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ABSTRACT 
 

An electrolarynx, a verbal communication aid used by laryngectomy patients, is a vibrator 

held against the neck tissue to provide excitation to the vocal tract, as a substitute to that 

provided by the glottal vibrations. Electrolaryngeal speech suffers from a monotonic 

nature, low-frequency spectral deficit, and background noise due to leakage from the 

vibrator. While the first two factors affect the speech quality, the background noise also 

affects the intelligibility. This project presents the investigations for enhancement of 

electrolaryngeal speech and real-time implementation of the enhancement techniques. 

Pitch-synchronous application of generalized spectral subtraction is used for reducing the 

background noise. Effects of different noise estimation and phase estimation techniques 

are investigated. Spectral compensation, and introduction of jitter and shimmer in the 

speech signal, using LPC based analysis-synthesis, is investigated for improving its 

naturalness. Two real-time implementations of the spectral subtraction for enhancement 

of electrolaryngeal speech are carried out using 16-bit fixed-point processors: first using 

dsPIC33FJ128GP804 based single chip circuit with sampling frequency of 10 kHz and 

subsequently using TMS320C5515 based board with sampling frequency of 12 kHz. In 

both the implementations, input and output are handled using DMA and memory buffers 

for block processing using two-pitch period analysis window with 50 % overlap. The 

noise is estimated using 3-point 4-stage median and speech is resynthesized using noisy 

phase. In both the implementations, the noise reduction is compatible with that obtained 

by Matlab based simulations. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Problem overview 

Laryngeal cancer sometimes necessitates the removal of larynx [1]. Having lost the 

natural voicing source, the patient needs a voicing aid for producing speech. The artificial 

larynx [2], [3] is a prosthesis meant for providing vibrations as a substitute to those 

provided by the natural larynx. Several types of artificial larynges are available, and the 

electronic artificial larynx or the electrolarynx is the most widely used type. It is a 

vibrator held against the neck tissue to produce vibrations required for the generation of 

speech. Pulses from its vibrating diaphragm, held against the throat, get transmitted 

through the neck tissue to the vocal tract. The resonances of the time-varying vocal tract 

filter dynamically shape the harmonic spectrum of the vibrations. The resulting speech is 

known as electrolaryngeal speech. The electrolaryngeal speech enables the laryngectomee 

patients to communicate verbally, but the speech suffers from the problem of background 

leakage noise, deficiency of low frequency content, and monotonic nature.  

 

1.2 Project objective 

Several signal processing techniques [4]-[10] have been reported for enhancement of 

electrolaryngeal speech. The objective of this project is to (i) investigate effect of 

different noise estimation and phase estimation techniques for use with spectral 

subtraction for suppressing the background noise in electrolaryngeal speech, (ii) develop 

a signal processing technique to compensate the low frequency deficit, and to reduce the 

monotonicity of the electrolaryngeal speech, and (iii) implement a real-time system for 

enhancement of electrolaryngeal speech which removes the background noise in the 

electrolaryngeal speech using a dynamic estimation of noise. 
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1.3 Dissertation outline 

Chapter 2 reviews the literature related to enhancement of electrolaryngeal 

speech.Chapter 3 describes the effect of estimating the phase spectrum with different 

techniques in resynthesizing the clean speech. LPC based analysis-synthesis for 

introduction of jitter, shimmer, and spectral compensation is also described in this 

chapter. Real-time implementation of spectral subtraction algorithm using 

dsPIC33FJ128GP804 is described in Chapter 4. The subsequent chapter describes the 

real-time implementation of spectral subtraction algorithm using TMS320C5515 eZdsp 

USB stick. The last chapter gives the summary of the work done and suggestions for the 

future work. 
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Chapter 2 

 

ENHANCEMENT OF ELECTOLARYNGEAL SPEECH  
 

2.1 Introduction 

It is sometimes necessary to surgically remove the larynx of a patient suffering from 

laryngeal cancer. After removal of the larynx there will not be any natural means to 

produce vibrations required for the generation of speech. Different artificial larynges have 

been developed [2], [3] and the external electronic artificial larynx, or the electrolarynx is 

the most widely used type. It is a vibrator held against the neck tissue to couple the 

vibrations to the air in the vocal tract, as a substitute to that provided by the vibration of 

vocal folds in the larynx. The speech produced using it is known as the electrolaryngeal 

speech. Schematics of normal speech production and that using this device are shown in 

Fig. 2.1 (a) and (b), respectively. The device generally permits setting of the vibration 

level and pitch by the user. However, a dynamic control of level, voicing, and pitch 

during speech production is very difficult. In addition to this basic limitation, the 

electrolaryngeal speech suffers from (i) presence of background noise caused by leakage 

of acoustic energy from the vibrator and vibrator-tissue interface, (ii) low-frequency 

spectral deficiency due to attenuation of the lower harmonics in transmission through the 

neck tissue, and (iii) unnatural quality due to constant pitch and level. Background noise 

decreases the intelligibility, while the other two factors affect the speech quality [1], [12], 

and [13]. Weiss et al. [1] reported that electrolaryngeal speech has a stronger 

concentration of energy between 400 and 800 Hz, resulting in a confusion in the 

identification of vowels due to auditory masking of the vowel formants.  

Norton and Bernstein [14] reported that application of a foam shield around the 

device resulted in a reduction in the background noise. Later Espy-Wilson et. al. [4] 

reported that acoustic shielding of the vibrator assembly could reduce the leakage of the 

acoustic energy from the vibrator, but the shielding effect of the insulation was 

counterbalanced by mechanical damping and it was not effective in reducing the leakage 

from the vibrator-tissue interface. Several signal processing techniques for enhancement 
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(a) 
 

 

(b) 
 

Fig. 2.1 Schematic of (a) normal speech production [11], (b) speech production with an 

electronic artificial larynx [6]. 

 

of electrolaryngeal speech have been reported and some of these techniques are reviewed 

in the following section.  

 

2.2 Adaptive filtering method 

Espy-Wilson et. al. [4] reported a two-input noise cancellation method using adaptive 

filtering for the reduction of background noise. This method is based on the assumption 

that, in addition to the noisy signal, a reference correlated with the noise and uncorrelated 

with the desired signal is available. In the implementation, electrolaryngeal speech from 

near the lips x(n), and background noise from near the electrolarynx r(n) were recorded 

simultaneously. The signal r(n) is passed through a filter and its output y(n) is subtracted 

from x(n) resulting in an error e(n). The filter coefficients are updated at each sample 
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Adaptive filter

Adaptation 

control

x(n)

r(n)

e(n)

y(n)

Σ
+

bm(n)

 

Fig. 2.2 Block diagram of the adaptive filter used by Epsy-Wilson et. al. [4]. 

 

based on least mean square [LMS] algorithm to reduce e(n). Figure 2.2 shows the block 

diagram of the implementation. The output of the filter is given by 

 
-1

0

( ) ( ) ( - )
N

m

m

y n b n r n m  (2.1) 

where bm‟s are the coefficients of the filter. The error is given as  

 ( ) ( ) - ( )e n x n y n   (2.2) 

The coefficients of the filters are updated as 

 ( ) ( 1) ( ) ( )m mb n b n e n r n m , m = 0… N-1 (2.3) 

where  is the convergence parameter and N is the filter length. 

Correlation between x(n) and r(n) varies and when they are highly correlated y(n) 

approximates to x(n) resulting in nearly no signal. So an adaptation control was used 

based on the average energy of the current window. If the energy was greater than an 

empirically determined threshold, adaptation was suspended and a static filter with the 

latest adapted coefficients was used for filtering else adaptation was continued. It has 

been reported that a marked reduction in background noise was observed in low-energy 

intervals. The quality of the output was improved in the high-energy intervals but the 

background noise was not removed fully. The intelligibility of the input speech was not 

affected by the processing.  

In electrolaryngeal speech, the speech signal and the background noise originate 

from the pulsatile vibrations of the diaphragm and hence they are strongly correlated. So 

adaptive filtering method is ineffective for the reduction of background noise in 

electrolaryngeal speech. A single input noise cancellation method based on pitch-

synchronous application of generalized spectral subtraction [15], [16] for the suppression 
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of background noise in electrolaryngeal speech has been proposed in [5], [17]. The next 

section describes this method. 

 

2.3 Spectral subtraction 

In the spectral subtraction for enhancement of noisy speech, an estimate of the spectrum 

of the noise is subtracted from that of the noisy speech and the resulting magnitude 

spectrum is combined with the phase spectrum of the noisy speech for resynthesizing the 

clean speech [15], [16]. The method is based on the assumption that the speech and the 

noise are uncorrelated. But electrlolaryngeal speech is highly correlated with the 

background noise. However, it has been shown in [5], [17] that if the spectra are 

calculated pitch-synchronously, the speech and noise become uncorrelated and spectral 

subtraction can be employed. 

 A model of the generation of the background leakage noise in electrolaryngeal 

speech is shown in Fig. 2.3. The impulse response of the vocal tract filter and the impulse 

response of the leakage path are represented as hv(n) and hl(n), respectively. The speech 

signal s(n) and the leakage noise l(n) are generated by convolution of the pulsatile 

excitation e(n) with the respective impulse responses 

 s(n) = e(n) * hv(n) (2.4) 

 l(n) = e(n) * hl(n) (2.5) 

 

Pulse 

Generator
Vibrator

hv(t) hl(t)

Σ

Vocal

 tract

Leakage

path

Speech with

leakage sound x(t)

s(t) l(t)

e(t)

Electrolarynx

 

Fig. 2.3 A model of the background leakage noise generation in electrolaryngeal speech 

[5]. 
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The noisy speech signal is given as 

 x(n) = s(n) + l(n) (2.6) 

The vocal tract acts as a time-varying filter during speech production, while the filter 

response of the leakage path varies slowly due to changes in the orientation and pressure 

in holding the vibrator against the neck tissue. Applying short-time Fourier transform on 

(2.6), we get 

 Xn(e
j

) = En(e
j

) [Hvn(e
j

) + Hln(e
j

)] (2.7) 

The impulse responses of the vocal tract filter and the leakage path may be assumed to be 

uncorrelated, and hence 

 |Xn(e
j

)|
2
 = |En(e

j
)|

2 
[|Hvn(e

j
)|

2 
+ |Hln(e

j
)|

2
]  (2.8) 

If a pitch-synchronous window is used to evaluate short-time spectra, |En(e
j

)|
2 

may be 

considered as constant |E(e
j

)|
2
. During the non-speech intervals, s(n) will be negligible 

and the noise spectrum is given as 

 |Ln(e
j

)|
2
 = |E(e

j
)|

2
 |Hln(e

j
)|

2
 (2.9) 

The noise spectrum can be estimated from the noise during explicit silences (lips closed), 

or dynamically using a voice activity detector, or using statistical techniques without a 

voice activity detector. A block diagram of the spectral subtraction technique is shown in 

Fig. 2.4. All the spectral estimates are computed using FFT. In the generalized spectral 

subtraction technique [16], the cleaned magnitude spectrum is obtained as  

 

Combine

| |
γ

Noise Est.

Overlap-add

FFT

Mag.

Phase

x x

Σ Threshold.

Window

IFFT

x(n)

Xn(k)

α β

|Xn(k)|

|Yn(k)|
Yn(k)

y(n)
+

Xn(k)

Input 

   Speech
Enhan.

Speech

| |
γ

| |
(1/γ)

Ln(k)

 

Fig. 2.4 Block diagram of generalized spectral subtraction [18]. 
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 E(k)
 
= | Xn(k)|

γ
 - α|Ln(k)|

γ
 (2.10) 

 |Y n(k)|
 
= [E(k)]

(1/ γ)
,  if E(k) 

 
> [β|Ln(k)|]

γ 

 β|Ln(k)|,  otherwise (2.11) 

where α is an oversubtraction factor used to reduce the residual noise due to short-time 

variations in the noise. Oversubtraction may result in negative values in the spectrum, 

causing time-varying tonal sounds, known as “musical noise”, which adversely affect the 

quality of the resynthesized speech. This noise is masked by a floor noise, controlled by 

the floor factor β. The subtraction power  = 2 results in power subtraction and  = 1 

results in magnitude subtraction. The values of the three parameters need to be 

empirically obtained for each type of noise estimation and the device. The magnitude 

spectra after spectral subtraction are combined with the corresponding phase spectra of 

the noisy speech and the resulting complex spectra are used to resynthesize speech by 

using overlap-add method. 

 

2.4 Estimation of noise spectrum for spectral subtraction 

The characteristics of the background noise due to leakage of acoustic energy from the 

vibrator are different from those of the noise due to external sources. Its spectrum slowly 

varies due to the changes in the orientation of the electrolarynx against the neck tissue 

and the hand pressure in holding it during speech production. Its level and spectral 

characteristics are very similar to those of the speech, and hence voice activity detector is 

very difficult. Here some of the methods for the estimation of noise spectrum in 

electrolaryngeal speech are reviewed.  

 Estimation of the noise spectrum using averaging based noise estimation (ABNE) 

method was reported by Pandey et al. [5]. In this method, the electrolaryngeal speech 

with the speaker‟s lips closed for about 2 s was used to estimate the noise spectrum. 

Square magnitudes of the spectra of all the adjacent windowed frames in this non speech 

interval were averaged to get the estimated noise spectrum. Pratapwar [19] reported that 

the position of the window with respect to the excitation pulse did not affect the quality of 

the output speech in the pitch-synchronous application of spectral subtraction. As the 

background noise is dynamically varying, estimated noise spectrum has to be updated 

dynamically. Hence use of the noise spectrum estimated with the lips closed cannot be 

used for a continuous use of the device.  
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A statistical estimate of the noise without an explicit voice/silence detector has 

been reported to be effective in estimating the dynamically varying noise for noise 

reduction for speech recognition application[20]. Pandey et al. [6] used quantile-based 

noise estimation (QBNE) reported in [20] for enhancement of electrolaryngeal speech 

with spectral subtraction. In this method, the quantile values for different spectral 

components were selected by matching the noise spectrum estimated over a long speech 

record to match that obtained by averaging during the initial silence. Pratapwar [19] 

investigated different methods for selection of a particular quantile value to estimate the 

noise. These methods included those using a single quantile value, two-band quantile 

values, frequency dependent quantile values, and signal-level based dynamic selection of 

quantile values. It was reported that the spectral subtraction based on fixed quantile 

values was less effective during weak and non-speech segments compared to that using 

signal-level based dynamic selection of quantile values. Because of processing time and 

memory requirement, a real-time implementation of this method is difficult.  

Another method for dynamically estimating the noise without speech-non speech 

discrimination was reported by Mitra and Pandey [9] and Kabir et al. [10] using the 

minimum statistics based noise estimation (MSBNE) based on the noise estimation and 

speech enhancement technique reported earlier by Martin [21], [22]. In this method, 

minimum of the magnitudes of each spectral sample in a set of past frames was 

considered to be the spectral sample of the estimated noise. Parameters for spectral 

subtraction were dynamically estimated in [10] based on the algorithm reported in [21], 

whereas fixed subtraction parameters were used in [9]. MSBNE is computationally less 

expensive and is suitable for real-time implementation if the subtraction parameters do 

not have to be dynamically estimated from the signal statistics.  

 

2.5 Spectral subtraction based on auditory masking 

Liu et al. [7] reported spectral subtraction with adaptation of parameters using frequency 

domain masking properties of the auditory system for suppression of the leakage noise as 

well as the noise from external sources. This method considers the frequency domain 

masking that the weak signal is inaudible if both strong and weak signals occur 

simultaneously. Figure 2.5 shows the block diagram of the implementation. The noise 

was estimated from the noisy speech using minimum statistic based recursively smoothed  
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Fig. 2.5 Block diagram of spectral subtraction based on auditory masking reported in [7]. 

 

spectrum. A perceptual weighting filter frequency response (PWF-FR) which masks the 

noise in the formant regions was calculated from the noisy speech. The spectral 

subtraction parameters were updated based on the PWF-FR. If the PWF-FR was low, 

which is the case near the formant frequencies, subtraction parameters were increased. 

This results in masking the musical noise generated from over subtraction by the formant 

frequencies. If the PWR-FR was high, which is the case near the valleys, subtraction 

parameters were decreased. This avoids over subtraction, else musical noise will be 

introduced in the output speech as it cannot be masked near valleys. It was reported that 

this algorithm and power spectral subtraction (PSS) algorithm reduced the background 

noise in the electrolaryngeal speech effectively. But if PSS algorithm was used when 

white Gaussian noise and speech babble noise were added to the electrolaryngeal speech, 

noise reduction was poor in high frequency regions. Thus it may be concluded that 

spectral subtraction with auditory masking is more effective to enhance the 

electrolaryngeal speech with additive noise added to it, while PSS method is suitable in 

the absence of significant external noise. 

 Liu et al. [8] reported a supplementary auditory masking threshold (SAMT) 

algorithm to eliminate both additive noise and background noise in electrolaryngeal 

speech. In this algorithm an auditory masking threshold (AMT) is calculated using  

 



 

11 

 

 

Fig. 2.6 Block diagram of SAMT algorithm reported in [8]. 

 

auditory masking model. Any of the noise components below AMT will not be 

perceptible for the human ear and there is no need to suppress them. So it will be 

sufficient to minimize the audible noise spectrum. The SAMT algorithm, shown in Fig. 

2.6, has two stages. In the first stage estimated noise was spectrally subtracted from the 

noisy speech using AMT algorithm. In the second stage cross-correlation spectral 

subtraction (CCSS) was employed to reduce the correlated noise present in the enhanced 

speech from the first stage. In the AMT algorithm, noise was estimated using minimum 

statistic based recursively smoothed spectrum and subtraction parameters were updated 
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by the AMT. If the AMT was low, spectral parameters were increased to reduce the noise. 

If there was any musical noise introduced in the output speech due to the over subtraction, 

it would be masked by the background noise present in the electrolaryngeal speech due to 

high spectral floor. If the AMT was high, spectral subtraction parameters were decreased 

to their minimum values so that the residual noise would be below the AMT and it would 

be masked naturally. The authors reported that the perceptual tests showed effective 

reduction of background noise in electrolaryngeal speech with and without additive noise 

using both AMT and SAMT algorithms. Compared to these two algorithms, the PSS 

algorithm was not effective in reducing the high frequency noise in the case of 

electrolaryngeal speech without the additive noise. The two algorithms were better than 

PSS algorithm in case of electrolaryngeal speech with additive noise. The CCSS 

algorithm compensated the deficit of the AMT algorithm in the reduction of the low 

frequency noise. So SAMT algorithm can be preferred in the case where additive noise 

gets added to the electrolaryngeal speech. The choice of using the AMT algorithm instead 

of PSS or vice versa depends on the tradeoff between the quality of the output speech and 

the complexity of calculations. 

 

2.6 Real-time implementation of spectral subtraction 

Budiredla [23] has reported the real-time implementation of spectral subtraction 

algorithm using a DSP board based on the digital signal processor TMS320C6211 from 

Texas Instruments (TI). For real-time implementation, Code composer studio, the 

integrated development environment (IDE) for TI DSP processors, was used for 

configuring, building, interfacing and debugging purposes. The important features of the 

processor on the board include two multi-channel buffered serial ports (McBSPs), 

enhanced direct memory access (EDMA) controller which transfers the data between 

regions in the memory map without CPU intervention. The board has a codec AD535. 

The inbuilt ADC and DAC in the codec operate at a fixed sampling rate of 8 kSa/s. 

Spectral subtraction was implemented in real-time with over subtraction factor α = 2, 

spectral floor factor β = 0.001, and exponent factor γ = 1. The background noise was 

estimated using QBNE based on SNR. The resynthesizing was carried out by setting the 

phase spectrum as zero. It was reported that for effective noise estimation, 55 or more 

past frames were needed but because of the processing speed constraints, the number of 
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frames considered for noise estimation in real-time was 8. The output speech was 

reported to be poor in quality compared to the Matlab and C offline implementations.  

Mitra [24] implemented spectral subtraction with ABNE and MSNBE (described 

in section 2.4) algorithms and spectral compensation for low frequency deficit in real-

time using the DSP evaluation board EZ-Kit Lite from Analog Devices. The board is 

based on ADSP-BF 533 Blackfin processor. Some of the main features of the Blackfin 

processor core architecture are: dual MAC signal processing engine, an orthogonal RISC-

like microprocessor instruction set, flexible single instruction multiple data (SIMD) 

capabilities. The kit has a codec AD1836A with three stereo DACs and two stereo ADCs 

using multibit sigma-delta architecture. The codec operates at a fixed sampling rate of 48 

kHz or 96 kHz. So software decimation by a factor of 4 was done to bring down the 

sampling rate to 12 kHz. Spectral subtraction algorithm with ABNE and MSBNE was 

implemented in real-time. The resynthesis was carried out by using the original noisy 

phase spectrum. The spectral parameters used were, α = 10, β = 0.001, and γ = 1 in the 

case of implementation with MSBNE, and α = 2, β = 0.001, and γ = 1 in the case of 

implementation with ABNE . In MSBNE due to memory constraints, noise was estimated 

using the approach of cascading two minima estimations. Minima of every 10 successive 

windows were calculated and stored in a buffer of length 10. When this buffer gets filled 

with 10 such minima, the minimum of these 10 local minima was calculated which gives 

an effective minimum of 100 successive windows. The minimum of the second buffer 

was considered as the noise estimate. Results of real-time implementation of spectral 

subtraction with ABNE by keeping a 2 s no speech interval were reported to be 

comparable with that of Matlab offline implementation. But the estimation of noise using 

ABNE itself is not useful for long duration speeches as the noise is not getting updated. 

Mitra [24] reported that output speech of real-time implementation using MSBNE 

showed effective noise reduction, though not as good as offline processing, possibly 

because of the effects of finite precision arithmetic.  
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Chapter 3 

 

INVESTIGATIONS USING OFFLINE IMPLEMENTATION 

 

3.1. Introduction 

Spectral subtraction algorithm (described in Sec. 2.3) can be used to reduce the 

background noise in the electrolaryngeal speech. In the algorithm, estimated magnitude 

spectrum of the noise is subtracted from the magnitude spectrum of noisy speech. The 

resultant magnitude spectrum is combined with the retained noisy phase to get the 

resynthesized clean speech. In this chapter, three investigations for enhancing 

electrolaryngeal speech are presented: (i) spectral subtraction with different noise 

estimation techniques reported in the literature (described in Sec. 2.4), (ii) effect of 

estimating the phase spectrum using different techniques, (iii) a LPC based analysis-

synthesis method for introduction of jitter and shimmer in the electrolayngeal speech after 

spectral subtraction for suppressing its monotonic nature. These investigations are carried 

out using Matlab based offline implementation of the signal processing on recorded 

electrolaryngeal speech. 

 

3.2. Spectral subtraction with different noise estimation techniques 

Spectral subtraction was implemented using (i) average based noise estimation (ABNE) 

proposed by Pandey et al. [5], (ii) minimum statistics based noise estimation (MSBNE) 

with fixed subtraction parameters reported by Mitra and Pandey [9], and (iii) median 

based noise estimation (MBNE) (QBNE reported by Pandey et al. [6], with 0.5 quantile). 

Spectral subtraction is implemented as shown in Fig. 2.4, with the original noisy phase 

spectrum used for resynthesis. Investigations are carried out with several electrolaryngeal 

speech sentences uttered by three normal speakers. Recordings are done at a sampling 

rate of 11.025 kHz with a initial 2 s silence period, i.e. speaker closed his lips for initial 2 

s while the device is on and coupled to the neck. So initial 2 s of the speech contains only 

background leakage noise. Rectangular window is used for the windowing and each 

windowed frame is of length two pitch periods and has 50 % overlap with the previous 

frame. Processing is carried out using 256-point FFT. The parameters for spectral 
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subtraction are selected empirically after observing the output for background noise 

reduction for the different set of parameters. Subtraction parameters resulting in the 

speech output judged to be of the best quality for the recorded electrolaryngeal speech for 

the sentence (S1), “…Where were you a year ago? 1 2 3 4 5 6 7 8 9 10”, are given below. 

In the implementation of ABNE, magnitude spectra of windowed frames of the 

initial 2 s silence period are stored row-wise in a two dimensional array. Average of each 

column is calculated and stored in another array, and it is considered as the estimated 

noise. In the output speech, after spectral subtraction with ABNE, a marked reduction in 

background noise was observed for shorter sentences less than 5 s length. But the noise 

reduction was not effective if the coupling of electrolarynx with neck was varied during 

the speech, even in shorter sentences. When spectral subtraction was implemented on S1, 

best output resulted for α = 10, β = 0.001, and γ = 1. Higher value of over subtraction 

factor, α, was required if input speech amplitude was higher. Effect of changing the 

length of overlapping samples in submultiples of frame length was investigated. It was 

found that quality of the output speech improved with higher overlapping.  

Block diagram of spectral subtraction by MSBNE and MBNE is shown in Fig. 

3.1. Magnitude spectra of a set of immediate past frames are stored row-wise in a two-

dimensional array and they are used for estimating the noise. In MSBNE, the minimum of 

the magnitudes in each column of the array is stored in another array and it is considered 

as the estimated noise. Magnitude spectrum of each new windowed frame replaces the 

oldest row in the two-dimensional array, and the new estimate of the noise is calculated. 

It was found that a set of past frames corresponding to a length of approximately 3 s was 

required for better estimation of the noise. Output speech after implementation of spectral 

subtraction, was distorted in some segments of speech without frequent pauses. 

Subtraction parameters resulting in best output for Speech sentence S1 were α = 25, β = 

0.005, and γ = 1. It was observed that for the input speech with higher amplitude, higher 

value of over subtraction parameter was required for better noise reduction. 

In the implementation of MBNE, magnitude spectra of a set of past frames are 

stored row-wise in a two-dimensional array. Median of the magnitude values in each 

column after sorting in ascending order is stored in another array and it is considered as 

the estimated noise. There was an effective background noise reduction in the output 

speech after the implementation of spectral subtraction. If the coupling of electrolaynx 

with neck was varied during the speech, some background noise was present for a 
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Fig. 3.1 Block diagram of spectral subtraction using MSBNE and MBNE. 

 

duration corresponding to the number of past frames used to estimate the noise. It was 

found that better estimate of the noise was obtained with a set of frames corresponding to 

a speech segment of length 0.5 s. Subtraction parameters that resulted in better output for 

Speech sentence S1 were α = 1.5, β = 0.001, and γ = 1. It was found that for the input 

speech with higher amplitude, higher value of over subtraction parameter was required 

for better noise reduction.  

On the basis of a comparison of the results obtained using MSBNE, and MBNE, it 

may be concluded that MBNE is better suited for continuous enhancement of 

electrolaryngeal speech as it requires a smaller number of frames for estimation of the 

noise. Further it needs a smaller over subtraction factor, resulting in a smaller possibility 

of subtraction of speech itself and hence a smaller possibility of distortion. Hence it was 

decided to implement the spectral subtraction with MBNE in real-time.  

Memory of the selected processor (dsPIC33FJ128GP804 from Microchip [25]) 

was not sufficient to store the set of past frames corresponding to a speech segment of 

length 1.5 s. Hence a 3-point 4-stage cascaded median approach was used to estimate the 

noise. A block diagram of 3-point m-stage cascaded median approach is shown in  
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Fig. 3.2 Block diagram of 3-point m-stage cascaded median approach to find cascaded 

median of 3
m

 input frames. 

 

Fig. 3.2. Each stage has two-dimensional integer arrays of size 3 x 128. Arrays in the first 

stage store the magnitude values of the FFTs of the three immediate past frames. After 

every three frames, an ensemble median is calculated and stored in the array of the next 

stage. Similar process is applied on each stage till the last stage. In order to limit the 

maximum computation time taken in each frame, at the most only one median is 

calculated every frame, giving priority to the higher stages. Therefore the calculation of 

the medians in a given stage may be missed at certain frames, but this is not likely to 

affect the estimated noise. With m stages, this approach gives an approximation of the 

median of 3
m

 past frames using a memory that can store the magnitude values of 3m 

frames. Spectral subtraction with 3-point 4-stage cascaded median approach using Matlab 

reduced noise effectively. The output was similar to that obtained using 3-point 5-stage 

approach. It was earlier found that MBNE was effective in noise reduction if the median 

was estimated over the past frames corresponding to approximately 0.5 s (corresponding 

to 150 frames). The output using the 3-point 4-stage cascaded median approach was 

similar to that obtained using 150-point median and much better than 12-point median. 

Hence it may be concluded that noise estimation using 3-point 4-stage cascaded median 

approach suits for real-time implementation of spectral subtraction with dynamic noise 

estimation. 

 

3.3. Estimation of phase spectrum 

In speech enhancement by spectral subtraction, the magnitude spectrum resulting from 

spectral subtraction is associated with the phase spectrum of the noisy speech and the 

resulting complex spectrum is used for resynthesis. Effect of associating phase spectra  
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obtained by different methods was investigated, with the objective of finding methods 

which can help in reducing the computation and improving the speech quality.  

To assess the effect of the phase spectrum in the electrolaryngeal speech, speech 

was also resynthesized using (i) noisy phase, (ii) zero phase, (iii) randomly selected 

phase, (iv) continuous phase, and (v) minimum phase. For the third method, the 

uniformly distributed random phase in the interval (0, 2π) is considered as the estimated 

phase. For the fourth method, phase spectrum is estimated by assuming continuity of 

phase across frames. Noisy phase is taken as the initial phase and the phase is calculated 

as 

 θn(k) = θn-1(k) + (2πndk)/N  (3.1) 

where nd  = window shift, N = FFT size, k is frequency bin index. A minimum phase 

signal can be recovered from the magnitude of its Fourier transform [25]. The vocal tract 

can be modeled as a minimum phase system because of its passive nature [26]. 

Considering the processed speech as minimum phase signal, its phase spectrum may be 

calculated from the magnitude spectrum after spectral subtraction using iterative 

technique [27], [28] or cepstrum-based non-iterative technique [11], [25], [29]. We have 

explored using the non-iterative technique to estimate the phase spectrum given the 

magnitude spectrum.  

Input speech segment x(n) of length equal to two-pitch periods (2M samples) is 

processed by spectral subtraction using 256-point FFT. We get the enhanced magnitude 

spectrum |Y(k)|. Its cepstrum is calculated as 

 c(n) = IFFT [log |Y(k)|] (3.2) 

For a minimum phase sequence, we can calculate the corresponding complex ceptrum as 

 

2 ( ), 0

ˆ( ) (0), 0

0, 0

c n n

y n c n

n

 (3.3) 

From this complex cepstrum, we obtain the desired complex spectrum as 

 ˆ( ) exp(FFT[ ( )])Y k y n  (3.4) 

In the original method using noisy phase, we use | ( ) | exp( ( ))Y k j X k  as the enhanced 

spectrum. In the minimum-phase assumption based method, we use ( )Y k  as obtained in 

(3.4) as the enhanced complex spectrum for resynthesis. 
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Fig. 3.3. Introduction of jitter, shimmer, and spectral compensation using LPC based 

analysis-synthesis [18]. 

 

3.4. Introduction of jitter, shimmer and spectral compensation 

Random variations in the pitch and the level in speech are known as the jitter and the 

shimmer, respectively. Electrolaryngeal speech sounds monotonous and unnatural, as it 

has no jitter and shimmer. While a dynamic control of voicing, pitch, and level by the 

user of the device is very difficult, introduction of jitter and shimmer in the electro-

laryngeal speech, either by introducing it in the vibrator itself or by processing of the 

signal after suppression of the background noise, may help in reducing its unnaturalness. 

For investigating the effect of jitter and shimmer in electrolaryngeal speech, a LPC based 

analysis-synthesis, as shown in Fig. 3.3, is used. The time-varying response of the vocal-

tract filter is estimated by LPC analysis [11] and the coefficients of the prediction filter 

are used to realize a time-varying filter for resynthesizing the speech. The LPC analysis is 

carried out using 2-pitch period window and autocorrelation method for estimating 12 

predictor coefficients. To closely track the vocal tract variation, 5-sample frame shifting 

is used. The time-varying resynthesis filter is excited by an impulse train with its 

frequency equal to that of the vibrator. Shimmer is introduced by varying the amplitude 

of the impulses as a(1+sr1), where a is the amplitude, r1 is a random number uniformly 

distributed over +0.5, and s is  the peak- to-peak shimmer. Jitter is introduced by varying 

the spacing of the successive impulses as N(1+jr2), where N is the pitch period in number 

of samples, r2 is a random number uniformly distributed over +0.5, and j is the peak-to-

peak jitter. 

Electrolaryngeal speech is deficient in low frequency content due to a relatively 

higher attenuation of low frequency components during the transmission of the vibrations 

through the neck tissue. Use of an impulse train as the excitation source in the LPC based 
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Fig. 3.4. Magnitude response of the designed compensation filter after smoothing the 

average of ratio of LPC spectra of natural and electrolaryngeal /a/, /i/, and /u/. 

 

(a) 

 

(b) 
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(c) 

Fig. 3.5. LPC spectral magnitudes of natural, electrolaryngeal, spectrally subtracted 

electrolaryngeal (SSEL), spectral compensated SSEL (a) /a/, (b) /i/, and (c) /u/. 

 

analysis-synthesis result in an emphasis of high frequency in the resynthesized speech. A 

spectral compensation filter is inserted in the excitation path to approximate the long-

duration averaged spectrum of the resynthesized signal to that of the natural speech. 

Sustained vowels /a/, /i/, /u/ were recorded from a speaker speaking naturally and by 

using an electrolarynx. Ratio of the averaged LPC-smoothened spectra of the natural 

speech and the electrolaryngeal speech after spectral subtraction was used to obtain the 

magnitude spectrum of the compensation filter and the filter was designed as a linear- 

phase FIR filter. The magnitude response of the designed compensation filter is shown in 

Fig. 3.4. LPC spectra of natural, electrolaryngeal, spectrally subtracted electrolaryngeal 

(SSEL), spectral compensated SSEL /a/, /i/, /u/ are shown in Fig. 3.5. Effect of spectral 

compensation without using LPC based analysis-synthesis on the output speech after 

spectral subtraction is also investigated. Output speech after spectral subtraction with 

MBNE is passed through a linear phase FIR filter of magnitude response shown in Fig. 

3.4. The resulting speech was better in quality compared to the output speech after 

spectral subtraction but not as good as the output speech obtained after LPC based 

analysis synthesis with 6 % jitter. 
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(a) Recorded speech waveform and its spectrogram. 

 

(b) Speech after spectral subtraction with α = 10, β = 0.001, and γ = 1 using ABNE. 

 

(c) Speech after spectral subtraction using MSBNE with 400 frames, α = 25, β = 0.005, 

and γ = 1. 
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(d) Speech after spectral subtraction using MBNE with 150 frames, α = 1.5, β = 0.001, 

and γ = 1. 

 

(e) Speech after spectral subtraction using 3-point 4-stage cascaded median approach, α = 

1.3, β = 0.002, and γ = 1. 

 

 

(f) Speech after spectral subtraction, spectral compensation, and introduction of jitter and 

shimmer using MBNE with 150 frames, α = 1.5, β = 0.001,  γ = 1, j = 0.06, and s = 0.  



 

24 

 

 

(g) Speech after spectral subtraction using MBNE and spectral compensation without 

using LPC based analysis-synthesis. 

 

Fig. 3.6 Recorded and output speech after spectral subtraction using ABNE, MSBNE, 

MBNE, 3-point 4-stage cascaded median approach, output speech after spectral 

subtraction, spectral compensation, and introduction of jitter and shimmer with MBNE, 

and output speech after spectral subtraction and spectral compensation. Speaker: PCP, 

material: “…Where were you a year ago? 1 2 3 4 5 6 7 8 9 10”, generated using Solatone 

electrolarynx. 

 

3.5. Results and discussion 

Electrolaryngeal speech was recorded from two normal speakers, using electrolarynx 

models SolaTone (pitch frequency = 126.7 Hz) and NP-Voice (93.4 Hz), at a sampling 

rate of 11.025 kHz and 16-bit quantization. Spectral subtraction was performed using 2-

pitch period frames with 50 % overlap. All the processing was carried out using Matlab. 

Effects of spectral subtraction, frequency compensation, and introduction of jitter and 

shimmer were assessed through informal listening tests.  

 The optimal values of the three factors in the generalized spectral subtraction were 

found to be dependent on the noise estimation method and input speech amplitude. It was 

found that use of power γ = 1 resulted in more tolerance to the variations in the values of 

the over-subtraction factor α and the floor factor β. For the noise estimated by averaging 

the noise during initial 2-s segment with lips closed, best results were obtained with α = 

10 and β = 0.001. However, the noise estimation was effective for spectral subtraction 

only up to about 5 s. With minimum statistics based noise estimation, best results were 

obtained for α = 25 and β = 0.005. The method was found to need about 3 s of silence for 
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correctly estimating the noise. It was found that in the absence of frequent pauses in 

speech, the noise estimation was affected by speech segments and resulted in distortion of 

speech. Median based noise estimation was able to track the noise without requiring a 

long initial silence or frequent pauses in speech. Best results were obtained with α =1.5, β 

=0.001. It was observed that increase in the percentage of overlap of the windowed 

frames increased the output speech quality.  

Estimation of noise using 3-point 4-stage cascaded median approach was 

investigated. In this method, an approximate median of magnitudes of 3
4
, i.e 81, past 

frames was calculated using a memory that can store magnitude values of 12 frames. Best 

results were obtained with α = 1.3, β = 0.002, and γ = 1. The noise reduction in output 

speech was similar to that obtained with MBNE which requires a memory that can store 

magnitude values of 150 frames to estimate the noise. Estimation of noise using 3-point 

5-stage cascaded median approach resulted in similar output obtained using 3-point 4-

stage cascaded median approach.  

 The investigations on the effect of phase estimation methods were carried out on a 

5 s segment of speech using ABNE. The speech quality for minimum-phase estimation 

was not better than that obtained by using the phase of the noisy speech. Use of zero 

phase, random phase, and phase estimated using phase continuity approach resulted in 

poor quality compared to that obtained with minimum-phase estimation. 

 An example of noise suppression with different types of noise estimation is shown 

using the waveforms and spectrograms in Fig. 3.6, for the original electrolaryngeal 

speech, the speech after spectral subtraction, resynthesis by LPC-based analysis-

synthesis, and spectral compensation without using LPC-based analysis-synthesis. ABNE 

results in very good noise suppression immediately after the estimation but it degrades 

with lapse of time possibly due to changes in the noise characteristics. Output speech 

after spectral subtraction with MSBNE, MBNE, and 3-point 4-stage cascaded median 

approach, contains background noise until enough number of past frames have 

contributed to the estimation of noise. They were found to be effective in dynamically 

estimating the noise. 

 Use of compensation filter significantly improved the quality of the speech. 

Speech was resynthesized by introducing jitter and shimmer with the peak-to-peak values 

varied from 0 to 40 %. A peak-to-peak jitter of 6 % resulted in maximum improvement in 

naturalness, while the values above 20 % resulted in degradation of speech. Introduction 
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of shimmer up to 20 % did not result in an improvement in naturalness, while the larger 

values of shimmer degraded the speech. Output speech after spectral compensation 

without using LPC-based analysis-synthesis was found to be better in quality compared to 

the output speech after spectral subtraction but not as good as the output speech obtained 

after adding 6 % jitter using LPC-based analysis-synthesis. 
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Chapter 4 

 

REAL-TIME SPECTRAL SUBTRACTION USING 

dsPIC33FJ128GP804 

 

4.1. Introduction 

For real-time implementation of spectral subtraction algorithm (described in Sec. 2.3), the 

main considerations in selecting the DSP processor are low power consumption, RAM 

space, direct memory access (DMA) controller for efficient block processing, processing 

speed for FFT and IFFT operations, analog interface modules. One of the available 

processors meeting most of these requirements is dsPIC33FJ128GP804 from Microchip 

[30]. This chapter presents the implementation of the real-time spectral subtraction 

algorithm using this processor. 

 

4.2. Hardware  

Microchip dsPIC33FJ128GP804 has a 16-bit fixed point digital signal processing 

unit, on-chip program memory of 128 KB and data memory of 16 KB including DMA 

memory of 2 KB, and on-chip analog I/O modules. A block diagram of the chip with the 

resources needed for spectral subtraction is shown in Fig. 4.1. The chip has several 

options of internal and external clock sources. To keep the component count low, the 

processor was used with its internal RC oscillator and PLL to operate at 40 MHz. On-chip 

successive approximation type ADC, having the input range of 0 - 3.3 V, can be 

configured in 4-channel 10-bit, or single channel 12-bit, modes. 10-bit ADC 

configuration has sampling frequency up to 1.1 MHz and it can sample 4 channels 

simultaneously. 12-bit ADC configuration has sampling frequency up to 500 kHz but 

simultaneous sampling of multi channels is not possible in this configuration. In the 

present application, ADC is configured in single channel 12-bit mode and the sampling 

rate is set to 10 kHz. The conversion results from the ADC are stored in a single-word 

result buffer ADC1BUF0. The chip has a 16-bit delta-sigma converter type DAC, having  
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Fig. 4.1 Simplified schematic of the architecture of Microchip dsPIC33FJ128GP804, 

adapted from [30]. 
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Fig. 4.2 Circuit diagram of the dSPIC33FJ128GP804 based hardware used for real-time 

spectral subtraction. 
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the output range of 1.125 − 2.235 V, with two output channels. Two four word FIFO 

arrays, DAC1LDAT and DAC1RDAT, buffer the data for the left and right channels 

respectively. The sampling rate of the DAC is set to 10 KHz. The maximum supported 

sampling rate by DAC is 100 kHz. The chip has nine 16-bit timers, and some of them can 

be cascaded to form 32 bit timers.  

The circuit diagram of the hardware used for real-time implementation of spectral 

subtraction algorithm is shown in Fig. 4.2. The audio signal from the PC sound card, 

which is the audio input to ADC of the processor, U3 (dsPIC33FJ128GP804), has a range 

of -1 to 1 V. But the ADC input range is 0 - 3.3 V so a dc bias of 1.67 V is added without 

any ac gain to the input audio signal using the operational amplifier U2 (LM324, low 

power quad op amp). The processed data will be output by positive terminal of DAC right 

channel, DAC1RP. The DAC output is amplified by the power amplifier U4 (LM386, low 

voltage audio power amplifier) and the amplified output is given to the speaker. The 

power supply to the processor, 3.3 V, is provided from the output of the regulator U1 

(LM1117). The figure also shows the „Debugger‟ used to program the processor, U3. 

 

4.3. Software  

All the programs described below are written in C and loaded in the on-chip program 

memory of the processor with the help of development programmer/debugger Microchip 

PICkit 2. Student version compiler „mplabc30-v3.25-comboLITE‟ is used for compiling 

the C programs. 

Before implementing the spectral subtraction algorithm on electrolaryngeal speech 

in real-time the following programs are tested on the processor: (i) ADC-DAC loop back 

„loop_back‟, (ii) FFT-IFFT of the input data „FFT_IFFT‟, and (iii) implementation of 

spectral subtraction algorithm on a sinusoidal wave „Spec_sub_sine‟. All these programs 

configure the processor to operate at 40 MHz. In the first program „loop_back‟, ADC 

samples the audio input and the sampled values are output to the DAC with specified 

delay and scaling. This program is used to verify the operation of ADC and DAC. In the 

second program „FFT_IFFT‟, IFFT of the FFT of the input data is calculated and the 

values obtained are compared with the Matlab calculated values. FFT and IFFT are 

calculated using the predefined functions „FFTComplex‟ and „IFFTComplex‟ provided in  
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Fig. 4.3 Data representation of type „fractional‟. 

 

the header file „dsp.h‟. These two functions operate out of place i.e. the result is stored in 

a predefined array which is different from the input array. Input to the function 

„FFTComplex‟ must be an array of type „fract complex‟ which is a structure having the 

members  „real‟ and „imag‟ of type „fractional‟. The „fractional‟ data type represented in 

Fig. 4.3 is used to represent the data that has 1 sign bit, and 15 fractional bits. Data which 

uses this format is commonly referred to as “Q1.15” data. So 0.25 in „fractional‟ format is 

represented as 0x2000 in hexadecimal format. Fractional arithmetic avoids the overflows 

in the FFT or IFFT calculations. Output of the function „FFTComplex‟ is scaled by the 

length of the FFT. This program ensures the correct operation of FFT and IFFT functions. 

In the third program „Spec_sub_sine‟, spectral subtraction algorithm with minimum 

statistics based noise estimation (MSBNE) is implemented on a sinusoidal wave. In 

MSBNE, the minimum of magnitudes of FFTs of a set of past frames is considered as an 

estimate of the noise. The maximum number of frames that could be stored in the on-chip 

data memory available is 15. The subtraction parameters used are α = 1, β = 0, and γ = 1. 

The sinusoidal input is taken from a function generator and the output expected after few 

fractions of a second is zero as the estimated noise will be same as the signal itself. This 

program checks the correctness of the implementation. After testing these three programs 

successfully, real-time implementation of the spectral subtraction algorithm on 

electrolaryngeal speech was carried out. 

Final implementation with a minimal number of components is shown in Fig. 4.4. 

The input electrolaryngeal speech from the preamplifier is sampled at 10 kHz using the 

on-chip ADC configured in the single channel 12-bit operating mode. The output data of 

the ADC is set to signed fractional format. The sample values are acquired and stored in 

the memory for block processing using DMA. Conversion by ADC triggers the DMA 

channel 0 to store the input samples from ADC1BUF0 to a circular memory formed by 

buffers A and B located in the DMA memory. Whenever one of the two buffers gets 
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Fig. 4.4 Block diagram of the real-time speech enhancement system. 
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Fig. 4.5 Block diagram of the real-time implementation of spectral subtraction algorithm. 

 

filled, DMA0 interrupt occurs and the values from the corresponding buffer are copied 

into the data memory for further processing. The processed values are output by using the 

buffers C and D located in DMA memory. DMA channel 1 is used to copy the data from 

copying of the values from one of the two buffers, an interrupt occurs and the new 

processed values are stored in the corresponding buffer. The implementation using 

program „SS_EL_3p4s_CasMed‟ is shown in Fig. 4.5. 

 Analysis is carried out using a window length of two pitch periods. As the pitch 

period of the electrolaryngeal speech remains constant, pitch synchronous analysis is 

carried out by setting the length M of each of the two input buffers equal to one pitch 

period. Implementation is carried out with 256-point FFT, which permits pitch frequency 

higher than approximately 80 Hz. A separate array of 256 words in the memory serves as 

the FFT input buffer, which is initialized to zero values. It may be considered as three 

sub-arrays: first M words, next M words and the remaining words. After filling of either 

of the ADC input buffers, the values in the second sub-array are copied to the first sub-

array and the values in the input buffer are copied to the second sub-array. For FFT of 

each frame, the samples corresponding to the analysis window get automatically zero 

padded. 
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 The real and the imaginary parts of the complex spectral values are used to 

calculate the magnitude. Noise is estimated using median based estimation (QBNE with 

0.5 quantile). To overcome the constraint on the number of past frames used for 

estimation of noise due to data memory size, a 3-point 4-stage cascaded median approach 

(described in Sec 3.2) is used.  

The spectral subtraction is carried out with  = 1 and settable values of α and β. 

The resulting magnitude is combined with the original phase, without explicit calculation, 

to get the complex spectral value as follows  

 [Yn(k)]real = |Yn(k)| [Xn(k)]real / |Xn(k)| (4.1) 

 [Yn(k)]imag = |Yn(k)| [Xn(k)]imag / |Xn(k)| (4.2) 

Output speech is obtained by taking IFFT of Yn and applying overlap-add on the resulting 

sequence, as the following  

 yn(m) = IFFT (Yn(k)) (4.3) 

 sn(m) = 0.5 [yn(m) + yn-1(m+M)], 0 < m < M-1 (4.4) 

The resulting values are stored in an array in memory and they are copied to buffer C or 

D when DMA channel 1 interrupt occurs. On-chip DAC outputs the data from 

DAC1RDAT which is continuously filled with the values from buffer C and D. 

 

4.4. Results and discussion 

Electrolaryngeal speech was recorded from two normal speakers, using electrolarynx 

models SolaTone (pitch frequency = 126.7 Hz) and NP-Voice (93.4 Hz), at a sampling 

rate of 11.025 kHz and 16-bit quantization. The recorded electrolayngeal speech from the 

PC sound card was processed by dsPIC33FJ128GP804 using program 

„SS_EL_3p4s_CasMed‟ as described in the previous section. Sampling rate of ADC and 

DAC were set to 10 kHz. Spectral subtraction was performed using 2-pitch period frames 

with 50 % overlap. Median based noise estimation using 3-point 4-stage cascaded median 

approach was used to estimate the noise. The spectral subtraction parameters were 

empirically selected by checking the quality of the processed output. Best results were 

obtained with α = 2 and results of the real-time implementation of spectral subtraction 

algorithm were found to be similar to those obtained using the Matlab based offline 

implementation. Similar output was obtained by using 3-point 5-stage cascaded median 

based noise estimation. Figure 4.6 shows the unprocessed electrolaryngeal speech and the 

enhanced electrolaryngeal speech for two sets of spectral subtraction parameters.  
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After real-time implementation of spectral subtraction algorithm, it was decided to 

implement LPC based analysis-synthesis algorithm (described in the section 3.3) for the 

introduction of jitter, shimmer, and spectral compensation on the enhanced 

electrolaryngeal speech after spectral subtraction. It was found that the on-chip data 

memory available and the clock speed of dsPIC33FJ128GP804 were not sufficient to 

implement the LPC based analysis-synthesis algorithm. So it was decided to use another 

processor having higher RAM and clock speed. TMS320C5515 eZdsp USB stick based 

on the digital signal processor TMS320C5515, having approximately three times the 

clock speed and twenty times the RAM compared to dsPIC33FJ128GP804 is selected to 

implement both the algorithms in real-time. The next chapter describes the real-time 

implementation of spectral subtraction using this processor. 

 

 

(a) Recorded speech waveform and its spectrogram. 

 

(b) Speech after spectral subtraction with α = 0, β = 0, and γ = 1. 
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(c) Speech after spectral subtraction with α = 2, β = 0.002, and γ = 1. 

 

Fig. 4.6 Unprocessed and enhanced electrolaryngeal speech after real-time 

implementation of spectral subtraction with noise estimation using 3-point 4-stage 

cascaded median approach for two sets of subtraction parameters using 

dsPIC33FJ128GP804.  Speaker: ARJ, material: “…Where were you a year ago?”, 

generated using NP Voice electrolarynx. 

 



 

35 

 

 

 

 

 

 

Chapter 5 

 

REAL-TIME SPECTRAL SUBTRACTION 

 USING TMS320C5515 

 
 

5.1 Introduction  

This chapter presents real-time implementation of enhancement algorithm using 

TMS320C5515 eZdsp USB stick based on 16-bit fixed point processor TMS320C5515 

(from Texas Instruments) [31].  

 

5.2 Hardware  

The block diagram of TMS320C5515 eZdsp USB Stick is shown in Fig. 5.1. The features 

of the TMS320C5515 eZdsp USB Stick evaluation tool [32] used in the real-time 

implementation are on-board DSP processor TMS320C5515, stereo codec 

TLV320AIC3204.  

TMS320C5515 is an embedded controller having a 16-bit fixed-point digital signal 

processing unit with a maximum clock rate of 120 MHz and 16 MB of total memory. The 

memory map is as follows: on-chip RAM of 320 KB composing of 64 KB of Dual-

Access RAM (DARAM) and 256 KB of Single-Access RAM (SARAM), 128 KB of on-

chip ROM, and the remainder is for external memory interface. The DARAM is 

composed of eight blocks of 4K words each. Each DARAM block can perform two 

accesses per cycle (two reads, two writes, or a read and a write). The SARAM is 

composed of 32 blocks of 4K words each. Each SARAM block can perform one access 

per cycle (one read or one write). Both DARAM and SARAM can be accessed by the 

internal program, data, or DMA buses. The device has a DMA controller with four DMA 

having 4 channels each (16 channels total), and three 32 bit general purpose timers. The 

functional block diagram of the processor chip is shown in Fig. 5.2. Real-time clock 

(RTC) oscillator and PLL are used to set the system clock to 100 MHz. The device has 

„FFT Hardware Accelerator‟ which supports 8 to 1024-point (in power of 2) real and 

complex-valued FFTs. 
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Fig. 5.1 Block diagram of TMS320C5515 eZdsp USB Stick reported in [32]. 

 

 

Fig. 5.2 Functional diagram of TMS320C5515 reported in [31]. 

 



 

37 

 

 TLV320AIC3204 (from Texas Instruments) [33] is a low-power stereo codec. The 

device has stereo ADC supporting sampling rates from 8 kHz to 192 kHz. In the present 

application ADC sampling rate is set to 12 kHz. The ADC uses a delta-sigma modulator 

and it can be powered up to a single channel, both channels, or no channels at a time. The 

ADC has six analog inputs which can be configured as either 3 stereo single-ended pairs 

or 3 fully-differential pairs. The device has stereo DAC supporting sampling rates from 8 

kHz to 192 kHz.  

 

5.3 Software 

All the programs are written in C and loaded in the on-chip program memory of the 

processor with the help of „Code Composer Studio' (CCStudio) version 4.0, which is the 

integrated development environment for Texas Instruments' (TI) DSPs, microcontrollers 

and application processors. It includes compilers for each of TI's device families, source 

code editor, project build environment, debugger, profiler, simulators and many other 

features. 

 Before the real-time implementation of spectral subtraction algorithm the two 

programs, „loop_back_TI‟ for ADC-DAC loop back, „FFT_IFFT_TI‟ for FFT-IFFT of 

the input data, described in Sec. 4.3 are implemented for verifying the codec operation 

and FFT and IFFT calculations. Processor clock is set to 100 MHz and the sampling 

frequency of the ADC in codec is set to 12 kHz. FFT and IFFT are calculated using the 

predefined function 'hwafft_256pts' (FFT length considered in the program is 256) 

provided in the header file „hwafft.h‟. Before passing the input data to this function, the 

data has to be bit reversed to facilitate radix-2 decimation in time computation. This bit 

reversing is done using the inbuilt function 'hwafft_br' which is also predefined in 

„hwafft.h‟. FFT or IFFT operation is in-place if the return value of the function 

'hwafft_256pts' is 0, out of place if the returned value is 1. The input and output values of 

these functions must be complex numbers represented by 32 bit integer data types in 

which most significant 16 bits are considered to be real part and least significant 16 bits 

are considered to be imaginary part of the complex number. Fractional arithmetic is used 

in the calculations of FFT and IFFT by considering real and imaginary parts of the 

complex number to be in Q1.15 format. 
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 Fig. 5.3 Block diagram of the real-time implementation of spectral subtraction algorithm. 

 

 The implementation was carried out using the program 

„SS_EL_3p4s_CasMed_TI‟ as shown in the Fig. 5.3. Input data samples from codec (data 

is taken only from the left channel as the input signal is mono) are stored in arrays 

„RCVL1‟ and „RCVL2‟ of length equal to a pitch-period using DMA. DMA0 channel2 is 

used for storing input data. The two registers 'DMA0_CH2_DST_MSW' and 

'DMA0_CH2_DST_LSW' contain the most and least 16 bits of the 32 bit address 

respectively where the input data from codec is written using DMA. Initially these two 

registers contain the starting address of the array „RCVL1‟ and after filling each element 

in the array the address in the registers is incremented. Whenever „RCVL1‟ is filled, 

DMA interrupt occurs and starting address of „RCVL2‟ is loaded in to the two registers 

and the value of a flag 'CurrentRxL_DMAChannel' (initialized to 1 at the starting of the 

program) is changed to 2. Whenever „RCVL2‟ is filled, DMA interrupt occurs and 

starting address of „RCVL1‟ is loaded in to the two registers and the value of the flag 

'CurrentRxL_DMAChannel' is changed back to 1 and this process is repeated. A new 

array, „temp_input‟, of length equal to FFT length i.e. 256 in the current application, is 

initialized to zeros. This array can be considered as 3 parts: 0 to M, M+1 to 2M, 2M+1 to 

255 (M is the length of the pitch period). In function 'main' the value of the flag 

'CurrentRxL_DMAChannel' is monitored continuously and whenever its value is changed 

from 1 to 2 the elements of the array „RCVL1‟ (if the change is from 2 to 1 elements of 

the array „RCVL2‟) replace the (M+1) 
th

 to 2M 
th

 elements of the array „temp_input‟. This 

array serves as the input to the bit reverse function 'hwafft_br' and the output of this 

function is given as input to the function „hwafft_256pts' to calculate the FFT. Spectral 

magnitudes are calculated from the complex FFT values. Noise is estimated using 3-point 
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4-stage cascaded median approach (described in Sec 3.2). The spectral subtraction is 

carried out using  = 1 and settable values of α and β = 0. The resulting magnitude is 

combined with the original phase, and IFFT of the resulting complex spectral values is 

calculated and the output speech is obtained after overlap-add as per the equations 4.1 to 

4.4. The resulting values are stored in array „XmitL1‟ (or „XmitL2‟) if the input is taken 

from „RCVL1‟( or „RCVL2‟). DMA0 channel0 and DMA0 channel1 are used to copy the 

elements in „XmitL1‟ or „XmitL2‟ to the locations corresponding to left and right 

channels of line out in the codec respectively. After the processing is over, 0 to M 

elements of the array „temp_input‟ are replaced by (M+1) 
th

 to 2M 
th

 elements. 

 

 

(a) Recorded speech waveform and its spectrogram. 

 

 

(b) Speech after spectral subtraction with α = 0, β = 0, and γ = 1. 
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(c) Speech after spectral subtraction with α = 1.625, β = 0, and γ = 1. 

 

Fig. 5.4 Unprocessed and enhanced electrolaryngeal speech after real-time implemen-

tation of spectral subtraction with noise estimation using 3-point 4-stage cascaded median 

approach for two sets of subtraction parameters using TMS320C5515 eZdsp stick.  

Speaker: ARJ, material: “…Where were you a year ago?”, generated using NP Voice 

electrolarynx. 

 

5.4. Results and discussion 

Electrolaryngeal speech was recorded from two normal speakers, using electrolarynx 

models SolaTone, and NP-Voice at a sampling rate of 11.025 kHz and 16-bit 

quantization. The recorded electrolayngeal speech from the PC sound card was processed 

using TMS320C5515 eZdsp USB stick based on the DSP processor TMS320C5515. 

Sampling rate of ADC and DAC were set to 12 kHz. Spectral subtraction was performed 

using 2-pitch period frames with 50 % overlap. Median based noise estimation using 3-

point 4-stage cascaded median approach was used to estimate the noise. The spectral 

subtraction parameters were empirically selected for the better noise reduction. As 

mentioned earlier, the spectral subtraction was carried out using γ = 1. Best results were 

obtained with α = 1.625 and β = 0.002. Results of the real-time implementation of 

spectral subtraction algorithm were found to be similar to those obtained using the Matlab 

based offline implementation. Figure 5.4 shows the unprocessed and enhanced 

electrolaryngeal speech for two sets of spectral subtraction parameters.  
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Chapter 6 

 

SUMMARY AND SUGGESTIONS FOR FUTURE WORK 

 

6.1 Summary 

Electrolaryngeal speech suffers from background leakage noise, monotonic nature, and 

low-frequency spectrum deficit. Quality of the electrolaryngeal speech is affected by the 

deficiency in low-frequency content and monotonic nature of the speech while 

background noise also affects intelligibility. Several signal processing techniques [4]-[10] 

have been reported in the literature. It has been shown in [5], [17] that if spectra are 

calculated pitch synchronously, speech and the background leakage noise become 

uncorrelated and spectral subtraction can be used to remove the background leakage 

noise. Average based noise estimation (ABNE) reported in [5], estimates the noise from 

the initial silence segment of about 2-s duration when speaker has closed his lips. This 

method does not update the noise dynamically. So it is not effective for continuous 

speech. Statistical techniques [6], [9], [10], [19]-[22] have been reported to dynamically 

update the estimated noise.  In minimum statistics based noise estimation (MSBNE) [9], 

[10] for enhancement of electrolaryngeal speech, noise of a spectral sample is estimated 

as the minimum of magnitudes of that spectral sample in a set of past frames. In quantile 

based noise estimation (QBNE) [6], the quantile values for different spectral components 

were selected by matching the noise spectrum estimated over a long speech record to 

match that obtained by averaging during the initial silence. Budiredla [23], and Mitra [24] 

have earlier implemented spectral subtraction algorithm in real-time. Budiredla [23] 

reported that the background noise reduction in the output speech was not effective 

compared to the off-line C implementation. Mitra [24] reported that though the 

implementation showed effective background noise reduction, output speech was not as 

good as that obtained from offline processing. 

In the present work, offline implementation of background noise reduction in 

electrolaryngeal speech was carried out using generalized spectral subtraction algorithm 

reported in [15], [16] and with ABNE, MSBNE, and median based noise estimation 

(QBNE with 0.5 quantile reported by Pandey et al. [6]). In the implementation of the 
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spectral subtraction with ABNE, background noise was reduced effectively in shorter 

sentences of duration less than 5 s length. But the noise reduction was not effective if 

coupling of the electrolarynx with neck was varied during the speech, even in shorter 

sentences. Spectral subtraction with dynamical estimation of noise using MSBNE did not 

result in effective noise reduction if there are no frequent pauses in the speech. A set of 

past frames corresponding to a length of 3 s was required for better noise estimation. 

There was an effective noise reduction in output speech after the implementation of 

spectral subtraction with MBNE. Better estimate of noise was obtained with a set of past 

frames corresponding to a speech segment of length 0.5 s. If the coupling of electrolarynx 

with the neck is varied, some background noise was present in the output speech for the 

duration corresponding to the number of past frames used to estimate the noise in both 

MSBNE and MBNE based spectral subtraction. For real-time implementation In spectral 

subtraction with all the three noise estimation techniques, it was observed that higher 

values of over subtraction parameter α were required if the input speech amplitude was 

higher. Also, it was observed that quality of the output speech was improved with higher 

overlapping samples.  

It was decided to implement spectral subtraction using MBNE in real-time, but the 

memory of the selected processor, dsPIC33FJ128GP804 (from Microchip), was not 

sufficient to store the magnitude values of past frames corresponding to a length of 0.5 s. 

Hence a 3-point 4-stage cascaded median approach (described in Sec. 3.2) was used to 

estimate the noise. Offline implementation of this method in Matlab resulted in effective 

noise reduction similar to that with MBNE. There was no improvement in the quality of 

output speech by using 3-point 5-stage cascaded median approach. 

In addition to the resynthesis using the original noisy phase, resynthesis using 

different techniques of estimating the phase spectrum was investigated. Speech quality for 

both the types of minimum-phase estimation was similar and not better than that obtained 

by using the phase of the noisy speech. Use of zero and random phases resulted in poor 

quality.  

An introduction of jitter and shimmer in the speech signal, using LPC based 

analysis-synthesis, was investigated for improving its naturalness. A peak-to-peak jitter of 

up to 6 % increased the naturalness, while introduction of shimmer up to 20 % did not 

improve the quality and larger values of shimmer degraded the speech. Spectral 

compensation of the output speech after spectral subtraction with MBNE without using 

LPC analysis-synthesis was also carried out. The resulted speech was better in quality 
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compared to output speech after spectral subtraction but not as good as that obtained 

using LPC analysis-synthesis with 6 % jitter. 

Real-time implementation of generalized spectral subtraction algorithm was 

carried out using dsPIC33FJ128GP804. After the analysis of offline implementations 

with different noise estimation techniques, it was decided to implement the spectral 

subtraction with MBNE and to resynthesize the magnitude spectrum after spectral 

subtrction with retained noisy phase. To overcome the constraint on the number of past 

frames used for estimation of noise due to data memory size, a 3-point 4-stage cascaded 

median approach (described in Sec 3.2) was used. Output speech was comparable to that 

obtained from offline implementation with Matlab. Due to constraints of on-chip 

available memory and processing clock speed, LPC based analysis-synthesis algorithm 

could not be implemented after spectral subtraction in dsPIC33FJ128GP804. It was found 

that implementation of the LPC based analysis-synthesis algorithm alone cannot be 

implemented on dsPIC33FJ128GP804 due to its memory and processing speed 

limitations. Use of the assembly language programming for real-time implementation 

needs to be investigated. Later TMS320C5515 eZdsp USB stick based on TMS320C5515 

(from Texas Instruments) DSP processor, having approximately three times clock speed 

and twenty times RAM was selected to implement both the algorithms. Spectral 

subtraction with 3-point 4-stage cascaded median approach for noise estimation was 

implemented on TMS320C5515 eZdsp USB stick based on TMS320C5515. Real-time 

implementation of LPC based analysis-synthesis algorithm on this processor was not 

completed. Results of real-time implementation of spectral subtraction using 

TMS320C5515 eZdsp USB stick are similar to those obtained from the offline 

implementation using Matlab. 

 

6.2 Suggestions for future work 

Real-time implementation of LPC based analysis-synthesis algorithm to improve the 

quality of the output speech after spectral subtraction needs to be investigated. Subjective 

evaluation of intelligibility and quality of output speech need to be carried out. 

Instructions for evaluating the quality of the output speech using „Preference test‟ are 

given in appendix A. 
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Appendix A 

 

PREFERENCE TEST 

 
A.1 Instructions for preference test 

This is a listening test involving presentation of pairs of speech sounds. In each pair, the 

two sounds marked as A and B correspond to the same sentence or word(s) but they may 

differ in quality. After presentation of each pair of sounds, you have to respond by 

indicating the sound you found to be of better quality. You will be seated in front of a 

computer monitor and the test will be conducted in an automated manner, by presenting 

the sounds and recording your responses. The sounds will be presented using a speaker or 

a pair of headphones, with the volume (level of the sounds) adjusted to the most 

comfortable level for you.  

During the test, the screen shows the current presentation number and the total 

number of presentations. There are five buttons marked as PLAY, A, B, NEXT, END. 

Below the button marked PLAY, there are two boxes marked A and B. After PLAY is 

clicked, the sounds A and B are presented with a gap of 0.5 s and the sound being 

presented is indicated by highlighting the corresponding box. The response buttons 

appear inactive until the sounds have been presented. The first three buttons appear active 

after the presentation. You can indicate your response by clicking on A or B depending 

on which one is perceived to be of better quality, or you can listen to the sounds again by 

clicking on PLAY. After the response, NEXT and END buttons become active. You can 

change the response by clicking on the other response button, or you may listen to the 

pair of sounds again. Once you are sure of your response, click on the NEXT for the next 

presentation. Clicking on END will terminate the test. 

The sequence of presentations will be continued until the display shows “Test is 

over. Thank you for your participation”. 
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