance 

|aka| from female speaker FS6, corrupted by noise at 5 dB SNR. 

 

5.4  Detection of Stop Landmarks Using Mel-filtered Spectrum 

Stop consonants typically consist of a silence interval (except for word initial stops) due to 

complete closure of vocal tract, followed by a short frication burst corresponding to the abrupt 

release of vocal tract occlusion. Durations of the closure and burst segments are context and 

speaker-dependent, and vary from 5 ms to about 100 ms. Measurement of the closure and burst 

durations for speaker recognition requires detection of the closure, and burst onset and offset 

instants with high temporal accuracy. Here, rate-of-change (ROC) of mel-filtered magnitude 

spectrum is used to detect the abrupt transitions in speech signal, and additional spectral and 

durational properties are used to indentify stop landmarks. Two types of stop landmark detectors 

were studied; for reference, we will call them landmark detector-1 (LMD1) and landmark 

detector-2 (LMD2). They differ in the method of picking the ROC peaks and validating the 

selected peaks as stop landmarks. In LMD1, all ROC peaks greater than a local threshold are 

picked as potential landmarks. Voicing detection, spectral flatness measure and intensity level 
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parameters are used as additional features to select stop landmarks. In LMD2, closure segments 

are located based on a product of spectral flatness measure and log energy, and ROC peak picking 

is carried out only around the start and end of the closures. Spectral flatness, log energy and their 

product are used for selecting the final landmarks. The following section discusses the detection 

process using LMD1 and evaluation results are presented in sections 5.6. Explanation of LMD2 

and detection results are given in sections 5.7 and 5.8. 

 

5.5  Landmark Detector LMD1 

Spectral transitions are detected using the technique discussed in Section 5.3.3. Magnitude 

spectrum of the input speech, sampled at 10 kHz, was computed using 6 ms Hanning window and 

512-point DFT every 3 ms. The squared magnitude spectrum was filtered along the frequency 

axis by 256-triangular mel-filter bank with lowest filter bandwidth of 136 Hz. Each sample is 

obtained as a perceptually weighted sum of its neighbours. The purpose of this filtering is to 

suppress the harmonic structure without loosing the formant structure. The output of each mel-

filter was further median filtered along the time axis. For sentences, an 11-point filter was used to 

smooth out amplitude variations between pitch periods and other undesired spectral transitions 

without significantly affecting the actual transitions. A 7-point filter was found to be sufficient for 

the same task for VCV utterances which have relatively longer segmental durations, and more 

distinct stop closure and burst transitions. First difference of the log spectra was computed using 

(5.10) with time step of 6 ms. A fast frame rate (3 ms) and small difference step are required to 

track the abrupt closure and burst transitions. A ROC function was calculated as the mean of the 

50% largest absolute difference values in each frame, smoothed by 3-level SWT using Haar 

wavelet. A silence-burst transition in stops results in large difference values along the entire 

spectrum, compared to other transitions that occur in specific bands; hence the ROC parameter 

gives relatively distinct peaks for stop bursts.  

Additional parameters such as voicing, spectral flatness measure and its slope, and sum of 

magnitude spectra, were used to validate the detected transitions as stop landmarks. The spectral 

flatness and intensity measure parameters were obtained from the FFT Sn(k) of the input samples, 

computed using 20 ms Hanning window and 512-point DFT every 1 ms. The relatively longer 

window is needed for accurately estimating the spectrum flatness, while the high frame rate is 

needed to capture the short duration transitions. The spectrum flatness was measured in terms of 

Wiener entropy, EW(n), of the magnitude spectrum, calculated as [44]  
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where n is the time (frame) index, N is the number of DFT points and Sn(k) is the kth FFT sample 

at frame n. EW(n) is used to separate voiced and unvoiced regions. It has large values (near unity) 

for unvoiced segments and, low and peaky values for voiced sounds. Fricative and nasal bursts, 

and burst like sounds after pauses have flat spectrum similar to stops and qualify the spectral 

flatness measure test. Two additional parameters were used to identify stop closures and bursts: 1) 

slope of the spectral flatness measure and, 2) measure of sum of magnitude spectra as measure of 

intensity level, calculated as  
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where N = 512. Production of stop consonants often involves complete closure of the vocal folds 

before the burst and their closure interval has very low intensity as compared to that of most 

fricatives and nasals. The closure-burst transitions in stops are generally found to be more abrupt 

than   that of fricatives, nasals and pauses. Hence Wiener entropy for stops has peaks with large 

slopes around bursts, which were captured from the first difference between successive frames.  

A voicing detector based on spectral slope of the mel and median filtered magnitude 

spectrum, computed using 6 ms Hanning window and 512-point DFT every 3 ms, was used to 

detect frication offset landmarks missed by the ROC parameter and to remove ROC peaks within 

voiced regions. First difference of the mel and median filtered magnitude spectrum was computed 

with 2 frequency samples (40 Hz) step. A spectral slope computed as the normalized mean of the 

25% largest absolute difference values in each frame, was used as parameter for detecting voiced 

segments. This parameter has large values for voiced sounds which have a well-defined harmonic 

and formant structure, and small values for unvoiced sounds which have almost flat spectrum. A 

continuous segment of minimum duration 40 ms and having spectral slope greater than 0.0125 

(empirically determined value) was decided to be voiced, and its initial and final points were 

labelled as voicing onset and voicing offset landmarks respectively. 

Spectral transitions indicating start of closure (-p) and release (+p) were detected from the 

ROC parameter using a peak picking method with local threshold and average energy, as 

discussed in Section 5.3.3. All +p peaks with EW(n) greater than 0.5 and amplitude normalized 

absolute value of slope of EW(n) above 0.45 within the preceding 30 frames were taken to be valid 

stop burst and frication offset landmarks. Similarly, -p peaks with EW(n) greater than 0.5, 

normalized absolute value of slope of EW(n)  above 0.45 and SI(n) below 0.025 within the 

succeeding 30 frames were taken as valid  stop closure landmarks. In addition, +p and -p peaks 

neighboured by EW(n) greater than 0.65 within the specified time margin were considered as stop 

landmarks.  A voicing onset mark preceded by EW(n) greater than 0.5 and normalized absolute 

slope of EW(n) above 0.45 was detected as a stop frication offset. Remaining voicing onset and 
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offset points, and any +p and -p peaks inside a voiced segment were eliminated. Finally, 

minimum and maximum duration (10 ms and 80 ms for closure, and 10 ms and 50 ms for 

frication) constraints were imposed. The slope of Wiener entropy was found effective in removing 

fricative bursts, and most of the insertions were due to nasals and short pauses. 

 

5.6  Results Using LMD1 

The landmark detection method was evaluated on VCV utterances and TIMIT sentences. The 

results are presented in the following two sections. 

 

5.6.1  Detection on VCV Utterances Using LMD1 

The method was tested on 18 VCV syllables formed using 6 stop consonants (/b/, /d/, /g/, /p/, /t/, 

/k/) and 3 vowels (/a/, /i/, /u/), spoken by 5 female and 5 male speakers. Closure, burst and 

voicing onset landmarks were detected from ROC (along time) of mel-filtered magnitude 

spectrum using voicing detection as a guide.  In this case, the ROC contour was computed as the 

product of the arithmetic mean and the geometric mean of the largest 50% absolute values of the 

first difference (along time axis) of the mel and median filtered squared magnitude spectrum. 

Voicing onset and offset points were located from the spectral slope of mel and median filtered 

magnitude. The highest peak in the ROC parameter located between the voicing offset of the first 

vowel and onset of the second vowel was taken to be the burst landmark. A ROC peak in the 

neighbourhood of a detected voicing offset and at least 15 ms before the burst location was 

assumed to be the closure landmark. The actual voicing onset landmark was taken to be the ROC 

peak around a detected voicing onset and at least 6 ms after the burst landmark.  In case voicing 

offset or onset is missed by the voicing detector, the highest ROC peak located after 90 ms 

(minimum vowel + closure duration) from the start of the syllable and at least 50 ms before the 

end, was taken to be the burst landmark. A peak located 15 ms to 60 ms before the burst was 

considered as closure landmark and a peak 6 ms to 40 ms after the burst was detected as the 

voicing onset. A landmark was assumed missed if it was located outside the 30 ms neighbourhood 

of the respective manual landmark, while a detected landmark which was found more than 30 ms 

away from any manual landmark was counted as insertion.  

Figure 5.8 shows stop landmark detection for /iti/ spoken by female speaker FS6, using 

ROC of squared magnitude spectrum filtered by a 256-triangular mel-filter bank along the 

frequency axis and 7-point median filter along the time axis. The numbers of detected landmarks 

(out of 180 landmarks of each type) at 6 levels of temporal accuracy relative to manually labelled 

landmarks are given in Table 5.1. Figure 5.9 shows the detection rates. Stop burst landmarks were 

detected with rates of 52%, 85%, 93% and 95% within 3, 5, 10, and 15 ms interval of the 

manually located landmarks, respectively. The detection rates for closure landmarks were 62%, 
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74%, 87%, 92%, 96%, and 97% within 3, 5, 10, 15, 20 and 30 ms respectively. Voicing onsets 

were detected at 45%, 66%, 91%, 97%, 98% and 99% with temporal accuracies of 3, 5, 10, 15, 20 

and 30 ms respectively. The high detection accuracy (above 90% at 10 ms accuracy) shows that 

ROC of mel-filtered magnitude spectrum obtained at high frame rate tracks the abrupt spectral 

transitions in the speech signal. There were insertions mainly due to strong clicks in the silence 

and frication regions of the syllables which resulted in a few missed burst landmarks. The overall 

detection rates were 53%, 75%, 90%, 95%,  
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Fig. 5.8  Stop landmark detection for utterance /iti/ from female speaker FS6 using LMD1: a) waveform, b) 
spectral slope,  c) ROC, e) detected stop landamrks 

 
Table 5.1  Number of detected stop  landmarks in 180 VCVs from 10 speakers  (5 male, 5 female) using 

LMD1 
 

Speaker landmark 
Detection accuracy relative to manual 

Insertions 
<= 3 <= 5 <= 10 <= 15 <= 20 <= 30 

Female 

Closure 57 68 79 83 89 90 0 
Burst 58 79 86 87 87 87 3 
VOT 34 62 82 87 88 89 1 
Total 149 209 247 257 264 266 4 

Male 

Closure 56 66 79 84 84 85 5 
Burst 35 74 82 84 84 84 6 
VOT 47 58 82 89 90 90 0 
Total 138 198 243 257 258 259 11 

Overall 

Closure 113 134 158 167 173 175 5 
Burst 93 153 168 171 171 171 9 
VOT 81 120 164 176 178 179 1 
Total 287 407 490 514 522 525 15 
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Fig. 5.9  Detection rates of stop landmarks in VCV syllables  for different temporal accuracies, using 

LMD1 

 

96%, and 97% within 3, 5, 10, 15, 20 and 30 ms respectively of the manually labelled landmarks, 

and 3% insertion. Compared to Jayan’s stop landmark detection results on the same set of VCVs 

using Gaussian mixture modelling of speech spectrum [46], our method has more than 35%, 20%, 

and 20 improvement in the detection rate of closure landmarks with 5, 10 and 15 ms accuracy 

respectively. However, the detection rates at 5 ms for burst and voicing onset landmarks are lower 

in our method by 5% and 10% respectively. 

The results were analysed to see if the performance of the method varies gender wise. 

There is slight difference in terms of temporal accuracy and overall detection rates between the 

two set of speakers. The results are higher for female speakers. The detection rates for the female 

speakers were 55%, 77% and 98.5% within 3, 5 and 30 ms of the manual landmarks, respectively. 

The corresponding values for the male speakers were 51%, 73% and 96%. Such gender and 

speaker-dependent variations are expected, particularly for landmark detection methods based on 

direct spectral features, because different speakers have different spectral characteristics (such as 

pitch and formants) and speaking rates, which require a different  set of analysis windows and 

frame rates to achieve desired temporal and spectral resolution. The window length and frame rate 

values can be tuned for detecting specific class of sound, but the performance will still vary with 

speakers and contexts. 

 

5.6.2  Detection on TIMIT Sentences Using LMD1 

A test database consisting of 50 TIMIT sentences from 3 female and 2 male speakers was used for 

evaluation. Out of the 10 sentences spoken by each speaker, two were common for all the 

speakers. Manual transcriptions of stops ( labelled in the TIMIT database as |b|, |d|, |g|, |p|, |t|, |k|, 
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|bcl,| |dcl|, |gcl|, |pcl|, |kcl|, |tcl|) were obatnied for comparison. Figure 5.10 shows stop landmark 

detection for the sentence “His captain was thin and haggard and his beautiful boots were worn 

and shabby.” from female speaker FAKS0. Speaker-wise and overall detection rates of stop 

closure, burst and frication offset landmarks at 6 levels of temporal accuracy are given in Table 

5.2. Table 5.3 gives the number of insertions. The overall detection rates are shown in Fig. 5.11. 

Burst landmarks were detected at improved temporal accuracy, with rates of 72%, 84%, 

89%, 93%, 94% and 95% respectively within 3, 5, 10, 15, 20 and 30 ms of the manual landmarks. 

Detection rates for closure landmark were 36%, 57%, 77%, 85%, 89% and 93% at temporal 

accuracies of 3, 5, 10, 15, 20 and 30 ms respectively. Frication offset landmarks were detected 

with rates of 50%, 65%, 74%, 78%, 81%, 86%. There were insertions (55 closures, 59 bursts and 

25 frication offsets) due to clicks, glottal stop, affricates, and transitions from pauses, nasals and 

fricatives to vowels and semivowels, and from pauses to nasals. Fricative insertions were reduced 

by the spectral flatness slope and intensity measures, and most of the insertions were mainly due 

to nasals and short pauses. The results show significant differences in detection rates among the 5 

speakers. Since 8 out of the 10 sentences were different for each speaker, the results suggest that 

there could also be high context dependency. Overall, stop landmarks were detected at rates of 

52%, 68%, 79%, 84%, 87% and 91% respectively within 3, 5, 10, 15, 20 and 30 ms of the manual 

landmarks, and insertion rate of 18.7%.  
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Fig. 5.10  Detection of stop landmarks using LMD1 for the TIMIT sentence “His captain was thin and 
haggard and his beautiful boots were worn and shabby.” by female speaker FAKS0: a) waveform, b) ROC, 
c) spectral slope, d) EW(n), e) SI(n), f) detected stop landmarks 
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Table 5.2  Detection rates (%) of stop landmarks (b, d, g, p, t, k) in TIMIT sentences using LMD1
 

Detection accuracy relative to manual transcriptions (in ms) Landmark 
type Speaker 

<=3 <=5 <=10 <=15 <=20 <=30 
Insert-
ions 

FAKS0 36.8 66.7 82.5 89.5 94.7 96.5 8.8 
FDAC1 22.9 45.8 64.6 79.2 87.5 93.8 31.3 
FELC0 33.3 55.6 75.9 81.5 81.5 90.7 13.0 
MSKT0 44.7 61.7 78.7 83.0 89.4 89.4 31.9 
MWBT0 44.0 56.0 82.0 90.0 94.0 96.0 26.0 

Closures 

Overall 36.3 57.4 77.0 84.8 89.5 93.4 21.5 
FAKS0 79.0 85.5 91.9 91.9 91.9 93.5 11.3 
FDAC1 67.9 81.1 83.0 88.7 90.6 94.3 30.2 
FELC0 67.3 76.4 81.8 83.6 89.1 90.9 14.5 
MSKT0 66.0 82.0 86.0 86.0 86.0 92.0 30.0 
MWBT0 56.0 74.0 84.0 84.0 84.0 98.0 26.0 

Bursts 

Overall 67.8 80.0 85.6 87.0 88.5 93.7 21.9 
FAKS0 54.7 67.9 79.2 81.1 83.0 84.9 5.7 
FDAC1 39.5 52.6 63.2 76.3 81.6 84.2 15.8 
FELC0 50.0 65.9 70.5 70.5 75.0 81.8 6.8 
MSKT0 60.5 73.7 78.9 78.9 81.6 92.1 10.5 
MWBT0 45.7 65.2 76.1 80.4 82.6 89.1 19.6 

Frication 
offsets 

Overall 50.2 65.3 74.0 77.6 80.8 86.3 11.4 
FAKS0 57.6 73.8 84.9 87.8 90.1 91.9 8.7 
FDAC1 44.6 61.2 71.2 82.0 87.1 91.4 26.6 
FELC0 50.3 66.0 76.5 79.1 82.4 88.2 11.8 
MSKT0 57.0 72.6 81.5 83.0 85.9 91.1 25.2 
MWBT0 48.6 65.1 80.8 87.7 89.7 94.5 24.0 

All types 

Overall 51.8 67.9 79.2 84.0 87.1 91.4 18.7 
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Fig. 5.11  Detection rates for TIMIT sentences using LMD1: a) speaker-wise rate, b) overall rates 
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Table 5.3  Number (percentage) of insertions in TIMIT sentences using LMD1 

 

Insertion 
type 

Number (percentage) of  Insertions  
Notes 

Closures Bursts Frication 
offsets 

Total 

Pauses 12 (4.7) 12 
(4.4) 

6 (2.7) 30 (4) Pause (‘epi’, and ‘pau’) preceding nasals, glides 
and fricatives, 

Glottal 
stop 

10 (3.9) 10 
(3.7) 

6 (2.7) 26 (3.5) Brief closures denoted as ‘q’ in the TIMIT 
transcriptions  

Nasals 8 (3.1) 8 (3.0) 3 (2.4) 19 (2.6) 
Nasal(‘n’, ‘m’, ‘ng’, ‘nx’) closures and bursts, 
esp. those  preceded or followed by pauses and 
stop closures 

Fricatives 12 (4.7) 13 
(4.8) 

5 (2.3) 30 (4.0) 3 (‘f’, ‘s’, ‘v’) and 9 (‘th’,’dh’) 

Semi-
vowels 

3 (1.2) 3 (1.1) 0 (0) 6 (0.8) Closures in ‘l’, ‘r’, ‘iy’ followed by ‘w’   

Clicks 3 (1.2) 6 (2.2) 3 (1.4) 12 (1.6) Clicks mostly in long pauses  

Flaps 7 (2.7) 7 (2.6) 2 (0.9) 16 (2.1) Sounds denoted by ‘dx’  

Total 55 
(21.5) 

59 
(21.9) 

25 
(11.4) 

139 
(18.7) 

55 closures and 25 frication. Flaps sound like 
stops, hence could be ignored, which reduces the 
total insertion rate to 16.6% 

 

5.7  Landmark Detector LMD2 

In the technique LMD1, discussed in Section 5.5, all ROC peaks above a local threshold were 

picked as potential landmarks, and only -p and +p peaks outside of voiced region that qualify the 

spectral flatness measure and intensity level tests were selected as stop landmarks. However, 

detection performance can be improved, both in terms of insertion rate and temporal accuracy, by 

looking for ROC peaks only in regions that manifest strong stop consonant features. We used 

closure and burst as the key features for picking stop landmarks from the ROC contour. Closures 

and bursts were detected based on Wiener entropy, log energy and their product. The Wiener 

entropy has large values in closure and frication regions, while log energy has large negative 

values during closures. We found out that the product of Wiener entropy and log energy gives a 

well-shaped waveform having large negative values only during closures, from which closure 

onset and offset landmarks can be detected with good temporal accuracy, using a simple 

threshold. Wiener entropy and its slope, maximum deep in the closure region indicated by the 

product function, maximum log energy around burst, and duration constraints were used to 

separate stop closures and bursts from fricatives, nasals and pauses. 

The ROC function for detecting the spectral transitions was obtained using the method 

discussed in Section 5.3.3. Fourier transform of the input signal was computed using 512-point 
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DFT, 6 ms Hanning window and 3 ms frame rate. The squared magnitude spectrum was filtered 

using 256-triangular mel-filter bank along the frequency axis and 11-point median filter along the 

time axis. First difference of the resulting spectra was calculated using 6 ms time step. The ROC 

parameter was taken to be the mean of largest half of the absolute difference spectra, smoothed by 

3-level Haar wavelet SWT. The Wiener entropy and log energy were obtained from the FFT Sn(k) 

of the input speech, computed using 20 ms Hanning window and 512-poind DFT every 1 ms.  

The Wiener entropy EW(n) of the squared magnitude spectrum was calculated using (5.11). The 

log energy EL(n) was computed as 

∑
=

=
2/

1

2|(|log)(
N

k
nL kSnE      (5.12) 

where N is the number of DFT points, and k and n are the frequency and time indices, 

respectively. The parameter used for detecting closure, XS(n), was given by 

)()()( nEnEnX LWS =       (5.13) 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

 
Fig. 5.12  Detection of stop landmarks using LMD2 for the TIMIT sentence “His captain was thin and 
haggard and his beautiful boots were worn and shabby.” By female speaker FAKS0: a) waveform, b) ROC, 
c) EW(n), d) EL(n), e) XS(n), f) detected stop landmarks 
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Closure segments were detected from the amplitude normalized values of XS(n), EW(n) and 

its slope, and EL(n), using empirically determined thresholds and minimum duration constraints. 

A speech segment with XS(n) less than -0.225 for at least 12 ms was taken as a valid silence. 

Minimum separation between successive silences was taken to be 30 ms. A closure segment 

having within its interval minimum of XS(n) less than -0.5, maximum of EW(n) greater than 0.5, 

maximum of slope of EW(n) greater than 0.4, and maximum of EL(n) within 20 ms after the burst 

greater than 0.2, was detected as stop closure. The actual stop closure, burst and frication offset 

landmarks were detected by picking ROC peaks around the detected stop closure segments. The 

largest ROC peak within 10 ms neighbourhood of the start of a detected closure was taken to be a 

stop closure landmark, while the largest peak found within 10 ms interval of the end point of a 

closure and at least 10 ms after a detected closure landmark, was taken to be a stop burst 

landmark. A ROR peak located between 6 ms to 60 ms after a detected stop burst landmarks was 

taken to be the frication offset landmark.  

 

5.8  Results Using LMD2 

The method was evaluated on the same 50 TIMIT sentences used for evaluating LMD1. 

Figure 5.12 shows the ROC, Wiener entropy, log energy, product of Wiener entropy and log 

energy, and detected stop landmarks for the sentence “His captain was thin and haggard and his 

beautiful boots were worn and shabby,” spoken by female speaker FAKS0.  The speaker-wise and 

overall detection rates for each type of landmark at 6 level of temporal accuracy are given in 

Table 5.4. Table 5.5 shows the type and number of insertions. The overall detection rates for 5 

speakers and the overall detection rates for the 3 types of stop landmarks are shown in Fig. 13 (a) 

and Fig. 13 (b) respectively. There were a total of 272 target stop consonants, with 256 closures, 

272 bursts and 220 frication offsets landmarks to detect. The detection rates for closure landmarks 

were 40%, 59%, 80%, 87%, 90% and 93%, respectively within 3, 5, 10, 15, 20 and 30 ms of the 

manual landmarks. Stop burst landmarks were detected at high accuracy with rates of 59%, 78%, 

88%, 91%, 94% and 95% at 3, 5, 10, 15, 20 and 30 ms temporal accuracy, while frication offset 

landmarks were detected at 53%, 68%, 79%, 83%, 86% and 90%. The high detection accuracies 

of closure and burst landmarks show the accuracy of the closure detector and the ability of the 

ROC function to distinctly show abrupt spectral transitions. The overall detection rates of all 

types of stop landmarks were 52%, 69%, 83%, 87%, 90% and 93%. There were a total of 48 

insertions due to short pauses, fricatives, nasals, glottal stop and clicks. As before, there is 

significant difference in performance of the method for different speakers and contexts, especially 

in the detection rate with 3 ms accuracy and number of insertions. This could account for 

differences in the abruptness of closure and burst transitions, and duration of closures and 

frication segments among the speakers, which require the use of different framing and smoothing  
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Table 5.4  Detection rates of stop consonant landmarks in TIMIT sentences using LMD2 
 

Landmark 
type Speaker 

Detection accuracy relative to manual transcriptions (in ms) 
Insertion 

<=3 <=5 <=10 <=15 <=20 <=30 

Closures 

FAKS0 38.6 63.2 84.2 91.2 94.7 94.7 10.5 
FDAC1 31.3 50.0 70.8 79.2 85.4 89.6 31.3 
FELC0 38.9 66.7 79.6 85.2 85.2 90.7 14.8 
MSKT0 51.1 59.6 80.9 87.2 87.2 91.5 10.6 
MWBT0 44.0 56.0 84.0 92.0 96.0 98.0 26.0 
Overall 40.6 59.4 80.1 87.1 89.8 93.0 18.4 

Bursts 

FAKS0 55.9 86.4 98.3 98.3 98.3 98.3 10.2 
FDAC1 66.7 79.6 87.0 90.7 94.4 94.4 27.8 
FELC0 65.5 80.0 83.6 87.3 90.9 92.7 14.5 
MSKT0 58.0 76.0 88.0 90.0 94.0 96.0 12.0 
MWBT0 47.3 67.3 80.0 87.3 89.1 92.7 23.6 
Overall 58.8 78.3 87.9 91.2 93.8 95.2 17.6 

Frication 
offsets 

FAKS0 71.7 88.7 98.1 98.1 98.1 98.1 7.5 
FDAC1 47.4 65.8 76.3 86.8 86.8 94.7 23.7 
FELC0 56.8 65.9 72.7 75.0 77.3 84.1 15.9 
MSKT0 42.1 60.5 73.7 78.9 81.6 86.8 7.9 
MWBT0 43.5 58.7 73.9 76.1 84.8 87.0 19.6 
Overall 53.2 68.6 79.5 83.2 85.9 90.0 14.5 

All  
types 

FAKS0 55.0 79.3 93.5 95.9 97.0 97.0 9.5 
FDAC1 49.3 65.7 78.6 85.7 89.3 92.9 27.8 
FELC0 53.6 71.2 79.1 83.0 85.0 89.5 15.0 
MSKT0 51.1 65.9 81.5 85.9 88.1 91.9 10.4 
MWBT0 45.0 60.9 79.5 85.4 90.1 92.7 23.2 
Overall 50.9 69.0 82.8 87.4 90.1 92.9 17.0 

 
 

window lengths for accurate detection. The overall detection rates at 10 ms are almost the same 

for all the speakers. Since we are going to use this method for extracting duration features for 

speaker recognition, its speaker-dependence may not affect the recognition performance; it might 

rather add additional speaker-dependent information. 

Compared to LMD1, this method has improved detection rates in all levels of temporal 

accuracy for closure and frication offset landmarks. The number of insertion is also reduced from 

59 to 48, resulting in 4% improvement. However, the detection rate of stop burst landmarks at 3 

ms accuracy has reduced from 68% using LMD1 to 59% in this method. Jayan et al [46] have 

developed a method of stop landmark detection based on Gaussian mixture modeling of the 

speech spectrum, and evaluated it using the same set of TIMIT sentences as we used.  Comparing 

with their results, the detection rates of stop burst landmarks with above 5 ms error and frication 

offset landmarks at 30 ms error are higher in Jayan’s method by 3% and 6% respectively. 

However, the detection rates of stop closure landmarks in our method are higher by about 40%, 
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40% and 25% at the temporal error of 5, 10 and 15 ms respectively. The detection rates of 

frication offset landmarks at 5 and 10 ms also have improved from 19% and 40% in Jayan et al’s 

method, to 68% and 79% in out method.  

 
Table 5.5  Number (percentage) of insertions in TIMIT sentences using LMD2 

 

Insertion 
 type 

Number (percentage) of Insertions  
Notes 

Closures Bursts Frication 
offsets Total 

Pauses 13 (5.1) 13 (4.8) 11 (5.0) 37 (4.9) Short pauses (‘epi’) mostly preceding 
nasals, and semivowels 

Glottal stop 5 (2.0) 5 (1.8) 0 (0) 10 (1.3) Brief closures denoted as ‘q’ in the TIMIT 
transcriptions  

Nasals 8 (3.1) 8 (2.9) 6 (2.7) 22 (2.9)
Nasals (‘n’, ‘m’) closures and bursts, esp. 
those  preceded or followed by pauses and 
semivowels 

Fricatives 11 (4.3) 12 (4.4) 8 (3.6) 31 (4.1) ’dh’, ‘th’ and ‘v’ 

Semivowels 
and glides 4 (1.6) 4 (1.5) 2 (0.9) 10 (1.3) ‘iy’ followed by ‘w’, ‘l’ followed by ‘iy’ 

Clicks 4 (1.6) 4 (1.5) 4 (1.8) 12 (1.6) Clicks mostly in long pauses  

Flap  2 (0.8) 2 (0.7) 1 (0.5) 5 (0.7) ‘dx’ sounds 

Total 46 (18.4) 48 (17.6) 32 (14.5) 127 (17.0) 46 closure and 32 frication intervals, 
resulting in total insertion of 48 phonemes.  
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Fig. 5.13  Detection rates for TIMIT sentences using LMD2: a) speaker-wise rates, b) overall rates 
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5.9  Discussion 

Spectral transitions in speech signal are manifested by rapid changes in signal characteristics such 

as intensity, periodicity and spectral envelope, and they represent major changes of articulation 

during the speech production process. Spectral rate-of-change functions derived from the 

magnitude spectrum, magnitude spectrum in 5 non-overlapping bands, and mel-filtered magnitude 

spectrum were studied for detecting spectral transitions. Median and mean smoothing along time 

axis of the original and mel-filtered magnitude spectrum were used to improve the detection 

process. Mel-filtering was investigated for smoothing harmonic transitions and other spectral 

discontinuities that occur along the frequency axis, while mean and median filtering were applied 

independently to reduce detection of false landmarks due to spectral transitions between pitch 

periods in voiced speech segments. A spectral slope parameter computed from the first difference 

of the filtered magnitude spectrum was used for detecting voicing onset and offset landmarks. The 

ROC of mel and median filtered squared magnitude spectrum, together with spectral slope and 

spectral flatness measure and log energy, was used for detecting stop consonant closure, burst and 

frication offset landmarks in clean VCV syllables and TIMIT sentences. Detection of stop 

landmarks on clean VCV utterances using the ROC of mel and median filtered squared magnitude 

spectrum and spectral slope resulted in overall detection rates of 53%, 75%, 91%, 95% and 97% 

within 3, 5, 10, 15 and 20 ms of the manual landmarks, respectively. Use of the ROC parameter, 

Wiener entropy and log energy for stop landmark detection in TIMIT sentences resulted in 

detection rates of 52%, 69%, 83%, 90%, and 93%, at 3, 5, 10, 20 and 30 ms accuracy 

respectively, and 18% insertion. 

ROC function obtained directly from the first difference of the squared magnitude spectrum 

results in less distinct peaks at strong burst and voicing onset points, and it gives little indication 

of voicing offset instants. Median or mean smoothing of the squared magnitude spectrum along 

the time axis reduces noise and periodic spectral transitions in voiced speech, and ROC function 

so obtained gives improved indication of voicing onsets. Use of multiband ROC parameters helps 

to locate spectral transitions that occur in specific frequency bands; however, it is sensitive to 

narrow band noise and instantaneous pitch variations. 

Filtering of the squared magnitude spectrum along the frequency axis using a triangular 

mel-filter bank emphasizes perceptually significant spectral transitions while masking harmonic 

structures. The advantage of this method is that its implementation is simple and it does not suffer 

from distortion or estimation errors as opposed to the methods that involve transformation or 

modelling of the speech spectrum. Besides, there is no temporal misalignment problem because 

the mel-filtering is done along the frequency axis. The stop landmark detection rates at temporal 

accuracies below 10 ms, obtained by picking peaks in the ROC of mel-filtered spectrum around 

closures, and voicing offsets and onsets, were promisingly high and the missed landmarks were 
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mainly due to missed closure segments or voicing onset/offsets landmarks. This suggests that the 

ROC parameter can accurately track abrupt spectral transients, and if we could come up with 

features for approximately locating the specific landmarks, a more precise location can be 

obtained from the ROC contour, and insertion rate can be reduced. One parameter we have found 

useful for locating stop landmarks is the product of log energy and Wiener entropy computed at 

high frame rate. It gives distinct dips during stop closure from which stop closures and bursts can 

be located with good temporal accuracy. 
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Chapter 6 

 

SPEAKER MODELING AND RECOGNITION 

 

6.1  Introduction 

In Chapter 4, we have studied the variation of stop closure and burst durations across speakers 

using F-ratio analysis of variance tests, for both text-dependent and text-independent cases. The 

results indicate that there is a significant difference in mean closure and burst durations among 

speakers; hence these parameters could be potential candidates for speaker recognition. We have 

also presented in Chapter 5 a stop landmark detection method for extracting the stop duration 

parameters. In this chapter, we discuss a closed-set text-independent speaker recognition system 

using stop closure and burst durations in combination with MFCC features. As the ANOVA 

results show, duration features are highly text-dependent and they could give better performance 

in text-dependent recognition; however, our interest here is to improve the performance of a text-

independent system, which generally has a lower performance compared to the text-dependent 

system. 

Text-independent speaker recognition systems are often implemented using vector 

quantization (VQ) or Gaussian mixture models (GMM). VQ is preferred when small amount of 

training and testing data are used. However, GMM is superior in modeling the variations of 

unconstrained speech and is more robust to noise and mismatch conditions [12]. Reynolds and 

Rose [12] give two reasons for using GMM. First, the individual component densities of the 

GMM may represent some underlying set of acoustic classes such as vowels, nasals and 

fricatives. These classes reflect some general speaker-dependent vocal tract configurations that 

are useful for speaker discrimination. In our case, depending on the number of mixtures, the 

component GMMs are expected to model the duration parameters of the different stops (e.g., 

voiced, unvoiced, or individual stops). Secondly, any arbitrarily-shaped density function can be 

approximated by a linear combination of Gaussian basis functions.  

Here, GMM is used for speaker recognition using stop closure and burst durations, and 

MFCC features. GMM is a stochastic model in which the distribution of the speaker’s feature 

vectors is approximated by a linear combination of multi-dimensional Gaussian density functions, 

as described earlier in Section 2.4. The speaker model is represented by means, covariances, and 

weights of the Gaussian mixtures, estimated from the speaker’s training feature vectors using 

expectation maximization algorithm. Speaker recognition is based on maximum log likelihood 
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score, computed using (2.19). Separate GMMs were generated for stop closure and burst 

durations, and MFCC features. The duration parameters were evaluated using manually obtained 

and automatically extracted duration features. MFCC features were extracted using the technique 

discussed in Section 3.3. Speaker recognition experiments were conducted on TIMIT data base. 

The following section discusses the training and testing stages, the database used, and details of 

the experiments carried out. 

 

6.2  Training and Testing 

In the training phase of speaker recognition, a set of speaker-dependent features are extracted 

from the training speech samples using suitable front-end processing techniques, and these 

features are used to generate speaker models. In our case, the features used are stop closure and 

burst durations, and MFCC features. The input speech was obtained at a sampling rate of 10 kHz, 

and it was pre-emphasized using a first-order high pass filter, with pre-emphasis coefficient of 

0.97, to compensate for the -6 dB high frequency roll-off of voiced glottal sounds. Text-

independent stop closure and burst durations were extracted from the resulting signal, using the 

landmark detector based on ROC of mel-filtered spectrum and closure detection, as described 

earlier in Section 5.7. Both the duration features are treated as one-dimensional vectors. To 

extract the MFCC features, low energy segments in the pre-emphasized speech signal were 

removed using the closure detector described in Section 5.7. Fourier transform of the filtered 

speech was computed using 512-pint DFT and, 20 ms Hanning window with 50% overlap. The 

magnitude spectrum was filtered using a bank of 40 triangular mel-filters with a minimum 

bandwidth of 133 Hz, and 13 cepstral coefficients were computed using (3.11). The standard 39-

dimensional MFCC feature vector consisting of the 13 cepstral coefficients, 13 delta coefficients 

and 13 delta-delta coefficients was used for speaker recognition. Thus in our investigations, we 

have used three feature vectors: (i) closure duration as one-dimensional feature vector, (ii) burst 

duration as one-dimensional feature vector, and (iii) 39-dimemnsional MFCC feature vector. The 

numbers of observations in each set of feature vectors are generally different. 

GMMs for each of the features were generated for each speaker using the expectation 

maximization algorithm described in Section 2.4. It may be noted that we use 1-dimensional 

GMM for the two duration features and 39-dimensional GMM for the MFCC feature vector. The 

initialization for estimating the GMM parameters was obtained using K-means clustering 

algorithm. In GMM fitting of a distribution, the number of components required to sufficiently 

approximate the distribution depends on the nature of the distribution. However, the number of 

maximum components in the model without resulting in computational errors depends on the 

number of observations, i.e. the amount of the training data [17]. During training, there were 30 – 

70 observations for the two durations across speakers. It was found that use of two to six Gaussian 
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mixtures for modelling closure and burst durations gave best results. For MFCC feature vectors, 

there were 500 - 800 observations, and they were modelled using 8-component GMMs with 

diagonal covariance matrices. 

During testing, stop closure and burst durations and MFCC features were extracted from 

the test utterances, and log likelihood of the test features were computed against each speaker 

model using (2.18). In order to compensate for speaker-independent score variability among 

speakers, the log likelihood scores were normalized using T-norm [10] as described in Section 

2.5. For recognition using combination of duration and MFCC features, the final score was taken 

to be a weighted sum of the normalized scores from the three models, with weights of 0.75 for 

MFCC, 0.25 for the individual as well as combined duration features. The weights have been 

empirically assigned, based on the expected recognition performance of the features; with greater 

weight given to the features with lower probability of recognition error. Finally, speaker 

recognition decision was made based on maximum normalized log likelihood score. 

Speaker recognition evaluation was carried out using TIMIT database. In this database, 

each person speaks 10 different sentences, out of which, 2 are common for all the speakers, 5 are 

common for only 7 speakers while the remaining three are different for each speaker. Initially, we 

tried a fully text-independent recognition in which the training utterances were different for some 

speakers. Testing using duration and MFCC features gave slight improvement over MFCC alone, 

but the performance of the duration parameters alone was poor. This may be attributed to the fact 

that duration features are highly text-dependent and features for one speaker extracted from a 

given set of utterances can overlap with the features for another speaker using a different set of 

utterances. For this reason, the duration parameters were evaluated for a set of speakers who have 

more utterances in common; so that the same set of training and testing utterances can be used for 

all the speakers. For this purpose, a set of 7 speakers who have 7 sentences in common were 

selected as reference speakers. A set of other 14 female and 16 male speakers were selected as 

impostors for T-norm score normalization. In order to study the performance of the features for 

different speakers, and training and test utterances, recognition experiments were conducted on 

five sets of reference speakers, with each set consisting of 7 different speakers. Recognition 

experiments using combination of MFCC and duration features were also conducted on a test set 

of 35 speakers, in order to investigate the contribution of stop closure and burst durations in a 

larger set of test speakers.  

The performance of both the duration and MFCC features depends on the amount of 

training and testing data. Particularly, the duration parameters are one-dimensional and, a large 

amount of data would be required to extract enough features. To study this effect, two types of 

recognition experiments were conducted by varying the amount of training and testing data. In the 

first case, only the 7 sentences which are common to all the speakers in a given set were 
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considered, out of which 5 sentences were used for training and 2 for testing. In the second case, 3 

sentences which are common to all speakers in a set were selected for testing and the remaining 7 

sentences were used for training. Similar division of training and testing speech was used for the 

tests with 35 reference speakers. For testing, the duration features extracted from individual 

sentences were very short, and a concatenation of features from 2 or 3 sentences were used. 

 

6.3  Results and disccusion  

Recognition scores were obtained for different combinations of stop closure and burst durations, 

and MFCC features. Table 6.1 shows the recognition rates for each set of speakers obtained using 

5 training sentences and 2 test sentences with T-norm. The total duration of the training speech 

was approximately 17 s, and that of the test speech was approximately 6 s. The number of 

mixtures column represents the number of GMM components used for modelling closure and 

burst durations. The number of mixtures used for MFCC features was 8 in all cases. Each speaker 

set consists of 7 speakers, and one recognition trial was conducted for each speaker. The numbers 

of female (F) and male (M) test speakers in each set are given in brackets in the table titles. 

 
Table 6.1  Recognition rates (%) using detected durations with 17 s training and 6 s testing utterances, and 
T-norm (no. of test speakers: Set1 – 5 M, 2 F; Set2 – 5 M, 2 F; Set3 – 4 M, 3 F; Set4 – 4 M, 3 F; Set5 – 3 
M, 4 F) 

 
No. of 

mixtures for 
duration 

Speaker 
set 

Detection rate (%) 

Closure Burst Closure 
+ burst MFCC MFCC + 

closure 
MFCC + 

burst All three 

1 

Set1 29 14 14 100 100 100 100 
Set2 43 0 29 100 100 100 100 
Set3 29 0 43 100 100 100 100 
Set4 14 43 29 100 100 100 100 
Set5 29 0 14 57 86 57 57 

Overall 29 11 26 91 97 91 91 

2 

Set1 29 14 29 100 100 100 100 
Set2 14 14 43 100 100 100 100 
Set3 43 0 14 100 100 100 100 
Set4 14 14 29 100 100 100 100 
Set5 29 14 14 57 86 57 57 

Overall 26 11 26 91 97 91 91 

3 

Set1 29 14 29 100 100 100 100 
Set2 57 29 57 100 100 100 100 
Set3 29 29 14 100 100 100 100 
Set4 29 43 43 100 100 86 86 
Set5 14 0 0 57 71 57 57 

Overall 31 23 29 91 94 89 89 



 

 

67

As results show, the performance of the duration features alone using short test utterances 

is very low, and this could be mainly due to lack of sufficient training and testing features. 

Closure duration gave relatively higher performance compared to frication duration, and no 

significant improvement was gained by using their combination. However, from the statistics of 

the individual recognition outcomes, it was observed in a number of tests that, when one feature 

misses, the other recognizes correctly, and vice versa, which suggests that the parameters may 

have complementary information. The recognition rates for MFCC alone, and duration and 

MFCC together were mostly similar. In speaker set5, which consisted of more number of female 

speakers, the recognition rate using MFCC alone was 52% and it was improved to 86% (2 more 

speakers identified correctly) using MFCC and closure duration features.  

The recognition rates obtained using 7 training sentences (approximate duration of 25 s) 

are given in Table 6.2 and Table 6.3. The results in Table 6.2 were obtained using test features 

extracted from concatenation of 2 sentences. Table 6.3 shows results from recognition using 3 

concatenated test sentences (duration 10 s). Compared to the results in Table 6.1, the recognition 

rates in this case are higher for both duration and MFCC features. Overall recognition rates of 

43%, 34% and 34% were attained for closure and burst durations, and their combination 

respectively, using 2-component GMMs and approximately 10 s test utterances. The 

performances of the systems using either closure or burst duration with MFCC features were at 

least as good as that of the system using MFCC alone, while the system combining all the three 

features performed lower for some speakers. 

The results show that stop closure and burst durations have speaker-dependent 

information. Their recognition rates with short test utterances are very low, but they can be 

combined with MFCC feature for improving speaker recognition. As the size of training and 

testing data increases, the performances of the both the duration and MFCC features improves. 

With respect to the number of GMM mixtures, closure duration was found to give better results 

with smaller number of components and its performance degraded significantly as the number of 

components exceeded 6, while the performance of burst duration was relatively less variable. 

There is a variation in the performances of the parameters across the 5 sets, which could be due to 

the difference in degree of similarity between speakers in each test set. Relatively, the results 

using closure duration are similar across the test sets. The overall low recognition rates of the 

duration features could be due to the following factors: (i) the amount of data used for training 

and testing was not enough to extract duration feature for speaker recognition, (ii) duration 

features are highly text-dependent and combining them in text-independent way can significantly 

reduce their speaker-discriminating capability, and (ii) the duration features might not have been 

accurately extracted. 
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Table 6.2  Recognition rates (%) using detected duration s with 25 s training and 6 s testing utterances, and 
T-norm (no. of test speakers: Set1 – 5 M, 2 F; Set2 – 5 M, 2 F; Set3 – 4 M, 3 F; Set4 – 4 M, 3 F; Set5 – 3 
M, 4 F) 

 
No. of 

mixtures 
For duration 

Speaker 
set 

Detection rate (%) 

Closure Burst Closure 
+ burst MFCC MFCC + 

closure 
MFCC + 

burst All three 

2 

Set1 57 0 43 100 100 100 100 
Set2 14 14 29 100 100 100 100 
Set3 57 14 14 100 100 100 100 
Set4 43 57 43 100 100 100 100 
Set5 14 43 43 86 86 100 86 

Overall 37 26 34 97 97 100 97 

3 

Set1 29 14 29 100 100 100 100 
Set2 29 29 43 100 100 100 100 
Set3 29 14 29 100 100 100 100 
Set4 29 29 29 100 100 100 100 
Set5 43 43 29 86 86 100 71 

Overall 31 26 31 97 97 100 94 
 
Table 6.3  Recognition rates (%) using detected durations with 25 s training and 10 s testing utterances, and 
T-norm (no. of test speakers: Set1 – 5 M, 2 F; Set2 – 5 M, 2 F; Set3 – 4 M, 3 F; Set4 – 4 M, 3 F; Set5 – 3 
M, 4 F) 

 
No. of 

mixtures for 
durations 

Speaker 
set 

Detection rate (%) 

Closure Burst Closure 
+ burst MFCC MFCC + 

closure 
MFCC + 

burst All three 

2 

Set1 43 0 14 100 100 100 100 
Set2 43 57 57 100 100 100 100 
Set3 43 14 14 100 100 100 100 
Set4 57 43 57 100 100 100 100 
Set5 29 57 29 86 86 100 86 

Overall 43 34 34 97 97 100 97 

3 

Set1 29 0 14 100 100 100 100 
Set2 29 29 43 100 100 100 100 
Set3 29 14 29 100 100 100 100 
Set4 29 29 29 100 100 100 100 
Set5 14 14 14 86 86 100 86 

Overall 26 17 26 97 97 100 97 

4 

Set1 43 0 43 100 100 100 100 
Set2 14 0 0 100 100 100 100 
Set3 43 14 71 100 100 100 100 
Set4 0 29 0 100 100 100 86 
Set5 14 0 14 86 86 86 57 

Overall 23 9 26 97 97 97 89 
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Table 6.4  Recognition rates (%) using manual durations with 25 s training and 10 s testing utterances, and 
T-norm (no. of test speakers: Set1 – 5 M, 2 F; Set2 – 5 M, 2 F; Set3 – 4 M, 3 F; Set4 – 4 M, 3 F; Set5 – 3 
M, 4 F) 
 

No. of 
mixtures 

for duration 

Speaker 
set 

Detection rate (%) 

Closure Burst Closure 
+ burst MFCC 

MFCC 
+ 

closure 

MFCC 
+ burst 

All 
three 

2 

Set1 43 43 71 100 100 100 100 
Set2 57 29 43 100 100 100 100 
Set3 57 29 43 100 100 100 100 
Set4 29 29 43 100 100 100 100 
Set5 43 43 43 86 86 100 100 
Overall 46 34 49 97 97 100 100 

3 

Set1 43 43 71 100 100 100 100 
Set2 57 29 43 100 100 100 100 
Set3 57 29 43 100 100 100 100 
Set4 29 29 43 100 100 100 100 
Set5 43 43 43 86 86 100 86 
Overall 46 34 49 97 97 100 97 

4 

Set1 57 29 71 100 100 100 100 
Set2 71 43 43 100 100 100 100 
Set3 29 14 43 100 100 100 100 
Set4 0 29 14 100 100 100 100 
Set5 57 57 57 86 86 100 86 
Overall 43 34 46 97 97 100 97 

6 

Set1 29 29 43 100 100 100 100 
Set2 57 29 57 100 100 100 100 
Set3 43 29 43 100 100 100 100 
Set4 14 0 14 100 100 100 86 
Set5 71 71 86 86 86 100 86 
Overall 43 31 49 97 97 100 94 

 

In order to examine if the problem was due to temporal inaccuracies in landmark 

detection, recognition tests were conducted using duration features extracted manually from the 

TIMIT transcriptions. Table 6.4 and Table 6.5 show detection rates obtained using approximately 

25 s training and 10 s data, with and without T-norm score normalization respectively. 

Cumulatively, the performances in this case are slightly higher for all the features as compared to 

the results obtained using automatically detected duration features. Recognition rates of 45%, 

37% and 51% were obtained for closure, burst and their combination respectively, using 2-

component GMMs and without test normalization. In some cases, recognition rates of up to 85% 
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were attained using closure and burst duration features together. The normalized recognition 

scores obtained using combination of MFCC and duration, were at least the same as those 

obtained using only MFCC features. It is to be noticed that there were situations in which 

speakers missed by the MFCC features were consistently recognized either by closure or burst 

duration. Table 6.6 shows recognition results obtained using training data of approximately 17 s 

and test data of about 6 s. The rates due to the duration features alone were still low; however, the 

scores obtained using combination of MFCC and duration are mostly better than the scores 

obtained using only MFCC features. 

 
Table 6.5  Recognition rates (%) using manual duration with 25 s training and 10 s testing utterances, and 
without T-norm (no. of test speakers: Set1 – 5 M, 2 F; Set2 – 5 M, 2 F; Set3 – 4 M, 3 F; Set4 – 4 M, 3 F; 
Set5 – 3 M, 4 F) 

 
No. of 

mixtures for 
durations 

Speaker 
set 

Detection rate 

Closure Burst Closure 
+ burst MFCC MFCC + 

closure 
MFCC + 

burst All three 

2 

Set1 57 57 86 100 100 100 100 
Set2 57 29 43 100 100 100 100 
Set3 43 29 43 100 100 100 100 
Set4 29 29 43 100 100 100 100 
Set5 43 43 43 86 86 100 86 
Overall 46 37 51 97 97 100 97 

3 

Set1 57 57 86 100 100 100 100 
Set2 57 29 43 100 100 100 100 
Set3 43 29 43 100 100 100 100 
Set4 29 29 43 100 100 100 86 
Set5 43 43 43 86 86 100 86 
Overall 46 37 51 97 97 100 94 

4 

Set1 57 29 71 100 100 100 100 
Set2 71 43 43 100 100 100 100 
Set3 29 14 43 100 100 100 100 
Set4 0 29 14 100 100 100 71 
Set5 57 71 71 86 86 100 86 
Overall 43 37 49 97 97 100 91 

6 

Set1 29 29 43 100 100 100 100 
Set2 57 29 57 100 100 100 100 
Set3 43 29 43 100 100 100 100 
Set4 14 0 14 100 86 100 86 
Set5 71 71 86 86 86 100 100 
Overall 43 31 49 97 94 100 97 
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Table 6.6  Recognition rates (%) using manual durations with 17 s training and 6 s testing utterances, and 
T-norm (no. of test speakers: Set1 – 5 M, 2 F; Set2 – 5 M, 2 F; Set3 – 4 M, 3 F; Set4 – 4 M, 3 F; Set5 – 3 
M, 4 F) 

 
No. of 

mixtures for 
durations 

Speaker 
set 

Detection rate 

Closure Burst Closure 
+ burst MFCC MFCC + 

closure 
MFCC + 

burst All three 

3 

Set1 43 71 57 100 100 100 100 
Set2 14 14 0 100 100 100 86 
Set3 43 14 29 100 100 100 100 
Set4 14 29 29 71 86 71 86 
Set5 43 0 14 86 86 100 100 

Overall 31 26 26 91 94 94 94 

4 

Set1 29 29 29 100 100 100 100 
Set2 29 29 43 100 100 100 86 
Set3 43 14 14 100 100 100 100 
Set4 14 14 29 71 86 71 86 
Set5 14 0 14 86 86 86 100 

Overall 26 17 26 91 94 91 94 

4 

Set1 29 29 29 100 100 100 100 
Set2 14 14 43 100 100 100 86 
Set3 14 29 29 100 100 100 100 
Set4 14 14 14 71 100 71 57 
Set5 29 29 43 86 71 100 71 

Overall 20 23 31 91 94 94 83 
 

Comparing the results in Table 6.4 and Table 6.5, it can be observed that the recognition 

rates for MFCC are improved with T-norm, while the rates for the duration features are higher 

without T-norm. The T-norm could have the effect of normalizing out the speaker-dependent 

duration variations across different utterances. Improved recognition rates could be obtained by 

applying the T-norm only to the MFCC scores; however, combining the normalized MFCC scores 

with the un-normalized duration scores may not be a simple task. 

In order to find out the contribution of the duration features on a larger set of test 

speakers, text-independent recognition experiments using combination of MFCC and duration 

features were carried out on the entire set of 35 speakers. Two recognition experiments were 

conducted using different amount of training and testing speech. In first case, 8 out of the 10 

sentences (25 s duration) were used for training and 2 sentences (6 s duration) were used for 

testing. In the second case, 7 sentences (20 s duration) were used for training and 3 sentences (10 

s duration) for testing. The duration features were modelled using 2-component GMMs, and 

MFCC features were modelled using 8 Gaussian mixtures as before. In both cases, 2 recognition 

trials were conducted for each speaker, resulting in a total of 70 trials in each experiment, and the 

log likelihood scores were computed without T-norm. Both manually measured and automatically 
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extracted duration features were used. The results are summarized in Table 6.7. The performances 

of MFCC combined with stop duration features are mostly higher than, and at least the same as, 

that of MFCC features. Using combination of MFCC and automatically extracted closure duration 

resulted in an improvement of 3% over the MFCC features alone. The performance of all the 

features has improved with increasing the amount training speech. The results show that the 

improvement obtained using automatically extracted duration features are higher than that of the 

manually measured durations. This may be due to the fact that the temporal errors in the landmark 

detection are speaker-dependent, and they can add speaker information to the duration features 

which can improve recognition performance. 

 

Table 6.7  Recognition results (%) using a test set of 35 speakers, without T-norm 

Extraction 
method 

Length of 
training 

utterance (s) 

Length of 
Test 

utterance (s) 

Detection rate 

MFCC MFCC + 
closure 

MFCC + 
burst All three 

Manual 
25 6 93 94 93 94 
20 10 90 90 90 90 

Detected 
25 6 93 96 93 94 
20 10 90 94 90 93 

 

6.4  Summary 

The recognition results obtained using automatically detected and manually extracted duration 

features show that stop duration parameters have speaker-dependent information. The 

performances of MFCC and duration features together were generally better than that of the 

MFCC features alone, especially with short training and test utterances. This shows that the 

duration features convey speaker information which is complementary to that of MFCC features. 

Besides, the duration features are one-dimensional and training and testing takes a relatively small 

time; therefore, they can be used together with the MFCC features to improve speaker recognition 

without adding significant effect on the system complexity. In the experiments with the same 

training and testing utterances, the recognition rates obtained using automatically detected closure 

and burst durations were comparable to the results obtained using manually extracted features. 

This indicates that the landmark detector was able to detect stop landmarks with acceptable 

temporal accuracy, and small inaccuracy may not have significant effect on performance of the 

speaker recognition system. The results obtained using 35 test speakers also indicated the 

temporal errors during landmark detection may be speaker-dependent and they can contribute to 

the improvement of speaker recognition using duration features. 
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Chapter 7 

 

SUMMARY AND CONCLUSION 

 

The objective of this project was to investigate the variation of stop duration parameters using 

automatic landmark detection for improving speaker recognition. For this purpose, the variation 

of stop closure durations across speakers was studied using analysis of variance (ANOVA) tests 

on VCV syllables and sentences recorded at different speaking rates. The effect of context 

variation on stop closure and burst durations was analyzed using two-way ANOVA on VCV 

utterances and TIMIT sentences. In order to extract the duration features, a landmark detection 

technique based on the rate-of-change of mel-filtered spectrum, spectral flatness measure, spectral 

slope and signal energy was developed. The method was evaluated on VCV syllables and TIMIT 

sentences. Finally, speaker recognition experiments were carried out on TIMIT database using 

Gaussian mixture modeling of stop closure and burst durations, and MFCC features. 

The one-way ANOVA results showed that text-dependent stop closure duration varies 

significantly across speakers. However, the results also showed that the speaking rate and context 

variability have significant effect on closure and burst durations. The variation of stop closure 

duration was found to be high among different speakers compared to the variations due to vowel 

and stop types, while burst duration was found to be highly dependent on the type of stop. The 

results suggest that stop duration parameters convey speaker-dependent information and could be 

used in combination with the standard features for improving speaker recognition. 

Two types of landmark detectors were developed for detecting stop closure, burst and 

burst offset: 1) based one ROC of mel-filtered squared magnitude spectrum and voicing detection, 

and 2) based on ROC of mel-filtered squared magnitude spectrum and closure detection. In both 

cases, Wiener entropy (a measure of spectral flatness) of the magnitude spectrum was used for 

validating stop landmarks. A measure of spectral slope computed from the first difference of the 

mel-filtered magnitude spectrum along the frequency axis was used for detecting voicing 

onset/offset landmarks. Closure segments were detected using a new parameter computed as the 

product of Wiener entropy and log energy. Detection of stop landmarks in VCV syllables using 

ROC and voicing detection resulted in overall detection rates of 53%, 75%, 90%, 95% and 97%  

respectively within 3, 5, 10, 15 and 30 ms of the manually labeled landmarks. The detection rates 

on TIMIT sentences using the same method were 52%, 68%, 79%, 84%, 87% and 91% at 

temporal accuracies of 3, 5, 10, 15, 20 and 30 ms respectively. Using ROC and closure detection, 
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stop landmarks in TIMIT sentences were detected at rates of 52%, 69%, 83%, 87%, 90% and 93% 

within 3, 5, 10, 15, 20 and 30 ms of the manual landmarks, respectively. The results show that the 

ROC of mel-filtered magnitude spectrum is effective in tracking abrupt acoustic transitions. Mel-

filtering of the squared magnitude spectrum along the frequency axis improves landmark 

detection by enhancing the perceptually important spectral transitions and, smoothing harmonic 

structure and noise. 

The speaker recognition experiments were carried out on TIMIT database using Gaussian 

mixture modeling of MFCC features and automatically detected and manually extracted stop 

closure and burst duration features. The number of speakers in a test set was 7, and 5 speaker sets 

were taken in order to investigate the performances of the features for different speaker sets, and 

training and test utterances. The performance of duration features alone was not satisfactory. 

However, compared to the rates due to MFCC features alone, an improvement of 4% was 

obtained by combing MFCC with closure durations. This shows that stop closure and burst 

durations have speaker information which may not be conveyed by the MFCC parameters; 

therefore, they can be used for improving speaker recognition. However, the performances of the 

closure and burst durations were very low, which indicates that such duration parameters alone 

could not be useful for text-independent speaker recognition. 

This work has focused on the detection of stop landmarks for extracting stop closure and 

burst durations for text-independent speaker recognition, using short training and test speech. 

However, the project can be extended to improve the performance of the landmark detection 

method and to study additional duration features for speaker recognition. The landmark detector 

can be further investigated for detecting different types of speech landmarks by incorporating 

additional phonetic features. The duration features can be studied using a larger amount of 

training and testing data for both text-dependent and text-independent speaker recognition. 

Moreover, improved recognition performance may be attained by devising a better scheme for 

combining the scores obtained using different recognition parameters. 
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Appendix A  

 

RESULTS FROM ANOVA OF STOP CLOSURE AND BURST DURATIONS 

 

A.1  One-Way ANOVA of Closure Duration 

 
Table A.1  Means and square root of variances of stop closure duration at normal speaking rate (closure 

duration  in ms, Sp = speaker) 
 

Utter-
ance 

Stop 
closure 

Mean (ms) variance  (ms) 
Sp1 Sp2 Sp3 Sp4 Sp5 Sp1 Sp2 Sp3 Sp4 Sp5 

VCV01 

/aba/ 118.7 86.7 117.4 80.4 89.3 5.1 5.1 3.6 8.5 8.2 
/ada/ 107.3 84.9 115.9 74.4 87.3 6.1 7.5 9.1 4.8 6.3 
/aka/ 109.9 95.7 112.1 81.4 87.9 9.3 6.4 5.8 7.7 7.3 
/apa/ 118.0 119.0 121.1 100.9 94.1 5.0 9.1 5.8 5.5 5.2 
/ata/ 119.1 118.9 116.9 106.9 86.6 4.4 8.8 6.2 6.3 7.6 

VCV02 

/ibi/ 111.1 103.7 86.3 80.4 98.1 5.7 9.4 4.8 10.0 8.9 
/idi/ 112.6 89.9 89.0 69.0 100.9 9.1 4.0 7.0 5.8 8.8 
/iki/ 104.9 88.0 89.0 87.3 90.0 7.3 8.1 6.7 4.6 5.7 
/ipi/ 117.7 120.9 99.9 96.0 106.3 7.2 6.2 8.2 5.3 7.9 
/iti/ 116.4 97.1 107.0 81.6 87.7 5.3 9.8 4.7 12.5 10.2 

S01 

/edi-/ 50.3 25.1 52.7 42.3 36.3 5.5 6.8 5.8 8.4 1.9 
/-ito-| 57.1 38.6 44.1 54.3 42.4 5.6 3.5 11.4 3.0 5.6 
/-oppe-| 68.9 59.4 54.0 57.7 64.8 7.6 13.1 6.2 3.7 5.0 
/-ed| 68.6 48.3 53.4 35.8 31.7 11.0 4.2 10.4 9.0 10.4 
/-ape-/ 94.3 81.3 72.1 63.7 77.6 4.3 5.2 8.8 5.1 6.2 

S02 

/-api-/ 79.6 60.0 75.9 52.3 63.9 4.5 6.7 8.3 4.3 5.3 
/-ita-/ 44.9 29.0 35.0 35.6 - 6.7 2.2 7.8 6.9 - 
/-ity/ 49.9 22.0 52.3 49.0 36.3 7.8 1.6 7.3 5.1 2.5 
/-opu-/ 90.0 62.3 85.3 53.6 69.7 3.4 3.1 4.1 8.6 8.0 
/-ate-/ 58.6 35.9 59.7 43.7 51.3 5.1 5.4 11.3 3.0 10.0 

S03 

/-ick-/ 44.0 49.9 58.9 35.0 44.4 5.0 4.9 15.3 5.5 3.4 
/-ed/ 51.4 33.3 37.9 47.4 - 6.1 4.5 11.4 2.3 - 
/-up/ 86.3 71.3 72.3 55.7 57.6 14.9 6.7 8.0 6.4 4.8 
/-ack/ 90.7 75.7 73.6 52.7 60.0 7.5 6.3 2.1 1.8 4.5 
/-age/ 71.0 52.6 59.1 47.4 58.7 3.6 8.1 10.9 5.5 8.8 

S04 
/ab-/ 103.9 90.3 67.1 57.4 83.1 6.8 6.4 6.2 4.1 4.8 
/-ed-/ 60.1 77.0 - 37.7 - 5.1 4.3 - 3.1 - 
/-aby-/ 63.7 65.1 53.6 54.1 58.6 2.8 4.2 7.1 7.8 5.4 
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Utter-
ance 

Stop 
closure 

Mean (ms) variance  (ms) 
Sp1 Sp2 Sp3 Sp4 Sp5 Sp1 Sp2 Sp3 Sp4 Sp5 

S05 

/-oto-/ 39.7 22.9 35.3 44.7 27.0 1.1 3.1 4.5 7.2 3.5 
/-oco-/ 66.4 50.9 60.4 39.3 45.6 8.0 9.5 5.5 2.8 4.4 
/-opi-/ 100.3 56.7 65.7 61.6 70.4 9.8 5.7 12.8 6.0 6.5 
/-ied/ 82.0 111.4 55.6 72.1 78.3 10.0 6.5 9.0 5.9 10.2 
/-ook/ 110.4 100.1 102.3 90.1 88.4 12.0 7.5 4.8 9.2 7.3 

S06 

/abi-/ 105.1 91.7 87.1 52.0 79.6 3.9 9.2 10.9 3.6 3.1 
/-ide-/ 55.4 37.9 31.6 46.7 43.7 5.3 6.1 7.9 4.5 4.6 
/edu-/ 70.9 51.1 60.3 48.7 44.1 2.8 2.8 7.8 8.3 4.2 
/-uca-/ 51.3 47.1 70.7 49.2 59.7 6.5 3.6 8.6 5.2 6.2 
/-ate-/ 61.7 26.9 48.9 49.7 48.7 7.1 13.0 4.4 3.9 5.7 

 
Table A.2  ANOVA of stop closure duration at normal speaking rate (SSW = sum of squares within 
speakers, SSB = sum of squares between speakers, MSSW = mean of squares within speakers, MSSB = mean 
of squares between speakers, α = 0.05 for all cases, duration values in ms) 
 

Utterance Stop 
closure SSW MSSW SSB MSSB F-ratio P-value Fcritical 

VCV01 

/aba| 1227.7 40.9 9221.0 2305.2 56.3 1.6e-13 2.7 
/ada| 1436.3 47.8 8161.6 2040.4 42.6 5.8e-12 2.7 
/aka| 1635.7 54.5 5050.6 1262.6 23.2 8.3e-09 2.7 
/apa| 1190.6 39.6 4215.6 1053.9 26.5 1.8e-09 2.7 
/ata| 1403.1 46.7 5370.7 1342.6 28.7 7.2e-10 2.7 

VCV02 

/ibi| 1932.3 64.4 4411.6 1102.9 17.1 2.1e-07 2.7 
/idi| 1555.4 51.8 7307.2 1826.8 35.2 6.2e-11 2.7 
/iki| 1306.3 43.5 1514.6 378.6 8.7 8.7e-05 2.7 
/ipi| 1486.5 49.5 3309.7 827.4 16.7 2.7e-07 2.7 
/iti| 2439.7 81.3 5579.2 1394.8 17.2 2.0e-07 2.7 

S01 

/edi-| 1100.5 36.6 3487.3 871.8 23.8 6.2e-09 2.7 
/-ito-| 1282.5 42.7 1788.9 447.2 10.46 2.0e-05 2.69 
/-oppe-| 1820.8 62.7 955.4 238.8 3.80 1.3e-02 2.70 
-ed| 1969.6 93.7 4508.3 1127.1 12.02 3.1e-05 2.84 
/-ape-| 883.0 35.3 2964.8 741.2 20.99 1.1e-07 2.76 

S02 

/-api-| 1090.9 36.4 3566.7 891.7 24.5 4.4e-09 2.7 
/-ita-/ 952.6 41.4 900.1 225.0 5.4 3.1e-03 2.8 
/-ity/ 889.7 31.8 3705.0 926.3 29.2 1.3e-09 2.7 
/-opu-/ 1056.0 35.2 6577.0 1644.2 46.7 1.8e-12 2.7 
/-ate-/ 1350.1 51.9 2853.0 713.3 13.7 3.8e-06 2.7 

S03 

/-ed/ 441.4 49.1 5546.9 1386.7 28.3 4.1e-05 3.6 
/-ed/ 1163.1 50.6 1473.2 368.3 7.28 6.1e-04 2.80 
/-up/ 2369.4 78.9 4348.7 1087.1 13.77 1.7e-06 2.69 
/-ack/ 738.0 24.6 6102.6 1525.6 62.02 4.5e-14 2.69 
/-age/ 1779.7 68.4 1392.1 348.0 5.08 3.7e-03 2.74 

S04 /ab-/ 995.7 33.1 9512.4 2378.1 71.65 6.5e-15 2.69 
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Utterance Stop 
closure SSW MSSW SSB MSSB F-ratio P-value Fcritical 

S04 
/-ed-/ 324.2 20.2 5438.0 1359.5 67.08 8.6e-10 3.01 
/-aby-/ 996.5 33.2 792.4 198.1 5.96 1.2e-03 2.69 

S05 

/-oto-/ 565.1 18.8 2255.6 563.9 29.93 4.4e-10 2.69 
/-oco-/ 1265.3 42.1 3375.3 843.8 20.00 4.1e-08 2.69 
/-opi-/ 2213.7 73.7 8252.1 2063.0 27.96 9.7e-10 2.69 
/-ied/ 1771.7 68.1 11551.6 2887.9 42.38 5.0e-11 2.74 
/-ook/ 2174.5 72.4 2312.5 578.1 7.98 1.7e-04 2.69 

S06 

/abi-/ 1448.8 48.3 10892.6 2723.1 56.39 1.6e-13 2.69 
/-ide-/ 1015.1 33.8 2280.7 570.1 16.85 2.4e-07 2.69 
/edu-/ 987.4 32.9 3161.5 790.3 24.01 5.5e-09 2.69 
/-uca-/ 1143.9 39.4 2595.5 648.9 16.45 3.9e-07 2.70 
/-ate-/ 1703.9 58.7 4442.8 1110.7 18.90 9.6e-08 2.70 

 

A.2  Two-Way ANOVA of Stop Closure Durations at Different Speaking Rates 
 

Table A.3  Means and square root of variances of stop closure duration at different speaking rates (Sp = 
speaker, var = variance) 

 

Utter-
ance 

Stop 
closure 

Speaking 
Rate 

Mean (ms) var  (ms) 
Sp1 Sp2 Sp3 Total Sp1 Sp2 SP3 Overall 

S11 

/edi-/ 

Slow 34.8 83.2 71.0 63.0 3.3 1.8 9.3 21.9 
Normal 36.2 43.8 50.2 43.4 1.9 5.2 4.3 7.0 
Fast 27.2 34.2 22.2 27.9 3.9 2.5 6.9 6.8 
Overall 32.7 53.7 47.8 44.8 5.0 22.2 21.7 19.9 

/-oto-/ 

Slow 62.8 112.2 57.8 77.6 6.3 8.7 3.0 26.1 
Normal 39.4 64.8 36.4 46.8 3.9 1.8 3.4 13.5 
Fast 28.0 40.4 32.4 33.6 4.5 3.3 6.7 7.1 
Overall 43.4 72.5 42.2 52.7 15.7 31.3 12.3 25.3 

/-oco-/ 

Slow 76.0 124.4 84.2 94.8 3.7 15.0 8.5 23.8 
Normal 59.4 56.6 61.8 59.2 3.0 4.8 2.5 4.0 
Fast 40.0 48.0 53.0 47.0 3.4 6.3 5.4 7.3 
Overall 58.5 76.3 66.3 67.0 15.5 36.5 14.7 25.0 

/-opie-/ Slow 151.8 145.4 138.6 145.3 10.4 16.5 6.1 12.3 

S11 

/-opie-/ 
Normal 73.6 89.4 92.6 85.2 7.5 7.7 9.6 11.5 
Fast 49.6 63.2 65.6 59.4 4.3 2.6 11.7 10.0 
Overall 91.7 99.3 98.9 96.6 45.7 36.8 32.4 38.0 

/-ook/ 

Slow 122.4 231.0 132.4 161.9 8.6 56.2 8.6 59.3 
Normal 89.4 110.8 92.8 97.6 3.6 4.4 4.0 10.4 
Fast 87.4 91.8 81.4 86.8 9.7 7.6 4.4 8.3 
Overall 99.7 144.5 102.2 115.5 18.1 70.7 23.3 49.0 

S12 /-api-/ 
Slow 158.2 169.4 140.0 155.9 9.4 27.6 11.6 20.9 
Normal 77.0 73.0 73.4 74.5 5.6 2.7 3.0 4.1 
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Utter-
ance 

Stop 
closure 

Speaking 
Rate 

Mean (ms) var  (ms) 
Sp1 Sp2 Sp3 Total Sp1 Sp2 SP3 Overall 

S12 

/-api-/ 
Fast 45.2 53.0 66.8 55.0 1.9 5.2 2.9 9.8 
Overall 93.5 98.5 93.4 95.1 49.6 54.7 34.8 46.1 

/-ita-/ 

Slow 53.4 213.0 62.8 109.7 3.8 29.9 4.3 77.4 
Normal 39.8 42.2 24.6 35.5 5.9 6.4 7.5 10.1 
Fast 24.4 31.0 26.6 27.3 3.2 3.9 10.1 6.7 
Overall 39.2 95.4 38.0 57.5 12.9 87.8 19.5 58.0 

|-ity| 

Slow 63.8 255.2 52.8 123.9 6.2 16.4 5.1 96.7 
Normal 40.8 74.4 45.8 53.7 3.6 6.3 5.4 16.1 
Fast 27.4 54.8 42.6 41.6 3.6 4.9 3.4 12.2 
Overall 44.0 128.1 47.1 73.1 16.1 93.9 6.2 66.7 

/-opu-/ 

Slow 107.4 107.8 122.8 112.7 8.3 21.3 6.3 14.7 
Normal 80.0 60.6 90.4 77.0 4.7 3.5 6.8 13.7 
Fast 68.6 52.0 72.2 64.3 5.9 2.2 10.1 11.1 
Overall 85.3 73.5 95.1 84.6 17.9 27.9 22.9 24.4 

/-ate-/ 

Slow 51.6 142.2 54.6 82.8 3.6 22.1 3.3 45.1 
Normal 42.4 51.2 45.8 46.5 4.6 5.8 12.7 8.7 
Fast 39.6 39.4 52.8 43.9 2.5 4.0 4.6 7.4 
Overall 44.5 77.6 51.1 57.7 6.3 49.1 8.4 31.8 

S03 

/aba-/ 

Slow 191.0 91.0 117.6 133.2 8.2 5.8 8.6 44.3 
Normal 79.4 69.0 94.4 80.9 5.7 2.7 3.8 11.5 
Fast 59.4 51.4 79.4 63.4 3.0 3.4 2.1 12.5 
Overall 109.9 70.5 97.1 92.5 60.2 17.2 17.1 40.2 

/aba-/ 

Slow 75.2 86.4 58.0 73.2 3.6 8.0 4.5 13.2 
Normal 72.0 59.8 52.2 61.3 4.1 3.3 7.0 9.7 
Fast 55.4 50.8 49.6 51.9 4.7 3.0 3.9 4.5 
Overall 67.5 65.7 53.3 62.2 9.8 16.4 6.1 13.0 

/ucu/ 

Slow 83.6 160.0 59.0 100.9 4.0 14.9 5.3 45.4 
Normal 52.4 95.8 56.8 68.3 4.8 4.3 1.3 20.5 
Fast 43.8 62.4 38.2 48.1 4.3 3.3 2.4 11.2 
Overall 59.9 106.1 51.3 72.4 18.2 42.8 10.2 36.2 

S14 

/-icke-/ 

Slow 81.6 146.8 52.0 93.5 4.7 13.2 6.6 41.8 
Normal 39.6 57.8 44.2 47.2 4.0 6.6 4.6 9.3 
Fast 31.6 40.6 37.8 36.7 3.2 7.2 5.0 6.3 
Overall 50.9 81.7 44.7 59.1 23.0 49.0 7.9 34.9 

/up/ 

Slow 122.2 150.8 122.4 131.8 3.0 8.5 11.8 16.0 
Normal 62.8 77.2 57.4 65.8 9.7 2.3 4.3 10.4 
Fast 45.2 48.2 40.2 44.5 1.9 4.9 2.4 4.6 
Overall 76.7 92.1 73.3 80.7 34.5 45.0 37.3 39.2 

/-acka-/ 

Slow 119.8 144.0 129.8 131.2 8.7 15.2 5.7 14.2 
Normal 65.4 78.0 85.4 76.3 5.9 3.4 4.3 9.6 
Fast 46.0 51.0 54.4 50.5 3.0 3.4 5.4 5.2 
Overall 77.1 91.0 89.9 86.0 32.9 41.3 32.4 35.5 
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Table A.4  Two-way ANOVA of stop closure duration at different speaking rates ( Sp = speaker, α = 0.05) 
 

Utterance Stop 
closure 

Source of 
variation 

Sum of 
squares 

(ms) 

Degree 
of 

freedom 

Mean of 
squares 

(ms) 
F-ratio P-value Fcritical 

S11 

/edi-/ 

Rate 9298.9 2 4649.4 190.9 6.8e-20 3.3 
Speakers 3516.0 2 1758.0 72.2 2.5e-13 3.3 
Interaction 3674.8 4 918.7 37.7 2.1e-12 2.6 
Within 876.4 36 24.3 - - - 

/-oto-/ 

Rate 15282.7 2 7641.3 299.6 3.6e-23 3.3 
Speakers 8811.9 2 4405.9 172.7 3.5e-19 3.3 
Interaction 3059.0 4 764.7 29.9 5.1e-11 2.6 
Within 918.0 36 25.5 - - - 

/-oco-/ 

Rate 18545.2 2 9272.6 194.6 4.9e-20 3.3 
Speakers 2405.5 2 1202.7 25.2 1.4e-07 3.3 
Interaction 4801.9 4 1200.4 25.2 5.2e-10 2.6 
Within 1715.2 36 47.6 - - - 

/-opie-/ 

Rate 58159.2 2 29079.6 331.9 6.4e-24 3.3 
Speakers 558.7 2 279.3 3.2 5.3e-02 3.3 
Interaction 1656.3 4 414.0 4.7 6.1e-03 2.6 
Within 3154.0 36 87.6 - - - 

/-ook/ 

Rate 49409.2 2 24704.6 63.1 1.7e-12 3.3 
Speakers 19026.1 2 9513.0 24.3 2.1e-07 3.3 
Interaction 18595.4 4 4648.8 11.8 2.9e-06 2.6 
Within 14098.4 36 391.6 - - - 

S12 

/-api-/ 

Rate 85895.0 2 42947.5 361.0 1.5e-24 3.3 
Speakers 253.4 2 126.7 1.1 0.4 3.3 
Interaction 3193.3 4 798.3 6.7 3.8e-04 2.6 
Within 4282.8 36 119.0 - - - 

/-ita-/ 

Rate 61813.2 2 30906.6 234.3 2.3e-21 3.3 
Speakers 32273.2 2 16136.6 122.3 8.9e-17 3.3 
Interaction 48951.6 4 12237.9 92.8 1.9e-18 2.6 
Within 4749.2 36 131.9 - - - 

/-ity/ 
Rate 59308.9 2 29654.5 578.2 4.4e-28 3.3 
Speakers 68298.1 2 34149.1 665.8 3.7e-29 3.3 

/-ity/ 
Interaction 66407.3 4 16601.8 323.7 1.1e-27 2.6 
Within 1846.4 36 51.3 - - - 

/-opu-/ 

Rate 18884.0 2 9442.0 108.4 5.8e-16 3.3 
Speakers 3531.5 2 1765.8 20.3 1.3e-06 3.3 
Interaction 687.6 4 171.9 2.0 0.1 2.6 
Within 3135.2 36 87.1 - - - 

/-ate-/ 

Rate 14185.7 2 7092.9 83.0 3.3e-14 3.3 
Speakers 9200.5 2 4600.3 53.9 1.5e-11 3.3 
Interaction 18071.3 4 4517.8 52.9 1.4e-14 2.6 
Within 3075.2 36 85.4 - - - 
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Utterance Stop 
closure 

Source of 
variation 

Sum of 
squares 

(ms) 

Degree 
of 

freedom 

Mean of 
squares 

(ms) 
F-ratio P-value Fcritical 

S13 

/aba-/ 

Rate 39556.3 2 19778.2 702.7 1.4e-29 3.3 
Speakers 12162.8 2 6081.4 216.1 8.8e-21 3.3 
Interaction 18372.9 4 4593.2 163.2 1.5e-22 2.6 
Within 1013.2 36 28.1 - - - 

/aba-/ 

Rate 3407.2 2 1703.6 69.3 4.5e-13 3.3 
Speakers 1803.9 2 902.0 36.7 2.1e-09 3.3 
Interaction 1334.0 4 333.5 13.6 7.7e-07 2.6 
Within 884.8 36 24.6 - - - 

/-acu-/ 

Rate 21236.3 2 10618.2 277.2 1.4e-22 3.3 
Speakers 25989.9 2 12995.0 339.3 4.4e-24 3.3 
Interaction 9060.1 4 2265.0 59.1 2.5e-15 2.6 
Within 1378.8 36 38.3 - - - 

S14 
/-icke-/ 

Rate 27389.0 2 13694.5 302.5 3.1e-23 3.3 
Speakers 11809.2 2 5904.6 130.4 3.2e-17 3.3 
Interaction 12822.2 4 3205.6 70.8 1.5e-16 2.6 
Within 1630.0 36 45.3 - - - 

/up/ Rate 62118.7 2 31059.4 753.5 4.2e-30 3.3 

S14 

/up/ 
Speakers 2988.0 2 1494.0 36.2 2.4e-09 3.3 
Interaction 930.5 4 232.6 5.6 1.2e-03 2.6 
Within 1484.0 36 41.2 -- - - 

/-acka-/ 

Rate 51005.9 2 25503.0 504.7 4.6e-27 3.3 
Speakers 1796.3 2 898.2 17.8 4.3e-06 3.3 
Interaction 883.6 4 220.9 4.4 5.5e-03 2.6 

Within 1819.2 36 50.5 - - - 
 

A.3  Two-Way ANOVA of Closure and Burst Durations in VCV Utterances 

 
Table A.5  Means and square root of variances of stop closure and burst durations in VCV utterances with 
different vowels (FS = female speaker, MS = male speaker, var. = variance) 
  

Duration 
parameter 

Vowel 
 type 

Speakers 

FS6 FS13 FS18 FS20 FS22 MS2 MS4 MS8 MS10 MS15 Over-
all 

Closure 
Mean 
(ms) 

/a/ 92.3 62.0 74.0 110.2 79.5 92.8 63.0 123.5 84.2 86.3 86.8 

/i/ 84.3 77.0 89.2 94.5 93.8 75.3 74.0 131.3 83.5 130.0 93.3 

/u/ 87.7 91.0 78.0 106.3 90.3 93.8 62.0 146.0 77.0 154.3 98.7 

Overall 88.1 76.7 80.4 103.7 87.9 87.3 66.3 133.6 81.6 123.6 92.9 

Closure 

var   
(ms) 

/a/ 15.9 14.9 17.4 19.4 15.0 24.3 10.4 11.9 7.4 14.9 23.5 

/i/ 16.0 12.2 15.5 20.9 26.6 19.4 13.2 23.2 21.1 42.2 28.9 

/u/ 15.1 18.4 13.4 24.9 20.2 7.8 15.6 31.6 8.5 25.5 33.6 

Overall 15.1 18.9 16.0 21.6 20.8 19.5 13.6 24.2 13.4 40.2 29.2 
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Duration 
parameter 

Vowel 
 type 

Speakers 

FS6 FS13 FS18 FS20 FS22 MS2 MS4 MS8 MS10 MS15 Over-
all 

Burst 
Mean 
 (ms) 

/a/ 46.0 44.7 42.8 50.3 27.2 45.0 31.8 37.3 43.0 30.8 39.9 

/i/ 53.2 48.5 46.7 56.3 36.5 60.2 51.8 31.2 41.2 55.8 48.1 

/u/ 50.7 46.3 50.2 54.7 27.2 57.8 52.2 17.5 46.2 45.3 44.8 

Overall 49.9 46.5 46.6 53.8 30.3 54.3 45.3 28.7 43.4 44.0 44.3 

Burst 

var   
(ms) 

/a/ 41.2 23.9 34.0 41.9 11.9 34.8 18.9 24.8 33.9 19.9 28.7 

/i/ 40.4 34.1 30.2 32.6 19.7 43.6 34.8 18.6 30.4 52.6 33.5 

/u/ 35.9 29.9 28.2 31.4 12.4 37.4 28.8 46.9 33.0 23.6 31.8 

Overall 37.0 27.9 29.2 33.6 14.9 37.1 28.3 31.7 30.6 34.7 31.4 

 
Table A.6  Means and square root of variances of stop closure and burst durations for different stops 
(5 female and 5 male speakers, FS = female speaker, MS =  male speaker, var = variance) 

 

Duration 
parameter Stop type 

Speakers 

FS6 FS13 FS18 fS20 FS22 MS2 MS4 MS8 MS10 MS15 Over-all 

 
Closure 
mean 
(ms) 
 

/b/ 95.7 90.3 81.0 130.7 81.3 95.3 66.7 151.7 78.0 119.0 99.0 

/d/ 101.7 77.7 84.0 119.3 74.0 102.0 75.3 145.7 93.3 123.0 99.6 

/g/ 97.3 74.0 79.7 98.7 67.0 79.0 56.0 114.7 88.0 116.0 87.0 

/k/ 74.7 76.0 75.7 93.7 92.0 81.7 62.3 116.0 79.0 124.3 87.5 

/p/ 89.0 84.0 94.3 100.3 96.0 102.0 71.7 141.0 82.3 145.7 100.6 

/t/ 70.3 58.0 67.7 79.3 117.0 64.0 66.0 132.7 68.7 113.3 83.7 

Overall 88.1 76.7 80.4 103.7 87.9 87.3 66.3 133.6 81.6 123.6 92.9 

Closure 
var   

 (ms) 
 

/b/ 14.3 16.9 7.2 4.9 5.9 22.4 13.0 47.2 15.4 41.1 32.2 

/d/ 7.6 24.8 8.0 24.7 2.6 2.0 11.9 5.9 15.6 53.5 29.1 

/g/ 5.1 26.9 11.7 20.5 15.1 13.1 22.1 21.7 12.5 46.9 26.6 

/k/ 7.6 16.8 13.6 16.2 19.9 8.6 15.3 7.9 10.4 26.5 22.7 

/p/ 16.5 10.0 5.0 3.0 9.5 16.0 13.6 14.8 11.9 44.1 27.8 

/t/ 9.1 11.5 33.6 9.7 22.7 22.5 3.6 12.6 9.1 58.0 32.9 

Overall 15.1 18.9 16.0 21.6 20.8 19.5 13.6 24.2 13.4 40.2 29.2 

Burst 
mean 
(ms) 

/b/ 11.0 18.3 12.0 9.0 16.3 19.7 14.3 -17.3 11.0 14.7 10.9 

/d/ 15.7 23.3 20.0 33.3 12.7 17.0 15.0 12.7 11.3 23.0 18.4 

/g/ 18.3 23.3 30.3 37.0 34.0 36.7 38.3 31.0 23.3 25.0 29.7 

/k/ 91.0 77.7 69.7 85.7 40.7 88.3 70.0 58.3 77.3 74.7 73.3 

/p/ 74.0 56.0 63.0 67.3 37.0 53.3 62.0 42.7 59.7 38.3 55.3 

/t/ 89.7 80.3 84.3 90.3 41.0 111.0 72.0 44.7 78.0 88.3 78.0 

Overall 49.9 46.5 46.6 53.8 30.3 54.3 45.3 28.7 43.4 44.0 44.3 

Burst 
var  

 (ms) 

/b/ 3.6 5.8 2.6 4.4 3.2 14.2 6.5 47.3 1.7 8.1 16.9 

/d/ 7.0 9.3 3.6 30.2 3.8 3.6 1.0 3.5 2.9 4.4 10.9 

/g/ 8.1 3.5 12.6 20.7 24.3 13.9 10.8 11.5 12.7 6.0 13.2 

/k/ 8.0 16.4 15.3 8.7 2.5 12.4 16.5 4.7 9.6 18.8 17.8 

/p/ 2.6 6.6 13.0 16.6 7.2 4.9 30.5 22.2 5.7 10.6 17.1 

/t/ 11.1 6.5 8.7 4.0 5.3 14.1 12.5 8.1 1.7 52.5 25.6 

Overall 37.0 27.9 29.2 33.6 14.9 37.1 28.3 31.7 30.6 34.7 31.4 
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