
 

ECG BASELINE WANDER CORRECTION 

AND NOISE REDUCTION  

 

A dissertation submitted in 

 partial fulfillment of the requirements for the degree of 

Master of Technology 

by 

P. Mithun 

Roll Number 08330011 

Under the supervision of 

Prof. P. C. Pandey 

 

 

Department of Biosciences and Bioengineering 

Indian Institute of Technology Bombay 

June 2010 

 1



Indian Institute of Technology Bombay

M. Tech Dissertation Approval

This dissertation entitled "ECG baseline wander correction and noise reduction" by
P. Mithun (Roll No. 08330011), is approved for the degree of Master of Technology
in Biomedical Engineering.

Ji&dr~
_~L~

f;uL(4-' fM

(Prof. P. C. Pandey)Supervisor

Examiners (Prof. S. Mukherji)

--- (Prof. S. Chaudhuri)

Chairman (Prof. Preeti Rao)

Date: 29th June 2010



Declaration

I declare that this written submission represents my ideas in my own words and where

others' ideas or words have been included, I have adequately cited and referenced the

original sources. I also declare that I have adhered to all principles of academic

honesty and integrity and have not misrepresented or fabricated or falsified any

idea/data/fact/source in my submission. I understand that any violation of the above

will be cause for disciplinary action by the Institute and can also evoke penal action

trom the sources which have thus not been properly cited or from whom proper

permission has not been taken when needed.

~
(P. Mithun)

Date: 29th June 20 I0



 

 

P. Mithun / Prof. P. C. Pandey (Supervisor), “ECG baseline wander correction and 

noise reduction”, M. Tech. dissertation, Biomedical Engineering Group, Department 

of Biosciences and Bioengineering, Indian Institute of Technology Bombay, June 

2010. 

 

ABSTRACT 

 
The project objective is to investigate methods for correcting motion artifact and 

baseline wander. Out of the various denoising methods reviewed, the wavelet-based 

denoising using scale-dependent thresholding was investigated. The decomposition 

levels containing negligible amount of signal and significant noise were removed and 

the signal was reconstructed. The wavelets Daubechies 8 (db8) and discrete Meyer 

(dmey) performed better than the other wavelets studied. From the study conducted 

on ECG signals from various sources, it was observed that the investigated technique 

suppresses the baseline wander significantly and it improved automated detection of 

R-peaks. A FIR band-pass filter was designed to approximate the filtering by wavelet-

based denoising and it gave a comparable performance.  
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Fig. 3.1. Different types of wavelets and the corresponding scaling functions 28 

Fig. 3.2. Decomposition of ECG signals using Symlet 5 (sym5) wavelet 29 

Fig. 3.3. Decomposition of ECG signals using discrete Meyer (dmey) wavelet 30 

Fig. 3.4. Normalized RMS values of clean and noisy ECG segments 31 

Fig. 4.1. Clean ECG from simulator before and after wavelet processing 34 

Fig. 4.2. Comparison of noisy ECG and different denoised outputs 35 

Fig. 4.3. Comparison of magnitude spectra of different denoised outputs 35 

Fig. 4.4. Comparison of magnitude spectra in 0-5 Hz range 36 

Fig. 4.5. Baseline wander reduction of ECG signals from MIT/BIH database 37 

Fig. 4.6. SER vs SNR - 1 39 

Fig. 4.7. SER vs SNR - 2 39 

Fig. 4.8. The processing stages of Pan-Tompkin's algorithm [3], [8], [9] 41 

Fig. 4.9. Improvement of the QRS complex detection 41 

 

 

 v



 vi



 

 

Chapter 1 

INTRODUCTION 

 

1.1 Problem overview 
Electrocardiogram (ECG) is a projection of the electric potentials developed by the 

heart which is obtained by placing electrodes on specific locations of the skin [1]-[3]. 

Various kinds of disturbances affect the sensing, amplification, and recording of these 

signals. The characteristic of the disturbances and how they affect the ECG depend on 

their sources. The disturbances related to human activity are known as artifacts. There 

are three main sources of artifacts: (a) other electric potentials inside the body, (b) 

potentials generated at the skin-electrode interface, and (c) offset and drift in the 

amplifier. 

 The interference in the ECG due to other electric signals generated inside the 

body primarily consists of the myopotentials, the electric signals produced by the 

skeletal muscles during their contraction. The myopotential (electromyogram noise or 

the EMG noise) severely affects the ECG because of the overlap in their spectra. The 

ECG spectrum extends from 0.01 Hz to 250 Hz and the myopotential spectrum 

extends from 0 to 10 kHz [2], [3]. The level of the noise depends on the closeness of 

the myopotential origin to the electrodes. The electric potentials in the brain and eye 

are not strong enough to contaminate the ECG signal. Another source of interference 

is due to coupling of the mains voltage to the body as picked-up by the ECG 

electrodes, known as the powerline interference. It can be reduced by a careful design 

of the ECG acquisition system, and can be suppressed by filtering. 

 Electric potentials at the skin-electrode interface are another source of 

artifacts. The electrode movement causes a change in the interface impedance which 

causes distortion in the signal in the form of amplitude modulation. This can be 

minimized by using high input impedance amplifiers. The electrode motion also 

causes changes in its half-cell potential. The difference in the half-cell potentials at 
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Fig. 1.1. Relative power spectra of QRS complex, P and T waves, muscle noise, and 
motion artifacts based on an average of 150 beats [3]. 

the electrodes gets amplified by the ECG sensing amplifiers, causing irregular 

baseline wander in the final ECG, known as motion artifact [3]-[5]. The spectrum of 

motion artifacts and myopotential noise overlap with that of ECG. At times, the shape 

of the motion artifact looks similar to that of P wave or R wave. Variations in 

temperature and pressure at the skin-electrode interface also introduce baseline 

wander in ECG signals. It is a slow-varying noise, in the order of 0 to 1 Hz [3], [6]. 

The DC offset and drift in the amplifier also contribute to the baseline wander in the 

ECG signal. Digitization of the ECG introduces quantization error, which may be 

modeled as a broad-band noise. 

 The approximate relative power spectra of the ECG, QRS complex, P and T 

waves, motion artifact, and EMG noise [3], given in Fig. 1.1 indicate relative 

strengths and overlaps. The artifacts in ECG make it difficult to detect the P wave, 

time interval between the characteristic points, elevation or dip of the ST segment 

from the isoelectric levels, etc. The QRS complex detection algorithms face problems 

in the presence of significant baseline wander and motion artifact. The performance of 

most of the automated feature extraction and signal compression algorithms also gets 

affected by the artifacts [5]-[10]. The motion artifacts can be minimized by restricting 

the motion of the patients during signal recording, but this is not feasible in 

ambulatory ECG recording, and hence denoising is particularly important in clinical 

use of ambulatory ECG signals. 
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1.2 Project objective 
The aim of this project is to investigate denoising techniques for suppressing motion 

artifacts and baseline wander from the ECG signals obtained from a Holter ECG 

monitor. The denoising method should not need any reference input, and automated 

QRS detection should be feasible after denoising the ECG signal. A review of the 

literature showed the wavelet-based denoising technique to have properties matching 

the above objectives and hence it has been selected for a detailed investigation.  

1.3 Report outline 
Chapter 2 presents a review of various techniques for denoising of ECG and some 

other biosignals. The investigations on the denoising method are described in Chapter 

3. Chapter 4 presents the details of validation procedures used and the results 

obtained. A summary of the work done and some suggestions for future work are 

given in the last chapter. 
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Chapter 2 

ECG DENOISING TECHNIQUES 

 

2.1 Introduction 
This chapter gives a review of some of the ECG denoising techniques: linear filtering, 

adaptive filtering, non-linear filtering techniques (independent component analysis, 

mathematical morphology filtering, and moving window averaging), and denoising 

techniques based on wavelets and empirical mode decomposition.  

2.2 Filtering based ECG denoising techniques 
A technique for removing the baseline wander and the power line interference by 

linear filtering was reported in [11], with main focus on reducing the computational 

complexity. It used a fixed cutoff frequency FIR filter for the input signal sampled at 

250 Hz. Assuming the minimum beat rate to be 48 beats per minute, the lowest 

frequency content in the ECG was taken as 0.8 Hz. The cutoff frequency was set to 

0.7 Hz as the lower cutoff frequency needed a larger number of filter coefficients. 

Selecting the filter taps at delays of 1/50 s resulted in a stop-band of 1.4 Hz at the 

harmonics of 50 Hz. It was reported that the same filter could be used to remove 60 

Hz interference by sampling the input ECG at 360 Hz. As no periodicity matching 

with the heartbeat was observed in the difference between input and output signals, it 

was concluded that filtering did not result in a loss of the spectral components of the 

ECG signal.  

 The spectrum of baseline wander in ECG varies with time. Pandit [6] used a 

high pass filter with variable cut-off frequency to filter out the baseline wander in the 

0 – 1 Hz range. The predominant component in 0 – 1 Hz range in the short-time 

Fourier transform (STFT) of the input ECG was taken as the predominant component 

of the baseline wander. This frequency was used to decide the cutoff frequency of the 
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high pass filter. A window size of 4 s or larger was required for good spectral 

resolution in the 0 – 1 Hz range.  

 The powerline noise can be suppressed by a notch filter. For removing 

myopotential noise, motion artifacts, and baseline wander which have a significant 

spectral overlap with ECG, adaptive filtering techniques have been reported [4], [12]. 

Adaptive filter uses an adaptive algorithm which dynamically changes the filter 

coefficients to minimize the mean square error between the filtered reference and the 

input signal.  

 Thakor and Zhu [12] used adaptive filtering for reducing baseline wander, 60 

Hz powerline noise, EMG noise, and motion artifacts from the ECG signal sampled at 

500 Hz. To remove the baseline wander, a notch filter with the notch at zero 

frequency was realized by applying a constant value as the reference for adaptive 

filtering and only one filter coefficient for minimizing the error output. The frequency 

components up to 0.5 Hz were removed. However, there was a distortion in the ST 

segments of the denoised ECG. As the common mode drive to the reference electrode 

(right leg) contains no ECG, it was used as the reference for adaptive filtering of the 

powerline noise. The advantage of this method, over simple notch filtering, is that the 

useful components in the ECG signal near to 60 Hz can be retained. The EMG noise 

was handled using multilead ECG, assuming the EMG noises in different leads to be 

uncorrelated. The augmented lead aVF was used as the primary input, with the 

orthogonal vector aVR – aVL as the reference input, for cancelling the correlated 

ECG and resulting in the uncorrelated EMG noise as the error output. For motion 

artifact cancellation, ECG signal with motion artifact was used as the primary input, 

with impulses located at the beginning of the P waves as the reference input. The 

length of the filter spanned the P-QRS-T complex. During filtering, the adaptation 

takes place only for the samples which represent the P-QRS-T complex. Subtracting 

this complex from the noisy ECG leaves the motion artifact as residue. It was reported 

that denoised ECG was useful only for heart rate measurements and arrhythmia 

detection. A major problem with the method is that the length of the P-QRS-T 

complex cannot be considered constant in ambulatory ECG, particularly during 

arrhythmia. Further, it is generally difficult to detect the P wave, particularly in the 

ECG contaminated by motion artifact. 
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 Fig. 2.1. Adaptive filtering scheme of [4] using motion sensor 
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 In the motion artifact cancellation scheme presented in [4], a motion sensor 

was placed on the ECG electrode on the left arm to detect the movement electrode. 

The motion sensor output was used as the reference, as shown in Fig. 2.1. Least mean 

square (LMS) algorithm was used to adjust the filter coefficients vector w for 

minimizing the error e(n). As the reference is correlated with the motion artifact, and 

uncorrelated with the ECG signal, the filtered output y(n) is expected to closely 

represent the motion artifact. Subtracting y(n) from noisy ECG input f(n) gives the 

denoised signal z(n). To improve adaptation, the input ECG was lowpass filtered to 

reduce the R-wave in the primary input d(n). To validate the method, first ECG was 

recorded without any motion artifact. Then a recording was made from the same 

patient under similar circumstances, while pushing and pulling the electrode, and 

pushing the skin around the electrode, for introducing motion artifacts. The noisy 

ECG signal was filtered using the adaptive filter. The effectiveness of filtering was 

quantified by calculating the L2 norm and MaxMin statistic. For a waveform x(n), the 

statistics were defined as 

 { } 2
2

all 

( ) ( )
n

L x n x n= ∑  (2.1) 

 { } [ ] [ ]mxmn all all 
( ) max ( ) min ( )

nn
L x n x n x n= −  (2.2) 
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The statistics were calculated for the noisy signal before filtering, after filtering, and 

the ECG recorded without motion artifact. Improvement indices for L2 and Lmxmn were 

calculated as 

 
(Pre-filtering statistic)  (Post-filtering statistic)

Improvement = 
(Pre-filtering statistic)  (Artifact-free statistic)

−
−

 (2.3) 

The filter performance depended on the sensor used, with 79 – 91% improvement in 

L2 norm statistic, and 49 – 67% improvement in MaxMin statistic. A limitation of the 

method appears to be that it can be applied for reducing the motion artifact due to one 

electrode only. 

2.3 Denoising by nonlinear filtering 
A method based on independent component analysis (ICA) for separating the ECG 

signal and the noise is reported in [5]. ICA can be used to separate a signal into m 

independent components using m simultaneous observations of the signal. Let S be a 

vector of m statistically independent components, and let m simultaneous observations 

which are linear combinations of these components be written as  

 X = AS (2.4) 

where A is an unknown matrix of order m×m, representing the mixing. The ICA 

involves finding a matrix U to undo the mixing effect, 

 V = UX (2.5) 

where V is an estimate of S. The authors used an algorithm named JADE (Joint 

Fig 2.2. Typical waveforms of independent components which represent (a) the 
ECG, (b) abrupt changes, and (c) continuous noise [5] 
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Approximate Diagonalization of Eigen matrices) which has been reported to give 

good results when the number of observations is small. They applied ICA on 3-lead 

ECG as the input and estimated three components as the output. It was observed that 

the ECG signals and the noise were represented by different independent components. 

The components representing noise were located, and set to zero and the remaining 

components were mixed back to get the denoised set of observations 

 X´ = U-1V´ (2.6) 

It was found that the noise could be represented by first, second, or third component, 

and hence a visual inspection was required to determine the component representing 

noise.  

 Mainly three types of components were possible: the ECG signal, abrupt 

changes, or continuous noise. Examples for each type are shown in Fig. 2.2. The 

authors used kurtosis to find the components representing continuous noise. Kurtosis 

of a signal x is given as  

  (2.7) 
24Kurt( ) E( ) 3 E( )x x x⎡= − ⎣

2 ⎤⎦

It is zero for Gaussian densities and large for signals with probability density 

deviating from the Gaussian. Since the continuous noise has a distribution closer to 

Gaussian, its kurtosis is closer to zero. The Kurtosis value of ECG and of the abrupt 

changes is large. The component representing continuous noise was detected using a 

suitable threshold for the kurtosis value. The presence of abrupt changes was 

determined using the variance. The components were divided into small sections, 

each of 1 s. The variance of each section was computed. The sections with large 

variance were taken to be abrupt. The ECG and the continuous noise have 

comparatively constant variance for all the sections. The variability of the section 

variances was measured using the variance of the section variances, denoted by Varvar. 

If this quantity was very high for a component, it was taken to represent abrupt 

changes.  

 The authors validated the method using clinical recordings, obtained using 3 

electrodes placed on right hand (RA), left leg (LL), and chest (V5). The voltages were 

used to get three channel output. Two channels represented ECG lead II and V5. The 

third channel didn't have any clinical significance. The ground was taken to be the 

average of the three channels. The acquired signals were filtered using high pass and 

lowpass FIR filters with cutoff frequencies 1 Hz and 40 Hz respectively. The filtered 
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signals were processed using JADE algorithm to separate the three independent 

components. The noise components were identified using kurtosis and Varvar indices. 

The identified noise components were set to zero, and the ECG was reconstructed 

using Eq. 2.6. It was observed that the components representing noise were identified 

successfully using the automated algorithm based on Kurtosis and Varvar. Also, there 

were no visible distortions to the actual ECG signal. 

 Curve-fitting methods have also been used to estimate and suppress the 

baseline wander. Meyer and Keiser [13] located the PR segment of the ECG signal 

using a second order estimator. Taking the located PR segment points as knots, a third 

order cubic spline curve was used to get an estimate of the baseline and was 

subtracted from the observed signal to get the baseline corrected signal. The method 

was applied on an ECG obtained from a treadmill exercise on which a computer 

generated baseline noise was added to simulate the baseline wander. For the heart rate 

of 60 beat/min, the baseline noise components of frequencies up to 0.25 Hz were 

effectively removed without affecting the ST segment and for the heart rate of 150 

beat/min, the noise components up to 0.6 Hz were removed. The better performance 

for higher heart beats was attributed to the closer placing of the knots and hence better 

approximation by the cubic spline curve. However, detecting the knots in the presence 

of noises like motion artifact or EMG noise is a hurdle faced by this method. 

 Mathematical morphology filter is a nonlinear filter that makes use of the 

shape information of the signal to separate it from the noise. Chu and Delp [14] used, 

two basic morphology operators, erosion and dilation, for the reduction of background 

noise, impulsive noise, and baseline wander. Erosion for the input sequence f(m) of 

length N is defined as, 

 { }
0,..., 1

( )( ) min ( ) ( ) ,0
n M

f k m f m n k n m N m
= −

= + − ≤ ≤ −  (2.8) �

where k is a predefined function of length M called the structural element (SE). 

Similarly, dilation is defined as 

 { }
1,...,

( )( ) max ( ) ( ) , 1
n m M m

f k m f n k m n m m N
= − +

⊕ = + − − ≤ ≤ 1−  (2.9) 

Two higher level operations called opening, denoted by 'o ' and closing, denoted by 

'• ', are defined as follows: 

 ( )( ) (( ) )( )f k m f= ⊕ k k m⊕o

)( )

 (2.10) 

 ( • )( ) (( )f k m f k k m= ⊕ ⊕  (2.11) 
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Conceptually, opening operation eliminates peaks occurring within M samples and, 

closing removes dips occuring within M samples. The block diagram of the algorithm 

to suppress the high frequency noises and baseline wander is shown in Fig. 2.3. A 

dome shaped structural element with length 5 was used to remove the impulsive noise 

and the high frequency background noise. The dome-shaped structural element helped 

in minimizing the R-peak height reduction. To estimate the baseline wander, two 

structural elements of lengths 41 and 81 were used. With the input ECG sampled at 

360 Hz, these operations eliminated the dips and peaks within 113.88 ms. leaving the 

baseline of the input ECG. Reversing the order of opening and closing operations and 

taking the average improved the output.  

 The method was first evaluated using simulation studies. Clean ECG from an 

analog ECG simulator was digitized at a sampling rate of 1 kHz using 12-bit 

Fig 2.3. Mathematical morphology filtering algorithm used in [14] to remove high 
frequency noise and baseline wander removal from ECG signals. 
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quantification. A Gaussian noise was added to simulate the background noise. 

Impulse noise was generated using another Gaussian noise of variance 2 to 20 times 

the variance of the background noise. Baseline wander consisted of a sinusoid added 

to a slanting line. The RMS error in the noisy ECG, and the processed ECG with 

reference to the clear ECG were calculated as percentage of the peak to peak value of 

the clean ECG. The processing reduced the RMS error from 30 – 40% to 4 – 4.5%. A 

shorter length of the structural element improved the performance. The variations in 

the shape and the height of the structural element did not have any effect. A higher 

sampling rate improved the denoising. After selecting the parameters on the basis of 

simulation results, the authors applied the processing on using clinical recordings 

from the MIT/BIH arrhythmia database. The processing did not cause any distortions 

in the ECG signal, except slight distortion in the ST segment. 

 The problem faced by Chu and Delp's [14] method in baseline wander 

reduction has been addressed by Sun et al.[15] in their attempt to remove baseline 

wander from neonatal ECG signals. The authors attributed the degradation of 

performance of morphological filtering to the following two facts.  

a) If the structural element width is more than PR interval, the PR interval may not 

be restored to isoelectric level.  

b) If the width of the structural element is less than the width of the T wave, a 

residue of the T wave may remain even after the morphology operations.  

Figure 2.4 explains the above mentioned facts. The problems were solved by 

removing the QRS complexes from the input ECG. Morphology filtering using a flat 

(all zero) structural element of width 69 ms, removed QRS complex from ECG signal. 

The residual signal, which contain the P wave, T wave and the baseline wander was 

Fig. 2.4. Problems in the estimation of baseline as shown in [15]. Left to right: input 
ECG signal; after opening operation using a SE of length more than PR interval; after 
closing operation with SE less than the T wave duration.
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further filtered using morphology filtering. The structural element used had a width 

equal to the QT interval, with all zero samples. The SNR improvement achieved by 

the modified method was approximately 6 dB higher than that achieved by the earlier 

method. The method was further validated using clinically recorded ECG signals, by 

measuring the standard deviations of amplitudes of R waves, P waves, T waves, and 

ST segments from the normalized ECG output. The standard deviations of RR, PR, 

QRS, and QT intervals were also calculated. As compared to the earlier method, the 

modified method resulted in equal or smaller standard deviations for all the 

parameters.  

 Dai and Lian [7] used a modified moving window averaging to estimate and 

remove baseline wander from ECG records. Window averaging can be seen as a 

lowpass filtering operation. With a rectangular window of size N, the estimated 

baseline y(n) for input ECG x(n) is estimated as 

 
1

0

1( ) ( )
N

i
y n x n

N

−

=

= ∑ i−  (2.12) 

To reduce the ECG component in the estimated baseline, two modifications were 

made to the traditional moving average. One modification was to take the moving 

average of samples separated by intervals rather than continuous samples. 

 
1

0

1( ) ( )
N

i
y n x n

N

−

=

= ∑ is−  (2.13) 

where s is the interval step. In case of higher sampling rate, a correspondingly higher 

value of s needs to be chosen. The second modification was to remove the samples 

corresponding to the R wave from the expression. If the kth sample of the input was 

representing a part of R wave, Eq. 2.13 is modified as, 

 
1

1

1( ) ( )
1

N

i
y k x k

N

−

=

=
− ∑ is−  (2.14) 

The method was validated using a clean record from MIT/BIH arrhythmia database. 

The baseline was simulated using a combination of sine and cosine waves of 0.2 Hz. 

The performance was evaluated using correlation coefficient between the actual clean 

ECG and the denoised output. Use of the modifications improved the correlation from 

0.854 to 0.965. 
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2.4 Denoising methods based on wavelets 
Wavelet-based processing is one of the most commonly used signal denoising 

technique. A wavelet is an oscillation lasting for a small duration and satisfying the 

following criteria: 

a) The mean value of the function is zero. 

b) The norm of the function is unity. 

c) The function is orthogonal to its translated and/or scaled versions. 

A prototype of the wavelet is called the mother wavelet. A waveform can be 

represented as a linear combination of shifted and scaled versions of the mother 

wavelet [16]-[18]. The wavelet transform  on the input waveform ( , )W m n ( )x t  is 

defined as 

  (2.15) *
,( , ) ( ) ( )m nW m n x t t dt

∞

−∞

= Ψ∫

where  is the dilated and shifted version of the mother wavelet  as per 

the equation, 

, ( )m n tΨ ( )tΨ

  (2.16) / 2
, ( ) 2 (2 )m m

m n t − −Ψ = Ψ −t n

The values of for a given are known as the wavelet detail coefficients at 

scale m . The original waveform can be recovered back using the inverse wavelet 

transform given by 

( , )W m n m

 ,
1

( ) ( , ) ( )m n
m n

x t W m n
∞ ∞

= =−∞

=∑ ∑ tΨ

m n

 (2.17) 

 Using the wavelet coefficients at scale , the input waveform is represented as 

waveform approximation  and waveform detail  as 

m

mA mD

  (2.18) ,( ) ( , ) ( )m
n

D t W m n t
∞

=−∞

= Ψ∑

  (2.19) 1( ) ( ) ( )m m mA t A t D t−= −

A schematic representation of the wavelet decomposition is shown in Fig. 2.5. The 

detail and approximation in each scale represent a specific frequency band. Lower 

scale details represent higher frequencies with lower frequency resolution, while 

higher scale details represent lower frequencies with higher frequency resolution. At a 

given scale, the approximation represents a lowpass filtered version of the original 

waveform. The cutoff frequency of the lowpass filter is equal to the lower frequency 
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Fig. 2.5. Block diagram showing the wavelet decomposition levels. Dm and Am are 
the mth level detail and approximation of the original waveform respectively.  

bound of the detail in the same scale. For the sampling rate of fs, the lower and upper 

frequency bounds of the mth scale detail are given approximately by 

  s
L 12m

ff +≈  (2.20) 

 s
H 2m

ff ≈  (2.21) 

A large number of wavelet families have been investigated and compactness of the 

wavelet representation of a waveform depends on the similarity of the waveform with 

the wavelet.  

 A wavelet-based approach has been reported in [19] and [20] to remove the 

baseline wander from the pulse waveform. The discrete Meyer wavelet was used to 

decompose the input waveform in 6 scales. The discrete Meyer wavelet has a smooth 

shape, suitable for representing the smooth pulse waveform. It was observed that the 

6th scale approximation closely represents the baseline wander. With the sampling rate 

of 100 Hz, the 6th scale approximation contained frequencies up to about 0.68 Hz. The 

baseline approximation was subtracted from the input signal to get the denoised 

signal. Application of the processing on input signals with different levels of 

contamination showed that if the baseline wander present was small, the wavelet 

processing resulted in distortions in the pulse signal. The distortions were negligible if 

the input had high levels of noise. A spline interpolation was used to further correct 
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the signal. The onsets of the pulse waveform were given as the knot sequence for the 

interpolation using a cubic spline curve. The resulting curve represented the baseline 

of the input wave. However, the performance of the spline interpolation was poor if 

the baseline wander present in the signal was high. Hence the denoising technique 

was chosen according to the level of baseline wander present in the signal. A quantity 

called the energy ratio (ER) was used to measure the level of the baseline wander 

present in the signal. and defined using the first and sixth level approximations (A1 

and A6) as,  

 1
10

6 6

mean( )
ER=20log

mean( )
−
−

A A
A A

1  (2.22) 

If the input signal had an ER > 50, the baseline was removed using spline 

interpolation alone. Otherwise the wavelet filtering was implemented first by 

subtracting the 6th scale approximation from the input signal followed by correction 

using spline interpolation. It was reported that the baseline correction achieved by the 

ER based processing performed better than that achieved by the previously developed 

methods based on FIR filtering, spline interpolation, and mathematical morphology 

filtering. for removal of the baseline drift in the pulse waveform. 

 Another instance of wavelet-based baseline wander reduction can be seen in 

[21] for removing the respiratory artifact from the impedance cardiography (ICG) 

signal. The respiration causes significant baseline wander in the ICG waveform. The 

decomposition of the artifact-free ICG signal, sampled at 500Hz, using discrete 

Meyer wavelet showed that the ICG can be completely represented by details of first 

8 scales. When ICG-free artifact was analyzed using the same wavelets, it was noticed 

that 10 scales of decomposition was required to completely represent it. It was also 

noticed that the first 8 scales of details doesn't contain significant components of the 

ICG-free artifact. Hence the signal was decomposed into 10 scales using discrete 

Meyer wavelet, and the signal was resynthesized by adding the first 8 scale details 

only. The processing was first tested on noisy input, simulated by adding signal-free 

artifact to artifact-free signal  0 ( )r n ( )s n

 0( ) ( ) ( )x n s n r nα= +  (2.23) 

where α  is the mixing ratio. The signal to noise ratio at the input was obtained as, 

 SNR = 20logα−  (2.24) 
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and a measure of SNR at the output, called the signal to error ratio (SER) was 

obtained as 

 SER =

2

1

2

1

( )
10 log

ˆ( ) ( )

N

i
N

i

s i

x i s i

=

=

⎛ ⎞
⎜ ⎟
⎜
⎜ ⎟−⎜ ⎟
⎝ ⎠

∑

∑
⎟  (2.25) 

where ˆ( )x n is the denoised output. The processing achieved an average SNR 

improvement of 21.8 dB for the input SNR of –9 to 9 dB. Validation of the processing 

using clinically acquired ICG data showed that the denoised ICG can be used for 

estimating the stroke volume on beat-by-beat basis. 

 Wavelet-based denoising methods have been applied in the context of ECG 

denoising also [22]-[26]. Zhang removed the baseline wander from the ECG signal, 

sampled at 360 Hz, by subtracting its 8th scale approximation (A8) obtained from 

wavelet decomposition [22]. The wavelet used was Symlets order 10, because its 

shape similarity to the QRS complex. The method was validated using synthesized 

signal obtained by adding a clean ECG record with a record of baseline wander, both 

from the MIT/BIH database. The added baseline wander was best approximated by A8 

(containing frequencies up to 0.7 Hz). It was reported that this method caused 

distortions in the slow varying ST segments.  

 When a noisy signal is decomposed using wavelets, it is possible that a 

particular detail contains both signal and noise components. In such circumstances, 

the true signal component can be separated from the noise using a method called 

wavelet thresholding [23], [24]. These methods are based on the following 

assumptions: 

a) The noise is uniformly distributed in the time domain and it has low amplitude. 

b) The signal information is concentrated in specific time instances and it is high in 

amplitude. 

High frequency noise is generally located at initial scales. If the wavelet coefficients 

are analyzed in those initial scales in which both the signal and noise information is 

present, under the above mentioned assumptions, the noise part of the input is 

represented by low valued wavelet coefficients and is distributed uniformly. The 

coefficients representing the true signal will be located at specific instances and will 

have high amplitude. Hence, by applying a suitable threshold on the coefficient 

magnitude, the wavelets representing noise and those representing the true signal can 
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be separated. After separation, the coefficients below the threshold are made zero. On 

the basis of how the remaining coefficients are modified, the thresholding method 

may be termed as hard thresholding or soft thresholding. 

 In hard thresholding, the coefficients above the threshold are kept unmodified. 

 
( , ),  ( , )ˆ ( , )

0,             ( , )

W m n W m n
W m n

W m n

τ

τ

⎧ ≥⎪= ⎨
<⎪⎩

 (2.26) 

where τ  is the threshold value. In soft thresholding, the threshold value is subtracted 

from the coefficients above the threshold. 

 
sgn( ( , ))( ( , ) ),  ( , )ˆ ( , )
0,                                           ( , )

W m n W m n W m n
W m n

W m n

τ τ

τ

⎧ −⎪= ⎨
≥

<⎪⎩
 (2.27) 

The waveform is reconstructed from the modified wavelet coefficients using the 

inverse wavelet transform (Eq. 2.17). Examples of hard and soft thresholding are 

shown in Fig. 2.6(a) and Fig. 2.6(b), respectively. The hard thresholding causes 

discontinuities in the wavelet domain. These discontinuities produce oscillations in 

the reconstructed signal. However, all the signal information is preserved if the 

threshold is suitably chosen. Soft thresholding does not cause discontinuities in the 

wavelet domain but the subtraction of the threshold value from the coefficients may 

cause loss of signal information. A compromise between the hard thresholding and 

soft thresholding is proposed in [25] for improved wavelet thresholding: 

  
( ( , ) )sgn( ( , ))( ( , ) ),  ( , )ˆ ( , )

0,                                                            ( , )

W m nW m n W m n W m n
W m n

W m n

ττβ τ

τ

−⎧ − ≥⎪= ⎨
<⎪⎩

 (2.28) 

where 1β > . It approximates hard thresholding as β →∞ and it approximates soft 

thresholding as 1β → . The drawbacks of both hard and soft thresholding can be 

avoided by selecting an optimum value forβ . Two other methods of a compromise 

between hard and soft thresholding are given in [26] as the following. 

 
sgn( ( , ))( ( , ) ),  ( , )ˆ ( , ) , (0 1)
0,                                              ( , )

W m n W m n W m n
W m n

W m n

ατ τ
α

τ

⎧ − ≥⎪= ≤⎨
<⎪⎩

≤  (2.29) 

 
2 2sgn( ( , )) ( ( , )) ,  ( , )ˆ ( , )

0,                                                ( , )

W m n W m n W m n
W m n

W m n

τ τ

τ

⎧ − ≥⎪= ⎨
<⎪⎩

 (2.30) 
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Fig. 2.6. W vs Ŵ plots for different types of thresholding. 
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 The modified soft thresholding methods of Eq. 2.28, 2.29, and 2.30 are 

graphically shown in figs. 2.6(c), 2.6(d), and 2.6(e) respectively. It is the choice of the 

threshold τ  which determines the effectiveness of the thresholding based denoising 

method. For white Gaussian noise, Donoho et al. [23] suggested the use of a single 

threshold 2 log Nτ σ=  where σ 2 = noise variance and N = number of input 

samples. The best estimate of σ 2 can be obtained from D1 as it contains the highest 

frequency band and hence maximum number of wavelet coefficients representing 

noise. Another option for calculating the optimum threshold is Stein's unbiased risk 

estimator (SURE) [23]. In the context of ECG denoising, Zhang [22] observed that 

Donoho's single threshold causes over smoothing of the signal due to the high 

threshold value for the higher scale decomposition levels, and the SURE method 

results in insufficient noise suppression because of its low threshold value for the 

lower decomposition levels. Hence the empirical Bayes posterior median (EBPM) 

threshold method was used for setting optimum thresholds for lower as well as higher 

scale decomposition levels in the soft thresholding method based on Symlet 10 

wavelet. The method was tested on a noisy ECG, sampled at 500 Hz, recorded from a 

dog. Denoising was found to be better for piecewise thresholding than that for 

processing the whole signal together. 

 Oscillations due to Gibbs phenomenon can occur at the sharp discontinuities 

in the waveform reconstructed using modified wavelet coefficients obtained either by 

linear wavelet filtering or by thresholding methods. If the discontinuity occurs at the 

quickly varying portion of the wavelet representing that region, the oscillation will 

have low amplitude. If the location of discontinuity is at a smooth portion of the 

wavelet, a high oscillation will result. To avoid this problem, Donoho and Coifman 

[27] proposed translation invariant denoising (TI denoising), consisting of the 

following steps: 

1) The input noisy signal is circular shifted by m samples. 

2) The shifted noisy signal is denoised using wavelet thresholding algorithm. 

3) The denoised signal is shifted m samples in the opposite direction to cancel the 

shift. 

4) Steps 1 to 3 are repeated by varying the value of m from 0 to M–1 to get M 

versions of the denoised outputs. 

5) Average of the M denoised signals is taken as the final denoised signal. 
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The oscillations due to Gibbs phenomenon are different in the M denoised versions 

but the signal part will be the same. The oscillations get attenuated by averaging. The 

value of M is selected as the length of the wavelet dilated to the largest scale on which 

the thresholding is applied. 

 The TI denoising method was implemented to remove high frequency noise 

from the ECG signal in [22] and [25]. The beginning and end of the QRS complex in 

ECG signals are susceptible to Gibbs oscillations. In the simulation study conducted 

in [25], a noisy ECG signal was produced by mixing Gaussian noise with a clean 

ECG record from MIT/BIH database. For noisy ECG with input SNR of 17 dB, the 

improved thresholding of Eq.2.28 produced SNR improvement of 3.4 dB. Application 

of TI denoising algorithm produced 6.3 dB SNR improvement. In [22], high 

frequency noise was removed from the recorded ECG signal using TI denoising, and 

the denoised output did not show Gibbs oscillations. The major drawback of the TI 

denoising algorithm is its computational complexity.  

2.5 Denoising using empirical mode decomposition (EMD) 
In empirical mode decomposition (EMD) the signal is decomposed into a number of 

simple oscillations, namely intrinsic mode functions (IMF) [10],[28]-[33]. A 

waveform can be an IMF if it satisfies the following criteria: 

a) The number of local maxima and the number of local minima differ by at most 

one. 

b) The mean of the upper and lower envelop at any point is zero. 

 The IMFs are obtained from the input signal x using an algorithm called 

sifting, consisting of the following steps: 

1) Set the iterating variable i = 1 and the first proto IMF 0 =h x . 

2) Get all the local maxima and minima of the proto IMF 1i−h . 

3) Connect all the local maxima of 1i−h  using a cubic spline to get an upper envelope 

eu. Similarly obtain the lower envelope el. Calculate the mean of the two 

envelopes 

 i
⎛ ⎞= ⎜ ⎟
⎝ ⎠

u le + em
2

 (2.31) 

4) Get the ith proto IMF 

  (2.32) i i= −h x m
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5) Evaluate the stopping criterion. One criterion can be the sum of difference (SD) 

defined as 

 
( ) ( )

( )

2
1

2
0 1

SD = 
N

i i

k i

h k h k
h k

−

= −

−
∑  (2.33) 

where N is the length of the signal. If SD is above a preset threshold, increment 

the value of i and go to step 2. Otherwise go to the next step. 

6) As the stopping criterion is satisfied take the hi as IMF. 

 Once the IMF is obtained, it is subtracted from the input signal to get the 

residue r1. 

  (2.34) 1 = −r x c1

The residue may contain another IMF. Hence  is analyzed as the input signal to 

obtain the second IMF  and corresponding residue . The procedure is repeated 

until we get a residue 

1r

2c 2r

Jr  which is a constant, a monotonically increasing function, or 

a function with only one peak. Thus we decompose the signal into J IMFs ( to J1c   c ) 

and one residue Jr , represented as 

  (2.35) 
1

J

i
i=

= +∑x c Jr

Though Jr  is not an IMF, it is commonly referred to as the (J+1)th IMF for notation 

simplicity and Eq. 2.35 is represented as 

  (2.36) 
1

1

J

i
i

+

=

= ∑x c

and thus the input signal is decomposed into a finite number of IMFs. Similar to the 

different scales of details in the wavelet decomposition, the IMF of different scales 

also represents different frequency bands of the signal. However, the frequency bands 

of different IMFs depend on the waveform being analyzed. The main advantage of 

EMD over wavelet-based decomposition is that it does not require a predefined basis 

function; it derives the basis function from the input waveform itself.  

 Boudraa and Cexus [29] reported an EMD based method to filter out the 

additive white Gaussian noise. The signal was decomposed into its component IMFs 

and the residue using EMD. The partial reconstructed signal was obained for 

different values of k such that 

kx%
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  (2.37) 
1J

k
j k

+

=

= ∑x% jc

When actual signal s known, the value of k (say js) which achieves minimum mean 

square error (MSE) between s and 
sj

x%  can be taken as the optimum value. For the 

practical cases, with the original signal not known, an empirical method for obtaining 

the value of js was developed. A distortion measure, called consecutive MSE (CMSE), 

was defined as 

 2
1

1

1CMSE( , ) [ ( ) ( )]
N

k k k k
i

i i
N+

=

= −∑x x x x% % % % 1+

)k k ⎤⎦

 (2.38) 

where N is the length of the signal and k = 1, 2,…, J–1. From the CMSE values, the 

value of js can be obtained using the following equation 

  (2.39) ( 1
1 1

arg min CMSE ,s k
k N

j +
≤ ≤ −

= ⎡⎣ x x% %

with the assumption that the initial IMFs up to js
th level contributes to the noise and 

the IMFs after js
th level contributes to the signal. The energy content in the js

th level 

IMF was minimum because, being the transition stage, it has minimum energy content 

of the noise and that of the signal. After getting the value of js, the optimum 

reconstructed signal 
sj

x% was obtained using Eq. 2.37.  

 The above method was evaluated using various computer simulated test 

signals. The input waveform x was obtained by adding Gaussian white noise r0 to the 

noise free signal s as in Eq. 2.23. Since the actual signal was known, it was possible to 

calculate the MSE value between the actual signal and the partial reconstructed signal 

 for different values of k. It was observed that minimum MSE was achieved by kx%

sj
x% for all the signals considered. The proposed method performed better than the 

windowing methods for all the signals considered, and it outperformed the wavelet 

method for some test signals. Application of the method as a signal from a fluid 

mechanics system showed that the EMD filtered output followed the trend of the 

signal. 

  An EMD based ECG denoising technique is reported in [10]. It was observed 

that the initial IMFs predominantly contain high frequency noise. The number of 

initial IMFs which contain significant amount of noise, p, was selected such that 

1

1 0
p

k
kp =

=∑c  and
1

1

1 0
1

p

k
kp

+

=

≠
+ ∑c . It was not possible to remove these IMFs because 
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they contain the QRS complex information also. To protect the QRS complexes, R-

peak locations were obtained from the input ECG signal (the R-peak detection method 

was not reported). A series of Tukey windows (tapered cosine windows) of suitable 

widths were placed at R-peak locations of the first p IMFs. The values outside the 

windows were attenuated. When the signal was reconstructed using the modified 

IMFs, a good reduction in high frequency noise was observed. The baseline wander 

present in the signal was estimated from the IMFs using a filter bank. The baseline 

wander information was present in the final IMFs, with the low frequency 

components of the ECG signal. The baseline wander component was extracted from 

each of the IMFs using lowpass filters, starting from the residue ((J+1)th IMF). The 

cutoff frequency of the kth lowpass filter which was used to filter the (J – k + 2)th IMF 

is given by 

 0
1k kM

ωω −=  (2.40) 

where 0ω  is the cutoff frequency of the lowpass filter operated on the residue. M > 1 

was called the frequency folding number. The baseline information extracted by the 

kth filter was given by 

  (2.41) 2*k k J k− +=b h c

where  is the impulse response of the kkh th filter. As the value of k increases, the 

baseline wander extracted by the filter decreases. This is measured by evaluating the 

variance of the extracted baseline wander. The authors defined a number called 

baseline wander order (q) which represents the number of IMFs from the last IMF 

those contain significant baseline wander information. Value of q was selected such 

that var( )q ξ>b  and 1var( )q ξ+ <b  where ξ  is a suitably chosen threshold value. The 

total baseline estimate B is obtained by 

  (2.42) 
1

q

i
i
∑

=
B = b

 The baseline estimate is subtracted from the input ECG to get the baseline corrected 

output.  

 The performance of the processing was tested on noisy ECG, obtained by 

adding noise to clean ECG from MIT/BIH arrhythmia database and real noise records 

(which does not contain ECG) from the MIT/BIH noise stress test database. In the 

simulation studies, the authors used the Gaussian noise to simulate the high frequency 
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noise, and used Gaussian pulses to simulate the baseline wander on records of 2000 

samples with sampling rate of 360 Hz. The performance was compared to that of 

Butterworth filtering with lower and upper cutoff frequencies of 0.09 Hz and 30 Hz 

respectively. For an input noisy ECG with SNR = 10 dB, the signal-to-error ratio 

achieved by the EMD and filtering methods were 15.9 dB and 11.2 dB respectively. 

For further testing, recording of muscle artifact and the electrode motion artifact were 

added to the noise-free ECG signal. For different ECG records and different SNRs, 

the SER obtained by the EMD, Butterworth filtering, and the wavelet-based denoising 

were computed. The wavelet denoising method used 4-level wavelet transform using 

Cohen-Daubechies-Feauveau 9/7 wavelet. For various inputs with SNR = 6 dB, the 

EMD method achieved a SER of 8.9 – 11.5 dB, which was better than the SER 

achieved by Butterworth filtering (4.45 – 6.48 dB) and wavelet-based denoising (6.13 

– 6.15 dB). The main drawback of the EMD based method is that it is computation 

intensive, and the cubic spline fitting often causes overflow and underflow. Since the 

cubic spline curve does not include the initial and final points, it may also cause 

oscillations at the beginning and ending of the IMFs. There is no direct procedure to 

find out the optimum value of the threshold for SD, which is used as a stopping 

criteria for the sifting process.  

 A combination of EMD decomposition and mathematical morphology filtering 

was used by Ji et al. in [30] to remove the baseline wander from the ECG signals. The 

authors used opening and closing, the two morphological operators defined in Eqs. 

2.10 and 2.11 to extract baseline information from the ith IMF as per the following 

equation. 

 ( )
2

i i
i

+ •
= ic k c k

b
o i  (2.43) 

where  is the iic th IMF. The structural element  is chosen as a flat (zero vector) with 

length of i

ik
2. The extraction began from the last IMF ((J+1)th IMF, the residue) and 

stopped when the variance of the extracted baseline falls below a threshold. Finally, 

the baseline estimate is obtained as per the following equation. 

 
1

1
( ) ( )

J

i
i m

B t b
+

= +

= ∑ t  (2.44) 

where B(t) is the estimated baseline wander, m is such that the var( ) ξ<mb  and 

1var( ) ξ+ >mb  where ξ  is a suitably chosen threshold value. The method was 
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validated using simulated studies, with the clean ECG from MIT/BIH arrhythmia 

database and the baseline simulated using a lowpass filtered random noise. The 

performance was quantified using correlation coefficient and the SNR improvement. 

It was observed that the performance of the proposed method was better than the 

mathematical morphological filtering method proposed in [15]. 

 Kopsisnis and McLaughlin [31] applied thresholding techniques used in 

wavelet denoising, for EMD decomposed signals. Investigations to develop better 

sifting methods have also been reported [32]-[34]. 

2.6 Summary 
Several denoising techniques including linear filtering, adaptive filtering, 

mathematical morphology filtering, spline interpolation, modified moving window 

averaging, ICA, and wavelet and EMD based processing have been reported for 

suppressing the baseline wander and motion artifact from the ECG signals. Among 

these techniques, wavelet-based denoising technique is found to be attractive because 

it does not require a reference signal as in adaptive filtering, multi-lead ECG record as 

in ICA, or information about the characteristic points as in interpolation methods. The 

EMD based processing, similar to wavelet-based processing, decomposes the signal 

into different scales. However, the band limits of decomposition scales obtained by 

EMD are not fixed, and depend on the noise content in the input signal. Hence it was 

decided to use wavelet-based processing for denoising of ECG signals. The details of 

the method and the results obtained are presented in the following two chapters.  
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Chapter 3 

WAVELET-BASED DENOISING 

 

3.1 Introduction 
This chapter presents a wavelets based denoising technique for suppression of the 

motion artifact and baseline wander in the ECG signal. The advantage of wavelet-

based method is that it does not require a reference signal, and it can be applied on a 

single-channel ECG. The wavelets Daubechies order 8 (db8), discrete Meyer (dmey), 

Symlets order 10 (sym10), Biorthogonal 6.8 (bior6.8) were investigated for the 

decomposition and subsequent denoising of the noisy signal. All the analysis and 

processing were carried out using Matlab. 

 The chapter begins with a description of the procedure for selecting an 

appropriate wavelet for the denoising application. This is followed by a description of 

the investigated denoising technique. 

3.2 Test signals used for the study 
Wavelet decomposition and denoising was studied using the following four groups of 

test signals. 

1) The output from an ECG simulator (Phantom 320 [35]) acquired using a 12-bit 

DAQ unit. The simulator simulates ECG signals which are normal, abnormal, and 

with simulated artifacts. The sampling rate was set at 200 Hz.  

2) The ECG recorded from volunteers using Holter ECG monitor developed at ECIL. 

The recordings were first taken with the subject sitting in an idle condition 

(without any voluntary movements). Subsequently the recordings were taken with 

the subject involved in moderate physical activities, commonly encountered 

during ambulatory ECG recording: hand movements, walking, and climbing 

stairs. The activities were chosen such that there was no significant change in the 

 26



cardiac activity. The instrument recorded 3-lead ECG, at a sampling rate of 200 

Hz with 8-bit resolution.  

3) The ECG records numbered 100, 103, 105, 111, 112, 113, 213, and 219 in the 

MIT/BIH arrhythmia database [36]. The records 111, 213, and 219 contain 

abnormalities like AV block, isolated peaks, and atrial fibrillation, while the rest 

of the recordings were clean and normal [37]. 

4)  The records "bw", "ma", and "em" containing the baseline wander, muscle 

artifacts, and electrode motion artifact, respectively, in the MIT/BIH noise stress 

test database [36]. The noise recordings were obtained by placing the electrodes 

on the limbs in positions in which the ECG was not visible [38].  

 The actual record lengths varied from 20 s to 5 min, from which segments of 

10 s duration were selected for the study. The records in MIT/BIH database were 

acquired at 360 Hz with 11-bit resolution. Sampling rate conversion was applied on 

these records to have all the test signals sampled at 200 Hz. 

3.3 Selecting the appropriate wavelet 
A large number of wavelet functions have been used in denoising applications. Some 

selected examples of wavelets and the corresponding scaling functions are shown in 

Fig. 3.1. When a waveform is analyzed using wavelets, the wavelet detail and 

approximation coefficients of scale m represent the correlation of the waveform with 

the scaled version of the wavelet / 22 (2 )m m
m t− −Ψ = Ψ Φ

)

 and the scaling function 

, respectively [12]-[14], [17]. The magnitudes of the coefficients 

measure the similarity between the waveform and the wavelet/scaling function. A 

component in the waveform having shape similar to the wavelet at scale m, is 

represented by the detail coefficients of scale m. To separate a signal from the noise, 

the wavelet is chosen such that the shapes of the wavelet or scaling function, at some 

scale, closely match the shape of the signal or noise. It is possible that the details of a 

particular scale capture the noise components in one scale and the signal components 

in another scale. For effective denoising, it is required to determine the detail and 

approximation levels which represents the signal component alone, the noise 

component alone, and both. Wavelet-based denoising is not very effective if most of 

the decomposition scales contain both signal and noise components. 

/ 22 (2m m
m t− −Φ = Φ
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 One example demonstrating the importance of the choice of wavelets can be 

seen in [17], which explored different types of wavelets (dmey, db6, and coif5) to 

decompose the ICG containing respiratory artifact. It was observed that the ICG 

signal was completely represented by the detail scales 1 – 8. The artifact was 

represented by 8th scale approximation. The other wavelets did not result in signal-

artifact separation. 

 In case of ECG with baseline wander and motion artfact, the noise 

components do not have a characteristic shape. Hence, the similarity of the wavelet 

(or its scaling function) with the ECG signal is important. The wavelet should 

represent the ECG signal in minimum number of scales, separated from the initial and 

final scales. For this investigation, clean ECG signals were decomposed into 10 scales 

of details using different wavelets. The examples of decomposition levels obtained by 

sym5 wavelet and by dmey wavelet are given in Fig. 3.2 and Fig. 3.3 respectively. It 

can be observed that the amplitude of the initial decomposition levels D1 and D2 

obtained by sym5 wavelet was more than that of the details obtained from dmey 

wavelet. It is preferred to have less amount of ECG content in D1 and D2, to attain a 

good separability from the high frequency noise present in the signal. It can also be 

noted that the details D5 to D7 obtained using sym5 have sharp peaks. However, the 

5th to 7th scale details are expected to represent slow varying components similar to P-

wave and T-wave of the ECG signal, which do not contain sharp peaks. An analysis  

Fig. 3.2. Example of decomposition of ECG signals using Symlet 5 (sym5) wavelet. 
X- axis:Time duration of 6 s. Y-axis: amplitude (arbitrary units). 
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of the several signals showed similar results. Thus it can be concluded that dmey 

wavelet is a better choice to represent ECG signal compared to sym5 wavelet. The 

details and approximations obtained by the wavelets db8, sym10, and bior6.8 were 

similar to those obtained by dmey wavelet, and hence were chosen for detailed 

analysis.  

3.4 The denoising method 
To develop the denoising method, we need to know the decomposition levels with 

high presence of noise. A study was conducted on ECG segments of 10 s duration, 

sampled at 200 Hz. Out of 151 segments studied, 48 were clean ECG segments 

selected from records 100, 103, 112, 113, and 219 of MIT/BIH arrhythmia database. 

The rest 103 segments were selected from the ECG records obtained using the ECIL 

Holter ECG monitor. Out of these 103 segments, 37 were clean were artifact-free 

segments, and the remaining 66 were noisy segments, from the ambulatory 

recordings.  

 Each segment was decomposed into 9 levels using db8 wavelet, and the 

normalized RMS values of the details 1 to 9 were calculated as 

 N 9
2

1

RMSRMS
RMS

i
i

i
i=

=

∑
 (3.1) 

Fig. 3.3. Example of decomposition of ECG signals using discrete Meyer (dmey) 
wavelet. X- axis:Time duration of 6 s. Y-axis: amplitude (arbitrary units). 
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Fig. 3.4 RMS values of clean and noisy ECG segments of 10 s duration decomposed 
into details at different scales using db8 wavelet. X-axis: record numbers 1 to 151. Y-
axis: normalized RMS values. Records 1-48: clean ECG segments of 10 s duration 
from MIT/BIH arrhythmia database. Records 49-85: clean ECG segments recorded 
using ECIL Holter ECG monitor. Records 86-151: noisy ECG segments recorded 
using ECIL Holter ECG monitor. 
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where  is the RMS value of iRMSi
th decomposition scale. The normalized RMS 

values obtained for the records at each scale are shown in Fig. 3.4. It can be observed 

that RMS values of the decomposition scales 1, 8, and 9 were low for clean ECG 

records and high for noisy ECG records. The RMS value of the decomposition levels 

3, 4, and 5 reduced during the occurrence of noise, due to normalization.  

 It may be concluded that the decomposition scales 1, 8, and 9 contained low 

signal information and captured majority of the noise. The decomposition scales 3, 4, 

and 5 captured majority of the signal and a small amount of noise. The remaining 

decomposition levels had both signal and noise information. Thus, by reconstructing 

the signal using the decomposition levels 2 to 7, a considerable reduction of noise can 

be achieved. Hence we can use the following equation for obtaining the denoised 

signal y(n) from input x(n). 
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( ) ( ) ( ) ( ) ( )i
i

y n D n x n D n A
=

= = − −∑ n  (3.2) 

where and are the detail and approximation at i( )iD n ( )iA n th scale. The approximate 

bandwidth of D1 and A7 are 50 – 100 Hz and 0 – 0.78 Hz, respectively for input 

sampling rate = 200 Hz.  
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Chapter 4 

TESTS AND RESULTS 

 

4.1 Introduction 
The ECG signals used for validating the denoising algorithm were obtained using a 

Holter ECG monitor from ECIL, Hyderabad, and ECG records from MIT/BIH 

database, as described earlier in Section 3.2. Effectiveness of the denoising technique 

was examined (i) qualitatively by visual examination of the processed output 

waveform, (ii) quantitatively by calculating improvement indices based on signal 

statistics, and (iii) by using it as a pre-processing for automated QRS detection. 

Denoising method and evaluation methods were implemented using Matlab 7.1. 

 Next section describes testing of the ECG monitor. The subsequent sections 

describe the validation methods and present the results.  

4.2 Testing the ECG monitor 
The Holter ECG monitor (from ECIL, Hyderabad) was tested using an ECG simulator 

"Phantom 320" [35]. The simulator output was recorded using (a) ECIL Holter ECG 

monitor, (b) Holter ECG monitor called "Locket" with an inbuilt ECG data 

acquisition system developed earlier at IIT Bombay [39], and (c) using DAQ unit 

"KUSB-3102" connected to USB port of a PC. The heights of the characteristic points 

of ECG from the isoelectric point and the widths of the QRS complexes and ST 

segments were measured for all the three methods of recording. It was found that the 

recorded signals and the acquired signal have the same statistics, despite slight 

differences caused by the quantization error. The ECIL instrument was then used to 

record the ECG from healthy volunteers with no known cardiac disorders under 

ambulatory conditions. The ECG recordings from the same volunteers under nearly 

identical conditions were also recorded using the IITB Holter ECG monitor for 

comparison. The two instruments exhibited very similar artifacts. 
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4.3 Application of denoising on simulated ECG 
The denoising was first applied on clean ECG signal acquired from the simulator, to 

assess any signal distortions due to denoising process. An example of the processing 

is shown in Fig. 4.1. The processing removes the DC component of the input signal 

which can be seen as a shift of the isoelectric level. There is no other visible change in 

the processed output. However, in the processed outputs of clean ECG segments of 

beat-rate outside 45 – 150 range, some distortions were visible. The SER values were 

calculated for processing of simulator outputs with of beat-rates varied over 45 – 150 

beat/min, and it ranged 18 – 28 dB (average = 22.5 dB, s. d. = 3.5 dB). 
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1Fig. 4.1. Clean ECG from the simulator (dotted line) and the output obtained after 
wavelet denoising (continuous line). 

 

4.4 Qualitative examination of denoising 
The denoising technique was applied on segments in the ambulatory ECG from 

healthy volunteers, recorded using ECIL Holter ECG monitor. An example of the 

denoising is shown in Fig. 4.2. It shows a noisy ECG segment and the outputs 

obtained after denoising using different wavelets and the output from a 500-tap 

bandpass FIR filter with pass-band of 0.78 – 50 Hz.  

 The input segment has EMG noise in the region of 4 – 6 s and baseline wander 

in the region of 7 – 9 s. A considerable reduction in the baseline wander can be 

observed in all the outputs, although there is no significant reduction in EMG noise. It 

may be noted that some of the isoelectric regions (e. g., at 7 and 8 s) of the denoising 

output using sym10 and bior6.8 are not flat. The magnitude spectra of the waveforms, 

as shown in Fig. 4.3, were also examined. The FIR filter has the minimum transition 

band and produces maximum attenuation to the high frequency components above 50 

Hz. Among wavelets, dmey wavelet has the minimum transition band. However, db8 

wavelet produced more attenuation to the high frequency components above 75 Hz 
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than all other wavelets considered. From the initial part of the spectrum shown in Fig. 

4.4, it can be noted that the noisy ECG contains high magnitudes of low frequency 

components in the range 0 – 1 Hz,  

 

Fig. 4.2. (a) Noisy ECG signal. (b)-(e) The output obtained after wavelet-based 
processing using db8, sym10, dmey, and bior6.8 wavelets respectively. (f) The 
output obtained after 500-tap FIR filtering. X-axis: time (s), Y-axis: amplitude 
(arbitrary unit) 
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Fig. 4.3. The magnitude spectrum of (a) noisy ECG, (b)-(e) The output obtained 
after wavelet-based processing using db8, sym10, dmey, and bior6.8 wavelets 
respectively, and (f) The output obtained after 500-tap FIR filtering. X-axis: 
frequency (Hz), Y-axis: amplitude (dB) 
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Fig. 4.4. The zoomed magnitude spectrum of (a) noisy ECG, (b)-(e) the output 
obtained after wavelet-based processing using db8, sym10, dmey, and bior6.8 
wavelets respectively, and (f) the output obtained after 500-tap FIR filtering. X-axis: 
frequency (Hz), Y-axis: amplitude (dB). 
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representing significant baseline wander. These components were attenuated in the 

processed waveforms. The dmey and db8 wavelets give sharper transition bands 

compared to other wavelets. All the frequency components below 0.5 Hz were largely 

attenuated by dmey wavelet. The 500-tap FIR filter has slow transition and removes 

only the very low frequency components.  

 Application of the denoising technique on noisy segments from the MIT/BIH 

database gave similar results. 

4.5 Quantification of signal enhancement 
The validation method reported in [4] was used to quantify the noise reduction 

achieved by the denoising algorithm. The ECG records obtained from the volunteers 

using ECIL Holter ECG monitor were used for the purpose. The clean segments of 

the records which did not contain artifacts were visually selected and were taken as 

noise-free ECG records. The denoising was applied on the noisy segments from the 

same record. The effectiveness of the filtering was quantified by calculating the L2 

norm and MaxMin statistic (Eqs. 2.1 and 2.2). The statistics were calculated for noisy 

signal before processing, after processing, and the ECG recorded without artifact. 
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Improvement indices for and were calculated as given in Eq. 2.3. An 

improvement index close to 1 indicates an effective denoising. The average values 

obtained for the improvement indices for different wavelets and FIR band-pass 

filtering are shown in Table 4.1. The indices show significant reduction of noise. 

These values show nearly the same improvement by all the denoising methods. 

2L mxmnL

Table 4.1. Average values of the 
improvement indices obtained using 
different wavelets. 
 

Improvement indexProcess 
L2 Norm MaxMin

db8 0.72 0.51 
bior6.8 0.71 0.55 
coif5 0.71 0.55 

sym10 0.71 0.53 
dmey 0.71 0.54 
db4 0.71 0.54 

BP filter 0.71 0.54 
 

 Signal enhancement was quantified by measuring SNR improvement also. The 

input signals used for this study were obtained by adding noise-free ECG segments 

Fig. 4.5. (a) An ECG record with SNR = -5 dB obtained by adding segments from 
records "bw" and 100 from MIT/BIH database. (b) Output after wavelet denoising 
(db8). (c) Output after 500-tap FIR band-pass filtering. 
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from MIT/BIH arrhythmia database and signal-free noise segments from MIT/BIH 

noise stress test database. Example of an ECG signal with SNR = –5 dB is shown in 

Fig. 4.5(a). This waveform is synthesized by mixing segments of records 100, and 

"bw" from MIT/BIH database. The processed outputs obtained by wavelet denoising, 

using db8 wavelet, and FIR filtering are given in Figs. 4.5(b) and (c) respectively. It 

can be noted that the baseline wander has been significantly reduced. SER values 

achieved by different wavelets and FIR band-pass filtering for different combinations 

of ECG and noise records are given in Table 4.2, for the SNR values of 0 and 15 dB. 

It can be noted that the denoising technique under study is effective in suppressing the 

baseline wander but there is no significant suppression of muscle artifact and 

electrode motion artifact. Here also it is visible that the wavelet-based and the filter 

based denoising shows similar performance. 

Table 4.2. SER values (in dB) for different types of noises 
 

SNR = 0 dB SNR = 15 dB Noise ECG 
Rec. db8 dmey BP filter db8 dmey BP filter 
100 13.82 14.05 13.91 15.44 15.71 15.81 
103 15.14 15.60 15.12 17.62 18.19 18.23 "bw" 
213 15.19 15.74 15.14 17.86 18.48 18.56 
100 7.88 7.88 8.44 14.87 15.09 15.25 
103 8.09 8.07 8.63 15.84 16.15 16.26 "em" 
213 8.34 8.23 8.83 17.10 17.38 17.66 
100 3.12 3.15 3.16 13.70 13.91 13.94 
103 3.16 3.20 3.22 14.36 14.65 14.68 "ma" 
213 3.24 3.26 3.29 15.22 15.52 15.63 

 
 Figure 4.6 shows the SER vs. SNR plot obtained for different combinations of 

record 100 and record "bw". It is possible that the baseline wander already present in 

record 100 affected the results. Another evaluation was carried out by mixing the 

"bw" record with the artifact-free ECG signal, with beat rate 75, from the simulator. 

The SER vs. SNR plot obtained from this input is given in Fig. 4.7. From both the 

figures, it was observed that for input SNR of –10 dB, the denoising based on "db8" 

and "dmey" wavelets provided about 1 dB more signal to error ratio than the other 

wavelets used.  
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Fig. 4.6. SER versus SNR values (in dB) for wavelet-based decomposition and FIR 
band-pass filtering. The input signals were obtained by adding segments from records 
100 and "bw" from MIT/BIH database. 
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Fig. 4.7. SER versus SNR values (in dB) for wavelet-based decomposition and FIR 
band-pass filtering. The input signals were obtained by adding segments from clean 
ECG record acquired from simulator and record "bw" from MIT/BIH database. 

4.6 Validation by QRS detection 
For further assessing the baseline correction and noise reduction by the denoising 

technique, it was used as a pre-processing step to an automated QRS detection 

algorithm. The Pan-Tompkin's algorithm [3], [8], [9] for detecting the QRS complex 
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was used to detect the R-peaks of the ECG records before and after denoising and 

improvements in the QRS detections were examined.  

 Pan and Tompkins [8] developed a robust QRS detection algorithm for real-

time processing of ECG signals sampled at 200 Hz. It was implemented using an 8-bit 

microprocessor and hence the filters were designed with integer coefficients. The 

block diagram describing the algorithm is given in Fig. 4.8. The algorithm makes use 

of a bandpass filtering with the pass-band of around 5 – 15 Hz to attenuate the high 

frequency noise, baseline wander and the ECG components other than the QRS 

complex. The resulting signal is passed though a series of operations: differentiation, 

squaring, and moving window integration. The output obtained from the moving 

window integrator was used to find the R-peak locations and the widths of the QRS 

complexes. 

 Low-pass filter used has a cut-off frequency of 11 Hz. The difference equation 

of the filter, 

 ( )  (3.3) 

f 6 samples. The lowpass filter output was applied 

) 2 ( 1) ( 2) ( ) 2 ( 6) ( 12y n y n y n x n x n x n= − − − + − − + −

It has a DC gain of 36 and a delay o

as input to a highpass filter with cut-off frequency 5 Hz and a gain of 32, with the 

difference equation 

 [ ]( ) 32 ( 16) ( 1) ( ) ( 32)y n x n y n x n x n= − − − + − −  (3.4) 

It produces a delay of 16 samples. The QRS complex slope information is obtained by 

taking 5-point derivative, using the difference equation 

 [ ]1( ) ( 2) 2 ( 1) 2 ( 1) ( 2)
8

y n x n x n x n x n
T

= − − − − + + + +  (3.5) 

It produced a delay of 2 samples. The differential signal is squared and then passed 

through the moving window integrator of length N, using the difference equation 

 [ ]1( ) ( ( 1)) 2 ( ( 2)) ... ( )y n x n N x n N x n
N

= − − − − − − + +  (3.6) 

Selecting N = 30 resulted in 150 ms window length, spanning the QRS complex even 

in the abnormal conditions, and excluding the T wave from the QRS complex. The 

presence of the QRS complex is indicated when the moving integrator output crosses 

a threshold value, dynamically adjusted for an efficient R-peak detection. 

ed threshold of magnitude equal to 50 % of the maximum value of the 

 For our investigation, a real-time implementation of the algorithm was not 

needed. A fix
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moving window integrator output was used. With this threshold, R-peak locations 

could be successfully detected in the clean ECG records. However, it failed to detect 

some R-peaks in noisy ECG records. 

4.7 Effect of denoising on QRS detection 

RS 

omplexes which the Pan-Tompkin's algorithm failed to

algorithm was able to detect a much larger number of the R-peaks from the processed 

 Pan-Tompkin's algorithm 
 

One example of the validation using the Pan-Tompkin's algorithm is shown in Fig. 

4.9. In the unprocessed ECG record, shown in Fig 4.9(a), there are several Q

c  detect. However, the 

ECG record, as shown in Fig. 4.9(b) and (c). It is seen that the processing did not help 

in detecting the undetected peaks in some instances, but there were no instances of 

failure in the detections of R-peaks due to processing. 

Fig. 4.8. The block diagram of the processing stages in
[3], [8], [9]. 
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Fig. 4.9. (a) The recorded ECG from a volunteer during arm movement. (b) ECG after 
FIR band-pass filtering. (c) ECG after wavelet denoising. Triangles represent the 
detected QRS complexes by Pan-Tompkin's algorithm. 
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decomposition scales 1, 8, and 9 had low RMS values for clean ECG records and high 

RMS values for noisy ECG records. Hence those scales were eliminated. This 

denoising method was applied to clean ECG records, of different beat rates, obtained 

from the simulator and observed that it does not cause any significant distortion in the 

signals with beat-rate within the range 45 – 120. The method was tested for a large 

number of noisy signals and was found to eliminate the baseline wander very 

efficiently. An FIR band-pass filter was also investigated and it showed somewhat 

similar denoising effect. The methods were validated by calculating the improvement 

indices for the L2 norm and MaxMin statistics. The values obtained shows significant 

denoising. Pan Tompkins QRS complex detection algorithm [8] was implemented and 

applied for QRS detection of the noisy and denoised signals. Denoising significantly 

improved the QRS detection efficiency of the algorithm.  

 The results from the investigation on wavelet based denoising show scope for 

several investigations to further improve the denoising. In the investigated method, 

the details at scales containing significant signal information were unmodified. 

However, those decomposition levels are not free from the artifacts. The possibility of 

 

 

Chapter 5 

SUMMARY AND CONCLUSION 

 
 

The objective of this project was to investigate denoising techniques for suppressing 

motion artifacts and baseline wander in the ECG signals. After a study of various 

techniques, the wavelet-based denoising using scale-dependent thresholding was 

chosen for detailed investigation because it did not require a reference signal and can 

be used for single channel ECG records. By observing the decomposed waveforms of 

clean ECG signal using several wavelets, it was concluded that db8, dmey, sym10,

and bior6.8 were suitable for the application, as they represent ECG signal in 

minimum number of decomposition levels. The RMS values of the various scales of 

details were calculated for clean and noisy ECG signals. It was found that the 



separating the signal and noise components from these levels may also be explored. 

Another way of approaching the problem is to investigate the use of combination of 

two types of denoising techniques. For example, output of the wavelet-based 

denoising can be used for the detection of QRS complexes. The information of the R-

peak locations obtained from this st  in the modified averaging method 

[7] for estimating a it can be used for 

generating the reference in the adaptive filtering technique of [12] or for protecting 

e QRS segments in the EMD technique [10]. Once the signal is enhanced to the 

xtent that P waves can be successfully detected, we can use the adaptive filtering 

ep can be used

nd suppressing the baseline wander, or 

th

e

techniques needing the length of the PQRS complex [12]. Further there is a need for a 

quantitative evaluation of the various techniques on the same database, for carrying 

out a comprehensive comparison and selecting the best methods for the denoising of 

ambulatory ECG. 
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