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ABSTRACT 

The electrocardiogram (ECG) and impedance cardiogram (ICG) are biosignals related 

to the functioning of the heart. Impedance cardiography is based on sensing the 

variation in the thoracic impedance caused by variation in the blood volume in the 

thorax. The respiratory and motion artifacts in the sensed signal introduce errors in the 

estimation of the stroke volume and other cardiovascular indices. A wavelet-based 

denoising technique, using discrete Meyer and symlet-26 wavelets, for suppressing 

these artifacts was investigated. It uses scale-dependent thresholding for suppressing 

the respiratory artifact and limiting of the wavelet coefficients for suppressing the 

motion artifact. Denoising of ICG signals with simulated respiratory artifacts of -9 dB 

resulted in an SAR improvement of 23.5 dB, and L2 norm and max-min based 

improvement indices close to one. Denoising of ICG recordings with respiratory and 

motion artifacts resulted in improvement indices of value close to one, indicating that 

artifacts were suppressed without introducing any significant distortion in the signal. 

Wavelet-based denoising was also investigated for suppressing the EMG noise and 

the motion artifact in ambulatory ECG. EMG noise is reduced by thresholding the 

wavelet coefficients using an improved thresholding function combining the features 

of hard and soft thresholding. Motion artifact is reduced by limiting the wavelet 

coefficients. Thresholds for both the denoising steps are estimated using the statistics 

of the noisy signal. Denoising of simulated noisy ECG signals with -10 dB input SNR 

resulted in an average SNR improvement of 11.4 dB, and its application on 

ambulatory ECG recordings resulted in L2 norm and max-min based improvement 

indices close to one, indicating that the technique was effective in denoising without 

introducing any significant signal distortion. Its application significantly improved 

automated R-peak detection. 
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Chapter 1 

INTRODUCTION 

 

1.1 Problem Overview 

The electrocardiogram (ECG) and impedance cardiogram (ICG) are biosignals related 

to the functioning of the heart [1]–[6]. These cardiac biosignals are generally 

corrupted by artifacts, which may be much stronger than the signal during ambulatory 

and post-exercise recordings. As the presence of the artifacts may make it difficult to 

get the desired diagnostic information, it is important to suppress them. ECG is a 

measure of electrical activities of the heart which is obtained by placing surface 

electrodes at specific locations of the body [4]–[6]. An ambulatory ECG records the 

electrical activates of the heart while performing normal activities. Such a recording 

has great importance in clinical practice as many of the cardiac disorders may not be 

observable in ECG recorded under a resting state. These recordings get affected by 

several disturbances. The major disturbances are baseline wander, powerline 

interference, electromyogram (EMG) noise, and motion artifact [5], [6]. Powerline 

interference and baseline wander can be reduced by a careful design of the ECG 

hardware. EMG noise is the interference produced by the skeletal muscles during 

their contraction. These signals severely affect the ECG because of the overlap in 

their spectra. The ECG signals have components in the range of 0.01 Hz to 250 Hz 

and the myopotential spectrum extends from 20 Hz to 10 kHz [5], [6]. Motion artifact 

is the disturbance, due to changes in the half-cell potential of the electrodes, caused by 

motion related electrode movement and stretching of the skin under the electrode [6]–

[8]. It appears as irregular baseline wander in the ECG and looks similar to the P 

wave or the R wave. The artifacts in ECG make it difficult to detect the characteristic 

features like P wave, elevation or dip of the ST segment, etc. The performance of 

most of the automated feature extraction and signal compression algorithms may get 

affected by the artifacts [8]–[13]. Motion artifact and EMG noise can be minimized 
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by restricting the motion of the patient during signal recording, but this is not possible 

in ambulatory ECG recording. Signal processing techniques for ECG denoising, are 

generally employed for suppressing these disturbances [6]–[14]. 

 Impedance cardiography is a noninvasive technique based on sensing the 

variation in the thoracic impedance ( )Z t  caused by variation in the blood volume in 

the thorax [1]–[3]. The thoracic impedance and the variations in it are sensed by 

injecting a high-frequency low amplitude current into the thorax region through a pair 

of electrodes and picking-up the resulting amplitude modulated voltage across the 

same or another pair of electrodes. The negative of the time derivative of ( )Z t  is 

known as the ICG [1], [2]. The parameters obtained from ICG can be used to estimate 

the stroke volume and some other cardiovascular indices and for obtaining diagnostic 

information. Figure 1.1 shows an example of Z(t) and the ICG waveforms (-dZ/dt) 

along with the associated ECG and phonocardiogram waveforms. The ICG waveform 

has four main characteristic points: B, C, X, and O. The B point and the X point 

indicate the opening and closing of the aortic valve, respectively. The time duration 

between the B point and the X point gives the left ventricular ejection time (Tlvet). The 

C point corresponds to the point of maximum rate of impedance change (-dZ/dt)max, 

which approximately indicates the peak blood flow in the ascending aorta [1]. The O 

point indicates the opening of the mitral valve. The left ventricular ejection time and 

the peak value of the ICG are used to calculate the stroke volume, using the Kubicek’s 

formula [1], [2] or one of its modifications [3]. 

 The ICG signal is generally influenced by respiratory and motion artifacts, 

which may be much stronger than the signal during exercise and post-exercise 

recordings [2], [16]–[22]. The thoracic impedance signal generally has a cardiac 

component of 0.15–0.2 Ω, while the respiration related changes are in 0.5–2 Ω range 

[23]. The bandwidth of the ICG signal extends over 0.8–20 Hz while respiratory and 

motion artifacts have components in the range 0.04–2 Hz and 0.1–10 Hz, respectively 

[20], [22]. As the artifacts in ICG introduce errors in the estimation of the stroke 

volume and other cardiovascular indices, it is important to suppress them. Motion 

artifact can be avoided by acquiring the signal with the patient lying in a resting state. 

Holding of the breath during the recording can be used to avoid respiratory artifact, 

but it may affect the stroke volume and it can not be used for recording over a long 
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interval from most patients. Therefore it is important to investigate suitable denoising 

technique for the suppression of these artifacts. 

1.2 Project Objective 

The aim of this project is to investigate denoising techniques for suppression of 

respiratory and motion artifacts from ICG signals and suppression of EMG noise and 

motion artifact from the ambulatory ECG signals. The denoising method should not 

need any reference input, and automated detection of characteristic features should be 

possible after denoising. Earlier work in our lab [15], [21], [24] showed that the 

wavelet-based denoising techniques have potential to meet these objectives and hence 

it was decided to carry out detailed investigation on their use in denoising the ECG 

and ICG signals.  

 Respiratory artifact in ICG is suppressed using scale-dependent thresholding. 

Effectiveness of different wavelets for the suppression of respiratory artifact is 

studied. EMG noise in ambulatory ECG is suppressed by thresholding wavelet 

coefficients with thresholds estimated using modified thresholding functions, by 

Fig. 1.1 Impedance cardiography waveforms -dZ/dt and -z(t) along 
with the associated ECG and phonocardiogram (PCG), and forward-

slope extrapolation for calculating ΔZ [15]. 

 

ICG

(-dz/dt)

B

C

X
lvetT

15%

Ejection

time

Measured

-z(t)

PCG

ECG

(-dz/dt)
max

|zmax
|

O



 4 

combining the features of soft and hard thresholding. Translation invariant filtering is 

used for the suppression of oscillations due to Gibbs phenomenon. A technique based 

on limiting the wavelet coefficients is developed for the suppression of motion artifact 

in ICG and ambulatory ECG. Effectiveness of modified limiting functions in motion 

artifact suppression is also investigated. 

 The effectiveness of the denoising techniques is assessed by applying them on 

signals with simulated artifacts and also on signals acquired from several healthy 

volunteers during different physical activities. 

1.3 Report Outline 

Chapter 2 presents a review of the techniques for denoising of ICG and ECG signals. 

The investigations on the ICG denoising are presented in Chapter 3 and the 

investigations on the ECG denoising are presented in Chapter 4. A summary of the 

work, conclusions, and some suggestions for future work are given in the last chapter. 
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Chapter 2 

DENOISING TECHNIQUES 

 

2.1 Introduction 

This chapter gives a review of some of the ICG and ECG denoising techniques. 

Artifact suppression in ICG using ensemble averaging, adaptive filtering, linear 

filtering, and wavelet based techniques are reviewed in Section 2.2. Various ECG 

denoising techniques like adaptive filtering, non-linear filtering, and denoising 

techniques based on wavelets and empirical mode decomposition are reviewed in 

Section 2.3. 

2.2 ICG Denoising 

The ICG signal is generally influenced by respiratory and motion artifacts, which 

makes automated detection of the characteristic points difficult, and hence introduces 

errors in the calculation of various cardiovascular indices. Several signal processing 

techniques have been reported for the suppression of respiratory and motion artifacts 

in ICG [15]–[23], [25]–[27]. Ensemble averaging of the ICG with respect to the R-

peaks of ECG is the most commonly used method for reducing the artifacts [16], [19], 

[25], [26]. But it also suppresses the beat-to-beat variations in ICG and may introduce 

errors in the estimation due to smearing of the characteristic points in the waveform 

[8]. 

 Riese et al., [26] used a large-scale ensemble averaging technique for the 

ambulatory impedance cardiogram. They used an accelerometer based device, 

sensitive to the changes in vertical acceleration to sense the gross body movements. 

Each subject was asked to keep an activity diary, using the entries in the activity diary 

and the signal from the accelerometer, the entire record was divided into fixed periods 

(i.e., periods with fixed activity, posture, physical load, location, and social situation) 

of maximally one hour. They applied the large scale ensemble averaging on the ICG 
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with respect to the ECG R-wave. The method introduced distortions by attenuating 

the amplitudes of peaks and troughs of the ICG waveform. The technique also 

resulted in suppressing the beat-to-beat variability in the cardiac parameters. 

 Yamamoto et al. [22] designed and implemented a digital IIR band-pass filter, 

centered at the heart rate, for real-time suppression of the respiratory artifact. The 

associated ECG and changes in thoracic circumference were also simultaneously 

measured along with the ICG. The IIR filter was designed in such a way that the gain 

of the filter at the center frequency was set to 0 dB. At the respiration frequency the 

gain was set to -20 dB. The filter had a sharp band-pass characteristics with the center 

frequency could change adaptively to follow the heart rate variability. However, it 

introduces nonlinear phase distortion and may attenuate high frequency components 

of the ICG signal. 

 Raza et al. [23] used a digital IIR high-pass filter with voluntary cardio-

respiratory synchronization (heart rate and respiration in the ratio of 5:1), with the 

cutoff frequency automatically varying as a function of the heart rate. To avoid the 

nonlinear phase shift, they used forward filtering followed by backward filtering. 

However, voluntary cardio-respiratory synchronization is not possible during exercise 

and post-exercise measurements and is difficult for patients with high heart rate 

variability. The technique may also introduce distortion in the ICG signal during 

exercise and post-exercise recordings because of the high frequency components in 

the artifact. 

 Barros et al. [17] developed an adaptive filter with scaled Fourier linear 

combiner, with a reference signal related to the R-R interval of the ECG for the 

suppression of non-correlated noise in impedance cardiography. They modeled the 

ICG signal as a Fourier series with a period equal to the R-R interval, and the 

coefficients were estimated using the LMS algorithm. It may result in distortion due 

to the variation in time difference between the electrical and mechanical activities of 

the heart. 

 Pandey and Pandey [15], [27] proposed an LMS-based adaptive filtering 

technique (AFSR), with the simultaneously acquired respiratory signal as the 

reference for the suppression of respiratory artifact. The respiratory signal was 

acquired using a thermistor based airflow sensor placed in front of the nostrils. An 

SAR improvement of 18.5 dB was reported for signals with simulated artifact with the 

input SAR in the range of -9 to 9 dB. The output of the respiration sensor was 
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deficient in higher frequencies, and hence the technique was not effective in 

suppressing higher spectral components of the respiratory artifact, which may 

severely affect the detection of characteristic points in the ICG waveform. To 

overcome this drawback they proposed another LMS based adaptive filtering 

technique (AFER) with the estimated respiration as the reference signal [15]. The 

reference signal was estimated using the sensed respiration and the sensed impedance, 

using a cubic spline fitting on the ICG waveform. An SAR improvement of 19.6 dB 

was reported, and the technique was also effective in suppressing the higher 

frequency components of the artifact. The technique facilitates calculation of the 

stroke volume without suppressing the beat-to-beat variability during post-exercise 

measurements. 

 Several wavelet based techniques have been reported for denoising of 

biosignals [15], [21], [24], [28]–[31]. Ouyang et al. [31] reported denoising 

techniques based on continuous wavelet transforms (CWT) and discrete wavelet 

transform (DWT) for the suppression of respiratory artifact in ICG. Marr wavelet was 

used to decompose the signal into different levels using continuous wavelet transform 

and some of the higher scales were abandoned to suppress the respiratory components 

and the artifact suppressed signal was reconstructed using the remaining scales. 

Because large number of scales are required, CWT based denoising is computation 

intensive. Another problem with this technique is number of scales used for 

reconstruction are not fixed. The DWT based technique used soft thresholding for the 

suppression of respiratory artifact. The sensed signal had both respiratory and cardiac 

components. It was passed through a pre-whitening filter to suppress the cardiac 

component.  The filter was obtained by taking the inverse of an auto-regressive model 

of the cardiac component. The processed signal was then decomposed into seven 

levels using Coiflets wavelet (order 5), followed by soft thresholding to get the 

modified coefficients. The soft thresholding suppresses the whitened cardiac 

components. The modified coefficients were subtracted from the original coefficients, 

which were then processed using the inverse of the pre-whitening filter. The DWT 

based method resulted in an SNR improvement of 30.3 dB for simulated signals at an 

input SNR of -15 dB. In [15], [21], scale-dependant thresholding using discrete Meyer 

wavelet has been used for suppression of the respiratory artifact in the ICG sampled at 

500 Hz. The ICG signal was decomposed into ten levels using FIR based Meyer 

wavelet (dmey) and the artifact suppressed signal was reconstructed by adding the 
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first eight details. An SAR improvement of 21.8 dB was reported for signals with 

simulated artifact with the input SAR in the range of -9 to 9 dB. The filter length of 

dmey wavelet is 102, it may be possible to get the same results as obtained by [15], 

[21] by using some other wavelets with lesser number of filter coefficients and 

thereby reducing the computations. 

 In wavelet-based denoising applications, selection of the wavelet basis, 

thresholding technique, and the estimation of the thresholds are important. The noise 

suppression is better if the shape of the wavelet or its scaling function closely matches 

the shape of the signal or the noise. If the signal components of the input noisy 

waveform are restricted to a few details, these can be added together to reconstruct the 

denoised signal. Hence various wavelets need to be evaluated for their suitability for 

suppressing the respiratory artifact. The wavelet thresholding is based on the 

assumption that noise components are always present and that the noise amplitudes 

are low in comparison with the signal, and hence the contribution of the signal and 

noise to the wavelet coefficients can be separated on the basis of the magnitude of the 

coefficients as a function of time [32]. These assumptions are not valid in the case of 

motion artifact in ICG, because the signal components are always present and the 

motion artifact may be intermittent and may be stronger than the signal.  

 A wavelet-based technique for suppressing the respiratory and motion artifacts 

in impedance cardiography has been developed. It uses scale-dependent thresholding 

for suppression of respiratory artifact and wavelet coefficient limiting for suppression 

of motion artifact. Use of various wavelet functions and methods for estimating the 

thresholds are empirically investigated. Detailed description of the denoising 

technique is given in Chapter 3. The effectiveness of the denoising is assessed by 

applying it on ICG signals with simulated artifacts and on ICG signals acquired from 

several healthy subjects during different physical activities and exercises. 

2.3 ECG Denoising  

Motion artifact and EMG noise have a spectral overlap with ECG and they cannot be 

effectively suppressed by filtering [5]–[10]. Tong et al., [7] used an LMS based 

adaptive filter for reducing motion artifact with the output of an accelerometer, placed 

on the ECG electrode on the right arm, as the reference input. They used two motion 

sensors, a two-axis anisotropic magnetoresistive sensor and a three-axis 

accelerometer. A low pass filter was included in the system to reduce the magnitude 
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of the QRS complexes in the noisy ECG signal prior to the adaptation. Use of 

accelerometer resulted in better performance than that of the magnetoresistive sensor. 

The filter was not effective in suppressing the low-level noise, which may introduce 

errors in automated ECG analysis.  

 He et al. [8] used a method based on independent component analysis (ICA) 

on 3-lead ECG. ICA can be used to separate a signal into m independent components 

using m simultaneous observations of the signal based on the assumption that the 

signal and noise are statistically independent. The authors applied ICA on 3-lead ECG 

and estimated three independent components. The components representing noise 

were automatically identified using kurtosis with an empirically selected threshold, 

and set to zero and the remaining components were mixed back to get the denoised set 

of observations. The technique may not be effective if all the three channels are 

corrupted with noise and cannot be applied to single-lead ECG. Dai and Lian [10] 

used modified moving window averaging to estimate and remove baseline wander 

from ECG, by applying the moving average on samples separated by intervals rather 

than on consecutive samples and by removing the samples corresponding to the R-

peaks. 

 Blanco -Velasco et al. [13] used empirical mode decomposition for denoising 

ECG. The input ECG was decomposed into its fundamental oscillations, called 

intrinsic mode functions (IMFs). The initial IMFs were related to high frequency 

noise and QRS complexes. The noise in the initial IMFs was separated by windowing 

out the R-peak locations. A low-pass filter bank was used to extract the baseline 

wander from final IMFs. The extracted disturbances were subtracted from the input 

ECG to get the denoised signal. Since time domain windowing is used to preserve the 

QRS complex, the technique cannot suppress the artifacts in this region.  

 Several techniques using wavelet-based multi-resolution analysis have been 

reported for denoising ECG signals [28], [29], [33]–[35]. Zhang [28] applied wavelet 

decomposition using symlet (order 10), which has a shape similarity to the QRS 

complex, for removing the baseline wander from the ECG signal sampled at 360 Hz, 

by subtracting its eighth scale approximation. It resulted, at times, in a distortion in 

the ST segments. The EMG noise was removed by wavelet thresholding. Out of the 

several methods studied, the best results were obtained by using EBayes threshold. 

Denoising was found to be better for piecewise thresholding than for processing the 

whole record together. Li and Lin [35] reported that EMG noise could be consistently 
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suppressed by hard thresholding with EBayes threshold with 5-level decomposition 

using symlet (order 4). Features of both the hard thresholding and soft thresholding 

can be combined by suitably designing the thresholding function [29], [36]. It has 

been reported that thresholding the wavelet coefficients may result in oscillations at 

sharp transitions in the signal due to Gibbs phenomenon, and that it can be reduced by 

using translation-invariant denoising [28], [29]. 

 The wavelet-based denoising techniques generally employ hard, soft, or 

improved thresholding functions with the thresholds obtained using SURE, EBayes, 

Donoho's universal threshold, etc. These techniques produce good signal 

enhancement for noises which are uniformly present throughout the signal, but they 

are not effective in suppressing real EMG noise. The motion artifact is generally 

suppressed by eliminating approximation at a particular scale, but it may cause signal 

distortion or improper artifact correction. To overcome these problems, a technique 

using an improved thresholding function and limiting of the wavelet coefficients for 

suppressing EMG noise and motion artifact, respectively, is investigated. Thresholds 

for both the denoising steps are estimated using the statistics of the noisy signal itself. 

The technique is validated by applying it on noisy ECG signals generated using the 

records from the MIT/BIH database [37]–[39] and on ambulatory ECG recordings. 

The details of the technique and results are presented in Chapter 4. 
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Chapter 3 

WAVELET BASED DENOISING OF ICG 

 

3.1 Introduction 

This chapter presents a wavelet based technique for the denoising of ICG signals. The 

advantage of wavelet-based method is that it does not require a reference signal. A 

technique involving scale-dependent thresholding for the suppression of respiratory 

artifact and limiting of wavelet coefficients for the suppression of motion artifact is 

investigated [42]. All the analysis and processing were carried out using Matlab. The 

denoising technique is described in Section 3.2 followed by the method of evaluation 

and results. 

3.2 Denoising of ICG 

Pandey [15] reported that scale-dependent thresholding using discrete Meyer (demey) 

wavelet can be employed for suppression of respiratory artifact in ICG sampled at  

500 Hz. It may be possible to get similar performance by using some other wavelets 

with lesser number of filter coefficients and thereby reducing the calculation 

complexity. With this perspective, we have investigated the effectiveness of different 

wavelet bases from Daubechies, Coiflets, discrete Meyer (dmey), and symlet families 

in separating respiratory artifacts and ICG. These wavelets and the associated scaling 

functions are shown in Fig. A.1 in Appendix A. Ten-level decomposition of the 

artifact-free ICG signals and the ICG-free respiratory artifacts, showed that dmey and 

symlet-26 (sym26) captured the ICG in its first few levels and the artifact component 

in the other levels. They were effective in compactly representing the signal and the 

artifact. For ICG sampled at 500 Hz, the signal components were present in details up 

to D8, and these details did not show contribution from respiratory artifact. Thus 

scale-dependent thresholding using dmey and sym26 is used for the suppression of 
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respiratory artifact in the ICG. The denoised signal is reconstructed by adding 

together the first eight details. 

 Ten-level decomposition of the noise-free ICG signals, using dmey, showed 

all the coefficient magnitudes to be below a certain value. In the presence of motion 

artifact, some of the coefficients acquired much higher values. Hence it may be 

possible to suppress motion artifact by limiting the coefficient magnitude at a 

threshold value called the limiting threshold. Several statistical methods, like SURE, 

universal threshold, Empirical Bayesian, minimax, etc. have been used earlier for 

thresholding-based denoising [28]–[30], [32]. Minimax threshold is the largest 

threshold that minimizes the maximum relative risk [32]. Its use produced limiting 

threshold values which effectively suppressed motion artifact represented in D5–D8. 

The values of the estimate of threshold by this method is directly proportional to the 

number of samples processed and hence results in higher threshold values for lower 

scales (D1–D5) as they have higher number of coefficients. Coefficient limiting of 

these scales using minimax thresholds doesn't result in significant artifact suppression 

as the values of the estimated thresholds are higher. Hence use of "level dependent" 

thresholding is investigated for the suppression of motion artifacts from these scales. 

 In artifact-free recordings, the wavelet coefficients in lower scales (D1–D5) 

were found to be almost uniformly distributed. For signals with strong motion artifact, 

the coefficients representing motion artifact had relatively higher values and were 

easily distinguishable from those representing the signal components. For these 

scales, "level-dependent" thresholds can be estimated for limiting. For this purpose, 

the coefficients are divided in frames of two times the average R-R interval, ensuring 

at least one complete cardiac cycle in every frame. The R peaks are located by 

applying the Pan-Tompkins algorithm [11] on simultaneously acquired ECG. In each 

frame, the absolute maximum is found for each scale. The maxima in all the frames 

are used to calculate mean 
i

  and standard deviation 
i

 for each scale i. The 

threshold for wavelet limiting is taken as 
i i

  . A value of   close to 0 resulted in 

effective denoising without causing signal distortion, while a larger value caused 

distortion in artifact-free ICG segments. Based on the above empirical investigations 

for suppressing motion artifact, minimax-based thresholds were used for D5–D8, 

while level-dependent thresholds were used for D1–D5, with D5 subjected to two 

limiting operations. It has been earlier reported that thresholding-based denoising of 
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ECG results in oscillations at sharp transitions in the signal and these can be 

suppressed by translation-invariant application of the denoising [29]. Such oscillations 

were not visible in the denoised output after application of either of the two denoising 

steps of our technique. 

 

3.3 Method of Evaluation 

The ICG signals for the study were recorded using the impedance cardiograph 

developed in our lab [15], [40] and the impedance cardiograph model HIC2000 (from 

Bio-impedance Technology, Chapel Hill, NC) at a sampling rate of 500 Hz. Two sets 

of signals were used for the evaluation. In set A, three types of signals were recorded 

from two healthy subjects: (i) subject holding the breath, in resting state (artifact-free 

recording), (ii) subject in resting state without any restriction on breathing (recording 

with respiratory artifact but no motion artifact), (iii) subject performing different 

physical activities (recording with both types of artifacts). Set B consisted of signals 

with simulated artifacts [15], [40]. For this purpose, two types of signals were 

recorded from healthy volunteers, with the volunteer resting in supine position 

without any non-ventilatory movements. During the first recording, the volunteer held 

the breath for 10 s. One of the cycles was repeatedly concatenated to obtain a periodic 

artifact-free ICG. During the second recording, the volunteer synchronized the inhale 

and exhale phases with 0.4 Hz square wave displayed on an oscilloscope. Sixty cycles 

of the ICG were ensemble averaged with respect to the respiratory cycle to estimate 

one cycle of respiratory artifact. It was repeatedly concatenated to simulate a periodic 

ICG-free respiratory artifact. The ICG-free artifact was scaled to have the same RMS 

value as the artifact-free ICG signal. The ICG-free artifact ( )or n  was added to the 

artifact-free ICG s(n) with a scaling factor  to obtain the contaminated ICG  

 ( ) ( ) ( )ox n s n r n   (3.1) 

with a signal-to-artifact ratio (SAR) of 20log . These signals were recorded by 

Pandey [15], as part of his research in our lab. Twenty such records were used. 

 A quantitative evaluation for selecting the most suitable wavelet for 

respiratory artifact suppression was carried out by using the artifact-free set of signals 

in set A and by estimating the RMS error in reconstructing the signal. The denoising 

was qualitatively evaluated by a visual examination of the output for suppression of 
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the artifacts and presence of distortion in the signals in set A. For quantifying the 

respiratory artifact suppression, the technique was applied on set B of signals. The 

SAR in the N-sample segment of output ˆ ( )x n  after denoising was calculated as 

  

2 2

1 1

ˆ 10 log  (  ( )  /    ( ) ( ) )
N N

out
n n

SAR s n x n s n
 

    (3.2) 

The evaluation based on improvement in SAR can be used only for signals with 

simulated artifact. Another evaluation, as used by Tong et al. [7], involved the 

improvement indices (II) based on L2 norm and excursion (max-min) of the signal and 

calculated as 

 
(Pre-denoising value)  (Post-denoising value)

II = 
(Pre-denoising value)  (Artifact-free value)




 (3.3) 

It can be computed for signals with actual artifacts by using an artifact-free segment 

as the reference. An index value close to one indicates an effective denoising and a 

small value indicates ineffective noise suppression. A value larger than one indicates 

signal distortion. 

3.4 Results 

Ten-level decomposition of artifact-free ICG (from the set A of signals) and ICG-free 

respiratory artifact (from the set B of signals) using dmey and sym26 wavelets 

showed that ICG was captured in the first eight details and respiratory artifact in the 

last two details and the approximation A10. An example of the ten-level 

decomposition of an artifact-free ICG signal using dmey and sym 26 wavelets is 

given in Fig. 3.1. It can be seen that the last two details and the approximation A10 do 

not have any significant signal components. Figure 3.2 shows the ten-level 

decomposition of an ICG-free respiratory artifact using dmey and sym26 wavelets. It 

can be observed that the artifact components are dominated in the last two details and 

the approximation. For a quantitative evaluation an artifact-free ICG from set A and 

an ICG-free artifact from set B were decomposed into ten levels such that  

 
10

( ) ( ) ( )
10

1

x n d n a n
i

i

 


 (3.4) 

where d
i
 and a

i
 are detail and approximation, respectively, at the i

th
 scale.  
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(a) Using dmey wavelet 
 

-0.02

0

0.02

D1

-0.02

0

0.02

D2

-0.05

0

0.05

D3

-0.2

0

0.2

D4

-0.5

0

0.5

D5

0 2 4 6 8 10
-0.5

0

0.5

D6

Time (s)

-0.5

0

0.5

D7

-0.5

0

0.5

D8

-0.5

0

0.5

D9

-0.5

0

0.5

D10

-0.5

0

0.5

A10

0 2 4 6 8 10
-2

0

2

ICG

Time (s)

 

(b) Using sym26 wavelet 

 

Fig. 3.1 Details D1-D10 and approximation A10 of an artifact-free ICG signal, 
using (a) dmey and (b) sym26 wavelets. (All the waveforms are in arbitrary 

units). 
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(a) Using dmey wavelet 
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(b) Using sym26 wavelet 

 

Fig. 3.2 Details D1-D10 and approximation A10 of an ICG-free artifact, using 

(a) dmey and (b) sym26 wavelets. (All the waveforms are in arbitrary units). 
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Table 3.1 The RMS error in reconstructing an artifact-free ICG 

signal using first n details 

 

 Reconstruction 
RMS error (%) 

dmey sym26 coif5 db8 bior4.4 

d1 99 99 99 99 99 

d1+d2 99 99 99 99 99 

d1+d2+d3 98 98 97 98 97 

d1+…+d4 91 91 90 89 90 

d1+…+d5 70 70 71 71 68 

d1+…+d6 40 40 40 40 41 

d1+…+d7 14 14 14 14 15 

d1+…+d8 1 1 2 2 2 

d1+…+d9 0 0 0 0 0 

d1+…+d10 0 0 0 0 0 

d1+…+d10+a10 0 0 0 0 0 

 

  

 The m
th
 level partial reconstruction ˆ ( )x n

m
 was obtained as 

 ˆ ( ) ( )

1

m
x n d n
m i

i

 


 (3.5) 

The RMS error between ˆ ( )x n
m

and ( )x n were obtained and the RMS errors are given 

in Table 3.1. It can be seen that both dmey and sym26 are equally effective in 

capturing the ICG components in the first eight details and the artifact components in 

the remaining details. The average RMS error in reconstructing the artifact-free ICG 

from the first eight scales, for 29 artifact-free ICG segments of 10 s duration each, 

was found to be 1.5% for both the wavelets. The RMS error in reconstructing an ICG-

free artifact is given in Table 3.2. We see that the artifact does not contribute to the 

first six details. It may be noted that these values can only be taken as indicative 

because the simulated respiratory artifact is periodic. 

 Figure 3.3 shows an example of processing of an ICG signal recorded during 

post-exercise resting state. The ICG signal has no motion artifact, but a large 

respiratory artifact and high heart rate variability. It is observed that both sym26 and 
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dmey wavelet are effective in suppressing the respiratory artifact. Application of the 

denoising on a total of 33 ICG recordings from two healthy volunteers gave similar 

results. 

 Application of artifact suppression on the set B of signals with simulated 

respiratory artifacts resulted in almost identical results for both the wavelets. The 

improvements in SAR achieved by denoising with input SAR in the range -9 to 9 dB 

are given in Table 3.3. It can be seen that almost similar results are obtained with 

dmey and sym26 wavelets. The corresponding values of the improvement indices, 

calculated using (3.3), based on L2 norm and max-min are given in Table 

3.4.Improvement indices of values close to 1 are achieved at input SAR of -9, -3, and 

3 dB which indicates an effective denoising without any significant signal distortion. 
 

Table 3.2 The RMS error in reconstructing an ICG-free artifact using first n details 

 

 Reconstruction 
RMS error (%) 

dmey sym26 coif5 db8 bior4.4 

d1 100 100 100 100 100 

d1+d2 100 100 100 100 100 

d1+d2+d3 100 100 100 100 100 

d1+…+d4 100 100 100 100 100 

d1+…+d5 100 100 100 100 100 

d1+…+d6 100 100 100 100 100 

d1+…+d7 99 99 99 99 99 

d1+…+d8 98 98 97 98 96 

d1+…+d9 85 82 76 74 71 

d1+…+d10 35 35 35 35 34 

d1+…+d10+a10 0 0 0 0 0 

 

Table 3.3 SAR improvement in dB for ICG signals with simulated respiratory artifacts. 

  

Wavelet 
Input SNR (dB) 

-9 -3 3 9 

Dmey 23.5 19.6 15.0 9.9 

sym26 23.6 19.6 15.1 10.0 

 



 19 

Table 3.4 Improvement indices of L2 norm (and max-min) for ICG signals with simulated 

respiratory artifacts. 

  

Wavelet 
Input SNR (dB) 

-9 -3 3 9 

dmey 1.0   (1.0) 1.0   (1.0) 1.1   (1.2) 1.4   (2.9) 

sym26 1.0   (1.0) 1.0   (1.0) 1.1   (1.2) 1.5   (2.1) 

 

-0.2

0.20.2

-0.2

0.20.2

-0.2

0.20.2

-0.2

0.20.2

0 2 4 6 8 10

-0.2

0.2

Time (s)

(a)

(e)

(d)

(c)

(b)

Fig. 3.3 Processing of an ICG signal for the suppression of respiratory artifact: 

(a) recorded ICG, (b) denoised ICG using dmey wavelet, (c) denoised ICG using 

sym26 wavelet, (d) recovered respiratory artifact using dmey wavelet, and (e) 

recovered respiratory artifact using sym26 wavelet, All waveforms are in in Ω/s. 

  

 Figure 3.4 shows an example of processing of one of the signals in set A, with 

ICG contaminated by respiratory and motion artifacts. The signal was recorded during 

a mild level of physical activity involving hand movement and no restriction on 

respiration. After denoising for suppressing respiratory artifact, denoising using 

wavelet coefficient limiting was applied. The recovered signal is found to be almost 

free of both the artifacts. The wavelet coefficients of the details D1–D5 of the ICG 

signal given in Fig. 3.4 are given in Fig 3.5. It can be seen that during segments with 
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the motion artifacts, the coefficients achieve relatively higher values and are easily 

distinguishable from those representing the signal components Application of the 

denoising technique on several 10 s segments taken from each of two subjects and a 

qualitative assessment of the processed outputs showed that the technique was able to 

effectively suppress the artifacts. Application of the technique on artifact-free 

segments did not introduce any visible signal distortion. An example of the 

application of the denoising techniques on an ICG signal recorded with no voluntary 

motion is given Fig. 3.8. It can be seen that application of the technique does not 

introduce any visible distortion to the signal.  

 A quantitative evaluation of denoising of recordings with actual respiratory 

artifact and combination of motion and respiratory artifacts was carried out by 

applying the technique on the set A of signals and by computing the improvement 

indices using manually selected artifact-free segments as the reference. The average 

for both the indices was 1.02, indicating that artifacts were suppressed without 

introducing any significant distortion in the signal. 
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Fig. 3.4 Example of processing of an ICG signal with respiratory and motion 

artifacts. (a) recorded ICG, (b) recovered respiratory artifact, (c) recovered 
motion artifact (D5–D8), (d) recovered motion artifact (D1–D5), and (e) 

denoised ICG, all waveforms are in in Ω/s. 
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Fig. 3.5 Wavelet coefficients of the details D5 (a) through D1 (e) of the ICG 

signal given in Fig 3.6. The spike in the coefficients indicates presence of strong 
motion artifact. 
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Fig. 3.6 Example of processing of an ICG signal with no voluntary motion 
artifacts. (a) recorded ICG, (b) recovered respiratory artifact, (c) recovered 

motion artifact (D5–D8), (d) recovered motion artifact (D1–D5), and (e) 

denoised ICG, all waveforms are in in Ω/s. 
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3.5 Discussion 

Wavelet based decomposition of artifact-free ICG signals and simulated signal-free 

respiratory artifact showed that use of sym26 and dmey wavelets resulted in a more 

compact representations as compared to the other wavelets, with the signal being 

represented in the lower details and the respiratory artifact being represented in higher 

details.  

 The investigated technique uses scale-dependent thresholding for suppression 

of respiratory artifact and wavelet coefficient limiting for suppression of motion 

artifact. Denoising of ICG signals with simulated respiratory artifacts of -9 dB 

resulted in an SAR improvement of 23.5 dB. At this input SAR, the improvement 

indices were close to one, indicating significant artifact suppression without any 

significant signal distortion. Denoising of ICG recordings with actual respiratory and 

motion artifacts resulted in improvement indices of values close to one, indicating that 

artifacts were suppressed without introducing any significant distortion in the signal. 

Quantitative and qualitative assessment of the technique by applying it on recordings 

from several healthy subjects showed that both types of artifacts were suppressed 

without introducing any visible signal distortion.  

 The results of denoising showed that dmey and sym26 were almost equally 

effective. As the filter lengths of sym26 and dmey are 52 and 102, respectively, 

sym26 should be preferred as its use will involve less computation. 

 The techniques need to be further validated on recordings from healthy 

subjects and patients in a clinical setting, and the estimation of the stroke volume 

estimated by impedance cardiography needs to be compared with the values obtained 

by established techniques like Doppler echocardiography. The denoising technique 

may be useful in processing of the ICG signals for beat-to-beat estimation of 

cardiovascular indices without placing restrictions on respiration and motion. It may 

help in extending the application of impedance cardiography to ambulatory and stress 

test recordings.  
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Chapter 4 

WAVELET BASED DENOISING OF ECG 

 

4.1 Introduction 

This chapter presents a wavelet based technique for the denoising of ECG signals. It 

does not require a reference signal and it can be applied on a single-channel 

recording. EMG noise is reduced by thresholding the wavelet coefficients using an 

improved thresholding function combining the features of hard and soft thresholding 

[43]. Motion artifact is reduced by limiting the wavelet coefficients. Thresholds for 

both the denoising steps are estimated using the statistics of the noisy signal. All the 

analysis and processing were carried out using Matlab. The denoising technique, 

method of evaluation, and results are described in the following sections. 

4.2 Denoising of ECG 

Several wavelet bases, e.g. Daubechies (db4, db8), symlets (sym4, sym7, sym8, 

sym10), Coiflets (coif5), dmey, and biorthogonal (bior4.4), have been used for ECG 

denoising [35]. The denoising is effective if the dilated version of the wavelet (or the 

scaling function) at some scale matches the shape of the signal or noise components. 

In ECG, the baseline wander and motion artifact components do not have a 

characteristic shape and all the above wavelet bases show a similarity with the ECG 

signal components at some scale. Mithun [24] has reported a study for the selection of 

wavelet basis to be used in the suppression of motion artifact and baseline wander in 

ECG signals. Several wavelets like db8, dmey, sym10, and bior6.8 were investigated 

for the decomposition and subsequent denoising of the ECG signal. These wavelets 

and the associated scaling functions are shown in Fig. A.1 in Appendix A. Based on 

quantitative and qualitative evaluations like visual evaluation of signal enhancement, 

SNR improvement, and improvement in R-peak detection using automated R-peak 

detection, best results were reported for dmey wavelet compared to the other 
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wavelets. Hence we have used dmey for our investigation [43]. The slow baseline 

wander was suppressed by setting A10 to zero. The EMG noise and motion artifact 

were suppressed using non-linear modifications of the wavelet coefficients as 

described in the following two subsections. 

4.2.1 Suppression of EMG Noise 

EMG noise is a non-stationary broadband noise. In ECG recordings with 360 Hz 

sampling, it gets predominantly represented in the initial four details and particularly 

in D1, as indicated by a high average absolute value of D1 in segments with significant 

EMG noise. For suppressing the EMG noise, a thresholding operation is applied on 

the wavelet coefficients. For each scale i , a time-varying threshold  n
i
  is obtained 

by scaling the span of the coefficients as obtained from the long-term statistics of the 

noisy signal with a scaling factor  n obtained from a short-time estimate of the 

level of the EMG noise in the signal. For robustness against excessive noise in some 

segments, the 90th percentile of the coefficients is taken as the span, and the threshold 

is given as  

       p90 | |n n D n
i i
   

 
 (4.1) 

A moving-window average of absolute value of D1, avgD1(n), is used as the short-

time estimate of the level of the EMG noise. A 35-point window is used as it 

approximates the duration of typical short bursts of EMG noise. Its 5-percentile is 

taken as a lower threshold avgD1L and half of its 95-percentile is taken as the upper 

threshold avgD1H. These thresholds are used for thresholding, limiting, and 

normalizing the short-time average to get the time varying scaling factor  

 

 0,                                  avgD1( )  avgD1L

avgD1( ) avgD1L
( )  ,   avgD1L  avgD1( )  avgD1H

avgD1H avgD1L

 1,                                  avgD1( ) > avgD1H

n

n
n n

n



 



  




 (4.2) 

As D1 has insignificant contribution from ECG, it is totally removed. Before using it 

for thresholding,  n
i
 is resampled to match its number of points to that in Di.  

 As D2–D4 have significant contributions from the signal as well as from EMG 

noise, hard thresholding may introduce significant signal distortion and soft 

thresholding may not effectively suppress the artifact. Hence D2–D4 are modified by 
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using an improved thresholding function, combining the features of hard thresholding 

and soft thresholding as  

 

 

(4.3) 

   

 

 

where 

 
( )  ( ) 1 0.5( 1) /( 1) ,

           = ( | ( ) | ( )) /( / 2)

ar af n n e e
i

r D n n S
i i i





    
  


 (4.4) 

 
( )  ( ) 0.5 0.5(1 ) /(1 ) ,

           =  ( | ( ) | ( ) / 2) /( / 2)

ar ag n n e e
i

r D n n S S
i i i i





     
  

 

 (4.5) 

The factor a controls the transition between soft and hard thresholding. Setting a ≈ 3 

and the transition span, Si, as  

     0.75 p95[ | |,    | | ( )]S D n D n n
i i i i

   (4.6) 

results in a thresholding which combines the features of hard and soft thresholding 

without showing disadvantages of either of them. The smoothness of the curve is 

determined by the constant a. We are also investigating the use of another 

thresholding function with a sinusoidal transition from lower to upper threshold and 

given as, 

 

 (4.7) 

A plot of the hard thresholding, the soft thresholding and the two improved 

thresholding functions are given in Fig. 4.1. 
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Fig 4.1. Thresholding: (a) hard thresholfing, (b) soft thresholding, (c) thresholding function 

as given in Eq. 4.3 with a = 3, (d) thresholding function as given in Eq. 4.7 
 

 Thresholding generally introduces discontinuities in the wavelet coefficients, 

which may results in oscillations due to Gibbs phenomenon at the sharp 

discontinuities in the reconstructed signal. If the discontinuity occurs at the quickly 

varying portion of the wavelet representing that region, the oscillation will have low 

amplitude. If the location of discontinuity is at a smooth portion of the wavelet, a high 

oscillation will result. A method called translation invariant denoising (TI denoising) 

[28], [29] with one sample shift and 125 iterations is implemented to suppress the 

oscillations due to Gibbs phenomenon. 
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4.2.2 Suppression of Motion Artifact 

 Most of the noise suppression techniques using wavelet thresholding are based on the 

assumption that the noise is always present and has low amplitude, and that the signal 

is present in specific time segments and has relatively high amplitude [41]. In ECG 

corrupted with non-stationary motion artifact, ECG signal is always present and the 

motion artifact occurs intermittently and it generally has high amplitude. Hence 

limiting of the wavelet coefficients is investigated for suppressing the motion artifact. 

The limiting operation, using threshold i , on ( )D n
i

is carried out as  

  (4.8) 

The threshold i  is an estimate of the maximum value of the wavelet coefficients of 

the ECG signals at scale i. It should be high enough to exclude the possibility of 

reducing the coefficients representing noise-free ECG, and low enough to 

significantly suppress the motion artifact. The thresholds are estimated by dividing the 

ECG record into segments of two average cardiac cycles. At each scale i, the 

maximum absolute values of coefficients in these segments are used to calculate the 

average 
i

 and standard deviation 
i

 . The limiting threshold for scale i is calculated 

as 
i i i
    , a value of η close to 0.1 resulted in effective denoising without 

causing signal distortion, while a larger value caused distortion in artifact-free ECG 

segments. 

 The coefficient limiting, given by Eq. 4.8, is a hard-limiting operation as 

shown in Fig. 4.2 (a). The values below the threshold i  are unaffected and those 

above it are limited to i . In addition to the hard-limiting, soft-limiting using several 

functions was also investigated. It involves using two additional threshold values 

 
i and  

i on either side of i . The coefficients below the threshold  
i  remain 

unmodified, while the coefficients above  
i  are limited to i . The coefficients lying 

between the thresholds  
i  and  

i  are modified using a function having a transition 

from  
i  to i . One such function is a piecewise linear function, shown in Fig. 4.2 

(b), and given as 
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A soft-limiting function with a sinusoidal transition is given as the following 
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 (4.10) 

where ( ) / ( ) 2 /
i i i i
        . The function and its derivative both are continuous, 

as shown in Fig 4.2 (c). A soft-limiting function with a parabolic transition from the 

lower threshold 
i
   to the upper threshold 

i
  is given as 
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 (4.11) 

where ( ) / 2 
i i i
     . The function and its derivative are continuous as shown in 

Fig. 4.2(d). 

4.3 Method of Evaluation 

Performance of the denoising techniques has been generally reported in the form of 

SNR improvement for ECG inputs obtained by adding different levels and types of 

noise to noise-free ECG [7], [8], [29], [34], [35]. For real ECG records, noise 

reduction is generally assessed by visual inspection [13], [28], [33]. Tong et al. [7] 

used improvement indices (as given earlier in Eq. 3.3) based on signal excursion 

(max-min) and L2 norm to quantify the ECG enhancement in real ECG records.  



 29 

 The denoising was carried out by applying EMG noise reduction followed by 

motion artifact reduction. The technique was evaluated by applying it on simulated 

noisy ECG records and on ambulatory ECG records. The simulated noisy records 

were obtained by adding ECG records from the MIT/BIH arrhythmia database [38] 

and ECG-free noise records from the MIT/BIH noise stress test database [39], having 

waveforms with 360 Hz sampling rate and 11-bit resolution. From each of the 48 two-

channel ECG records in the database, single channel ECG signals of one min. 

duration were taken as noise-free ECG. Segments from the EMG noise ("ma") and 

motion artifact ("em") were taken as the noise. All the records were scaled to have the 

same RMS value. Simulated noisy records with different values of SNR were 

generated by scaling the noise and adding it to the signal. The noises used were EMG 

noise, motion artifact, and a mix of EMG noise and motion artifact in 1:2 ratio 

(approximating the occurrence in ambulatory recordings). Ambulatory ECG signals 

were recorded using a Holter monitor (ECIL, Hyderabad, India) at 200 Hz with 8-bit 

resolution. The recordings were resampled to 360 Hz (the sampling rate used in the 

MIT/BIH database). The recordings were taken from five healthy volunteers in resting 

condition and during common ambulatory activities like hand movements, walking, 

and climbing stairs. 

 A qualitative evaluation of the denoising on both types of records involved a 

visual examination of the output for suppression of the artifact and presence of 

distortion. A quantitative evaluation involved calculation of improvement in the SNR 

for the simulated noisy records. Another quantitative evaluation, as used by Tong et 

al. [7], involved the improvement indices (II) based on L2 norm and excursion (max-

min) of the signal, and calculated using Eq. 3.3 as given earlier. Improvement in 

automated R-peak detection using Pan-Tompkins algorithm [11] was also used as a 

measure of denoising. 

 

Table 4.1 Mean (and std. dev) of SNR improvement (dB) for simulated noisy ECG (No of 

records = 48) 

 

Noise type 
Input SNR (dB) 

-10 -5 0 5 

EMG noise 12.1   (1.7) 8.8   (2.0) 5.1   (2.3) 0.8   (2.6) 

Motion artifact 11.5   (0.9) 8.3   (1.4) 4.8   (2.1) 0.7   (2.6) 

Mixed 11.4   (0.9) 8.3    (1.5) 4.9   (2.2) 0.7   (2.6) 
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Fig. 4.2 Limiting of wavelet coefficients. (a) hard-limiting, (b) piecewise linear soft-limiting, 

(c) sinusoidal soft-limiting and (d) parabolic soft-limiting 
 

4.4 Results 

The improvements in SNR obtained by denoising are given in Table 4.1. The 

corresponding improvement indices are given in Table 4.2. The technique was 

effective in suppressing all the three types of simulated noise, with a mean wander 

already present in the record. The results of a quantitative evaluation using an 

automated R-peak detection are given in Table 4.3. Denoising has significantly 

improved the efficiency of the algorithm. In many of the segments with EMG noise, 

Gibbs oscillation produced by the thresholding operation, could be observed in the 

vvvgxxxxxxxxxxxxxx 
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Table 4.2 Improvement indices of L2 norm (and max-min) for simulated noisy ECG (No of 

records = 48) 

 

Noise type 
Input SNR (dB) 

-10 -5 0 5 

EMG noise 1.0   (1.0) 1.2   (1.2) 1.6   (1.9) 2.8  (11.7) 

Motion artifact 1.1   (1.2) 1.2   (1.6) 1.6   (4.2) 2.9   (9.4) 

Mixed 1.1   (1.2) 1.2  (1.6) 1.5   (3.9) 2.2   (11.8) 

 

Table 4.3 Rate of success, failures, and false detection in percentage by the automated R-peak 

detection algorithm for simulated noisy ECG. Total number of cardiac cycles = 407. 

 

Type of ECG 

record 

Success 

(%) 

Failure 

(%) 

False 

(%) 

Pre-denoising 87.0 13.0 1.5 

Post-denoising 98.0 2.0 0.2 

 
Table 4.4 Rate of success, failures, and false detection in percentage by the automated R-

peak detection algorithm for ambulatory ECG. Total number of cardiac cycles = 551. 

 

Type of ECG 

record 

Success 

(%) 

Failure 

(%) 

False 

(%) 

Pre-denoising 90.2 9.8 2.5 

Post-denoising 99.3 0.7 0.7 

 

vicinity of the QRS complexes. Translation-invariant [28], [29] application of the 

denoising, with 1-sample shift and 125 iterations, reduced these oscillations and 

resulted in SNR improvement of up to 1 dB. 

 A visual examination of the processed outputs showed that the denoising 

technique was effective in suppressing the EMG noise and motion artifact, and it did 

not result in any visible distortions in the clean segments. The EMG denoising method 

was found to be effective for the ambulatory recordings. As seen in the example given 

in Fig. 4.3, the EMG noise present in the ECG record has been attenuated while the 

EMG-free regions are unaffected. However while the R-peaks outside EMG noise are 

unaffected, those overlapping with the EMG noise are attenuated (e.g., first R-peak 

after 6 s in Fig. 4.3.). Another problem observed with the EMG reduction technique 

was the Gibbs oscillation produced by the thresholding operation. An occurrence of 
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Gibbs oscillations and its suppression using translation-invariant denoising is shown 

in Fig. 4.4. It can be seen from Fig. 4.4(c) that use of translation-invariant denoising 

effectively suppressed the oscillations occurring around the QRS complexes without 

affecting any of the features in the waveform.  
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 Fig. 4.3 Suppression of EMG noise in ambulatory ECG: (a) Input, (b) Output. 
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Fig. 4.4 Suppression of Gibbs oscillations in the vicinity of QRS complexes: (a) 

Input ECG, (b) ECG after EMG denoising, (c) ECG after translation-invariant 
EMG denoising. 
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Fig. 4.5 Suppression of motion artifact in ambulatory ECG: (a) Input, (b) Output. 
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Fig. 4.6 Automated R-peak detection applied on (a) input ECG, (b) ECG after 
denoising. 
 

 A good degree of reduction in motion artifact could be achieved by the 

wavelet coefficient limiting technique, as seen in the example given in Fig. 4.5. The 
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quickly varying and high amplitude motion artifact seen at the time marked as 6–8 s 

has been attenuated significantly without attenuating the nearby QRS complexes. It 

can also be observed that processing did not produce any significant attenuation for 

the R-peaks in other part of the record where the motion artifact present is very low. 

Several noise-free ECG segments were processed by the motion-artifact reduction 

technique, and there were no significant distortions visible in almost all cases. 

 Another quantitative evaluation of the denoising was in terms of improvement 

in automated R-peak detection using Pan-Tompkins algorithm [11]. An example of 

the validation based on the improvement in the R-peak detection peaks from the 

denoised ECG record, as shown in Fig. 4.6(b). The net rate of successful detections, 

failures, and false detections for a set of ambulatory ECG records, consisting of 10-s 

segments from the recordings from five volunteers, different leads, and different 

ambulatory activities, with a total of 551 cardiac cycles are given in Table 4.4. It 

shows a large improvement in the efficiency of R-peak detection due to processing, in 

terms of increase in the successful detection and decrease in the detection failures and 

false detection. 

4.5 Discussion 

Wavelet based techniques were investigated for the suppression of EMG noise and 

motion artifact in ECG. EMG noise was reduced by modified thresholding, 

combining the features of hard and soft thresholding. Motion artifact was reduced by 

limiting the wavelet coefficients. Thresholds for both the denoising steps were 

estimated from the statistics of the noisy signal in an automated manner. Gibbs 

oscillations due to thresholding, occasionally occurring in the vicinity of QRS 

complexes, were suppressed by translation-invariant application of denoising. 

Effectiveness of the technique was qualitatively and quantitatively validated by 

applying it on simulated noisy ECG records as well as on ambulatory recordings from 

a Holter recorder. Its application significantly reduced the EMG noise and motion 

artifact without affecting any of the features in the waveform. Denoising of simulated 

noisy ECG signals of -10 dB input SNR resulted in an average SNR improvement of 

11.4 dB. At this input SNR the improvement indices were close to one, indicating 

significant artifact suppression without any significant signal distortion. Application 

of translation-invariant denoising also resulted in an additional SNR improvement of 

up to 1 dB. Its application on ambulatory ECG recordings resulted in L2 norm and 
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max-min based improvement indices close to one. Denoising significantly improved 

the automated R-peak detection in both the cases. Its performance needs to be further 

evaluated with respect to some of the other techniques and particularly on ECG 

records from patients with different cardiac disorders. 
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Chapter 5 

SUMMARY AND CONCLUSION 

 

The ECG and ICG are biosignals related to the functioning of the heart. These cardiac 

biosignals are generally corrupted by artifacts, which may be much stronger than the 

signal during ambulatory and post-exercise recordings. As the presence of the artifacts 

may make it difficult to get the desired diagnostic information, it is important to 

suppress them. Use of wavelet based denoising was investigated for suppressing 

respiratory and motion artifacts in ICG and for suppressing EMG noise and motion 

artifact in ECG. It does not need a reference as required in adaptive filter based 

techniques, multi-channel signals as required by ICA-based techniques, or 

identification of characteristic points as required in the cubic spline and EMD-based 

techniques. 

 It was shown that dmey and sym26 wavelets, as compared to several other 

wavelets, were better suited for the denoising of ICG. Scale-dependent thresholding 

was used for the suppression of respiratory artifact in ICG. Motion artifact in ICG was 

suppressed using wavelet coefficient limiting with the threshold obtained from the 

statistics of the wavelet coefficients of the noisy signal. Denoising of ICG signals with 

simulated respiratory artifacts of -9 dB resulted in an SAR improvement of 23.5 dB. 

At this input SAR, the improvement indices were close to one. Denoising of ICG 

recordings with actual respiratory and motion artifacts also resulted in improvement 

indices of values close to one, indicating that artifacts were suppressed without 

introducing any significant distortion in the signal. Quantitative and qualitative 

assessment of the technique by applying it on recordings from several healthy subjects 

showed that both types of artifacts were suppressed without introducing any visible 

signal distortion.  

 For wavelet-based denoising of ambulatory ECG, EMG noise was reduced by 

thresholding, combining the features of hard and soft thresholding. Motion artifact 
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was reduced by limiting the wavelet coefficients. Thresholds for both the denoising 

steps were estimated from the statistics of the wavelet coefficients of the noisy signal 

in an automated manner. Gibbs oscillations due to thresholding, occasionally 

occurring in the vicinity of QRS complexes, were suppressed by translation-invariant 

application of denoising. Effectiveness of the technique was validated by applying it 

on simulated noisy ECG records as well as on ambulatory recordings from a Holter 

recorder. Its application significantly reduced the EMG noise and motion artifact 

without introducing any visible distortions in ST segments. Denoising of simulated 

noisy ECG signals resulted in an average SNR improvement of 11.4 dB at -10 dB 

input SNR, and its application on ambulatory ECG recordings resulted in L2 norm and 

max-min based improvement indices close to one. Denoising significantly improved 

the R-peak detection in both the cases.  

 Performance of the presented denoising techniques needs to be further 

validated with respect to some of the other techniques and particularly on records 

from patients with different cardiac disorders. Denoising techniques for ICG need to 

be further validated by estimating different cardiovascular indices and comparing with 

the values obtained by established techniques like Doppler echocardiography. The 

denoising technique may be useful in processing of the ICG signals for beat-to-beat 

estimation of cardiovascular indices without placing restrictions on respiration and 

motion. It may help in extending the application of impedance cardiography to 

ambulatory and stress test recordings. After such a validation, the proposed 

techniques may be useful in getting the desired diagnostic information from 

ambulatory recordings of the ECG and the ICG. 
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Appendix A 

Wavelets and Scaling Functions 

 Wavelet Scaling function 

0 102
-0.2

0.8

0 102
-1

-0.5

0

0.5

0 52
-0.2

0.8

0 52
-1

0.5

dmey

sym26

0 30
-0.2

0.8

0 30
-1

0.5

0 16
-0.5

1

0 16
-1

1

coif5

db8

0 10
-0.5

1

0 10
-1

0.5

0 10
-0.5

1

0 10
-1

0.5

bior4.4

bior4.4

 

Fig. A.1 Different wavelets and the associated scaling functions used for the 

study. (x-axis: samples, and y-axis: in arbitrary units.) 
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