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ABSTRACT 

Electrocardiography is an important non-invasive diagnostic tool for identifying cardiac 

disorders. It is usually prone to noise and artifacts. Wavelet based denoising techniques, using 

discrete Meyer wavelet function, were investigated for EMG and motion artifact suppression 

in ECG, and the use of translation-invariant wavelet denoising and stationary wavelet 

transform based denoising were investigated for suppressing the effect of Gibbs phenomenon 

introduced by discrete wavelet transform based denoising. EMG noise is suppressed using 

level-dependent thresholding and motion artifact is suppressed using coefficient clipping 

technique. The technique resulted in efficient denoising with no significant distortions 

introduced. SNR improvement, percentage RMS difference, L2 norm and MaxMin based 

improvement indices, and R-peak detection efficiency were used for quantitative evaluation. 

Artifact-free ECG signals from MIT-BIH arrhythmia database and ECG-free artifacts from 

MIT-BIH noise stress test database were used to generate simulated noisy signals with known 

SNR. For an input SNR of -10 dB, the SNR improvement of 14.5, 15.0 and 14.7 dB were 

obtained for DWT, TIWT and SWT based denoising, respectively. A correlation coefficient 

value of 0.99 was observed between denoised ECG and artifact-free ECG signals, indicating 

insignificant distortion of noise-free signals. An improvement in QRS detection efficiency 

from 94.4 % to 99.3 % with reduction in false detection percentage from 21.2 % to 14.9 % 

was obtained. The denoising techniques were also validated for ambulatory ECG signals from 

normal subjects and patients with cardiac abnormality available at MIT-BIH ECG databases 

and sudden cardiac death database. Significant improvement in QRS detection efficiency 

from 63.2 % to 90.6 % with reduction in false detection percentage from 0.1 % to 0.05 % was 

obtained. A software application “ECG Denoiser, v.2” has been developed incorporating 

DWT based ECG denoising for artifact suppression in 3-lead ECG signals acquired from 

Holter monitor with a sampling frequency of 200 Hz using LabWindows. 
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Chapter 1 

INTRODUCTION 

1.1 Problem Overview 

Electrocardiography is an important non-invasive diagnostic tool for identifying cardiac 

disorders. Electrocardiogram (ECG) is a record of the electric potentials generated by the 

currents causing the rhythmic contraction of the heart. Malfunction in the current generation 

or the conductive paths of these currents is generally manifested as an abnormality in the 

recorded ECG [1]−[3]. Artifacts may mask the visibility of certain important characteristic 

features. Further, the artifacts resembling one of the abnormal features in the ECG may lead 

to false diagnosis. The hardware used for ECG acquisition removes the noise present in the 

ECG recorded during the rest conditions, as in the case of cardiac monitoring in hospitals. 

But, many of the cardiac disorders may not be observable during rest state and it is important 

to analyze these cardiac signals recorded while performing normal day-to-day activities, i.e. 

ambulatory recording. An ambulatory recording is done using a wearable Holter monitor, 

which is a portable ECG recorder worn for continuous monitoring over an extended period. 

These ambulatory ECG signals are usually prone to noise and artifacts due to continuous 

movement of the patient‟s body and the attached electrodes. The presence of noise and 

artifacts in the ECG signals pose difficulties in getting its diagnostic information. 

The nature and origin of the artifacts are of considerable interest, particularly for long 

term ambulatory monitoring. Some of the artifacts occur due to physiological reasons like 

electromyogram (EMG) noise caused due to voluntary or involuntary muscle activity in the 

body and slow baseline wandering due to respiration, whereas some artifacts occur due to 

non-physiological reasons like powerline interference and motion artifacts [5]. Motion artifact 

arises due to imbalance in the electrical activity at the electrode-electrolyte and electrolyte-

skin interfaces caused by the motion of surface electrode. A plot of spectra of various 

components in the ECG is shown in Fig. 1.1. The ECG signals have their components in the  
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range of 0.05–150 Hz, with a 100 Hz bandwidth considered as valuable for diagnostic 

information [1], [4]. The baseline wander, EMG components and the motion artifacts extend 

over 0.01−1, Hz 5–500 Hz, and 1–10 Hz, respectively [1], [4]−[6].  

 Due the spectral overlap of the noise with that of the ECG, it is not possible to use 

linear filters for artifact suppression. EMG and motion artifact can be minimized by 

restricting the motion of the patient while recording. However, this is not feasible in an 

ambulatory ECG recording. Motion artifact is the most difficult form of noise to be 

eliminated from an ambulatory ECG as its spectrum completely overlaps with that of ECG 

and its morphology may resemble to that of P, QRS and T waves [15], [16]. ECG is a non-

stationary signal with short lived components. The artifacts, motion artifacts, may be present 

only for a short duration; while some of them, like baseline wandering, may be present for a 

longer duration. Capturing and analyzing these artifacts requires an approach with good time 

and frequency resolution. 

 

Fig 1.1 Relative power spectra of QRS complex, P and T waves, muscle noise and motion artifacts 

based on an average of 150 beats [1]. 
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1.2 Project Objective 

The objective of the project is to investigate wavelet based denoising techniques for 

suppression of EMG noise and motion artifact in ECG, and to extend the technique for 

different sampling frequencies of the input ECG. Level-dependent thresholding technique 

with improved thresholding function is used for suppression of EMG noise and coefficient 

limiting technique for motion artifact suppression. The effectiveness of the denoising 

technique is validated on ECG with simulated artifacts and on ECG acquired from patients 

with normal and abnormal cardiac conditions. Also, the robustness of the denoising technique 

to the variation of its noise parameters is studied. As wavelet based thresholding or coefficient 

limiting techniques have been reported to introduce ripples at the neighborhood of sharp 

transitions in the signal due to Gibbs phenomenon [35], [36], translation-invariant wavelet 

transform and stationary wavelet transform based implementations are investigated for the 

reduction of the effect of Gibbs phenomenon. 

 

1.3 Outline of the Dissertation 

Chapter 2 presents a review of the techniques reported for noise and artifacts suppression in 

ECG, the validation techniques, and ECG databases used for the investigation and validation. 

Chapter 3 gives a detailed description of the developed wavelet based denoising technique 

and its extension for different sampling frequencies. Investigations for reducing the denoising 

related distortions, using translation-invariant wavelet denoising and stationary wavelet 

transform based denoising are presented in Chapter 4. The next chapter gives the validation 

results of the denoising techniques for simulated noisy data, normal subject data and patient 

data. The last chapter gives a summary of the work done, conclusions, and some suggestions 

for future work. 
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Chapter 2 

DENOISING TECHNIQUES 

2.1 Introduction 

ECG is generally corrupted by baseline wander, EMG noise and motion artifacts. These noise 

and artifacts may mask the characteristic points of the signal, and thus introduce errors in the 

values of parameters estimated for clinical diagnosis. The presence of these artifacts is more 

prominent in ambulatory recording, and hence it is necessary to enhance the quality of the 

signals by suppressing these artifacts. Several denoising techniques such as digital filtering 

[7]−[11], adaptive filtering [12]−[18], independent component analysis [19], [20], empirical 

mode decomposition [21]−[23], and wavelet based denoising [24]−[38] have been reported 

for artifact suppression in ECG. 

 

2.2 Digital Filtering 

Alste and Schilder [7] designed an efficient FIR band-pass filter with reduced number of taps, 

which periodically adjusts its filter response, for removal of powerline interference and 

baseline wandering. The technique was investigated for ECG signals sampled at 250 Hz. 

Validation by visual inspection showed that the technique was able to remove baseline 

wander even from exercise ECG. It was reported to be ineffective in removing the baseline 

wander with the period close to that of the heartbeat and the processing occasionally 

suppressed ST segment depression and elevation. 

Lee and Ben [8] proposed a variable bandwidth filter for denoising bio-signals with 

known boundaries in time-frequency domain. The filter was designed to adapt its cut-off 

frequency and bandwidth according to the short-time signal spectrum. It was reported that the 

filter rejected noise in the regions outside the short-time signal spectrum. It was tested on 

ECG signals recorded using a Holter monitor and an SNR improvement of 11 dB was 

obtained when compared to an LTI filter, and was not effective when the noise spectrum 

overlapped with the signal spectrum. 
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Dai and Lain [9] proposed the use of modified moving window averaging to estimate 

and remove the low-frequency baseline wander from ECG, by applying the moving average at 

specific time intervals. The filtering and moving window averaging techniques fail when 

there is a spectral overlap between the signal of interest and noise. Evaluation was carried out 

on noise-free ECG signals from MIT-BIH database with sampling frequency 360 Hz added 

with simulated baseline wander. Denoising using a simple moving average filter resulted in a 

correlation coefficient of 0.8543, while the use of modified moving average filter resulted in a 

value of 0.965. 

Chouhan and Mehta [10] implemented baseline wander removal for multi-lead ECG, 

based on least mean square error correction and correction based on overall median of each 

lead. The QRS complexes were then detected to find the RR intervals and median based 

correction was applied for each of the RR interval to enhance the noise suppression. The 

technique was investigated for ECG signals from CSE ECG database for 125 records of 10 s 

each and sampling frequency of 500 Hz. The technique efficiently removed baseline wander 

and visual inspection showed that the ECG was not distorted. The main limitation of this 

technique is that R peak detection becomes difficult in the presence of high baseline wander 

or motion artifact. In [11], a varying-length moving averaging window technique was 

implemented for suppressing baseline wander and high frequency noise. The window was 

designed to exclude R peaks during the averaging process. The ECG signals from the PTB 

diagnostic ECG database were used for the investigation. The technique was also tested on 

ECG record 104 of MIT-BIH arrhythmia database by visual inspection. It was found that the 

technique was effective in suppressing the noise, but it may fail due to R-wave detection 

failures in the regions with high noise levels. 

 

2.3 Adaptive Filters 

Rahman et al. [12] proposed the use of normalized signal regressor LMS (NSRLMS) 

algorithm for artifact suppression. ECG of the MIT-BIH arrhythmia database (mitdb) and 

MIT-BIH normal sinus rhythm database (nsrdb) with added baseline wander (bw) and motion 

artifact (em) of MIT-BIH noise stress test database (nstdb) were used for validating baseline 

wander suppression and motion artifact suppression, respectively. For baseline wander, EMG 

noise, and motion artifact suppression with corresponding input SNR values of -21.5, 2.5 and 

2.5 dB, SNR improvements of 7.34, 8.31 and 8.14 dB were obtained, respectively. 

Tong et al. [13] used an adaptive filter for reducing motion artifact with a motion 

sensor as a reference input. LMS approach was used to adjust the weights of the adaptive 
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filter. The ECG signals were recorded from 8 subjects under an IRB-approved protocol with 

sampling frequency 500 Hz. Three methods were used to introduce motion artifact on the 

electrode site − pushing the electrode, pinching the skin around the electrode and pulling the 

wires. L2 norm and MaxMin statistics were used for measuring the performance. It was 

reported that the reference from a tri-axial accelerometer performed better than the signal 

from 2-axis magneto-resistive motion sensor. It was also reported that improvement index 

values of 0.84 and 0.59 were obtained for L2 norm and MaxMin, respectively. 

Jeong and Kim [14] reported that steepest decent algorithm for adapting the filter 

weights performed better than LMS approach. Evaluation was carried out by visual inspection 

of power spectral density of the input and denoised signals for 20 s duration ECG recordings 

from 7 healthy subjects. Sayadi and Shamsollahi [15] used extended Kalman filter for ECG 

denoising and compression. Artifact-free ECG signals from MIT BIH databases – mitdb and 

nsrdb – were used. Muscle artifacts (ma) and electrode motion (em) of MIT-BIH noise stress 

test database (nstdb) were added to the artifact-free ECG to obtain noisy ECG. SNR 

improvements of 10.16, 9.53 and 8.75 dB were obtained for input SNR of -5, 0 and 5 dB, 

respectively. 

In [16], an adaptive recurrent filter structure was proposed for noise cancellation and 

arrhythmia detection. The adaptive filter minimizes MSE between noisy ECG and reference 

signal, and a two-stage filter was used to remove baseline wander, powerline interference, and 

motion artifact. It was reported to be superior to conventional adaptive filtering. The 

technique was prone to failing in the presence of high heart-rate variability or a gradual 

variation in the QRS morphology, preventing complete adaptation of the filter coefficients. It 

also required proper temporal coincidence between the reference signal and input signal. It 

was reported that large non-stationary motion artifacts that overlap with the QRS complex 

could not be suppressed due to the relatively slow convergence time of the adaptive filter. The 

filter was reported to produce minor distortions in the ECG signals limiting its application to 

rhythm analysis in ambulatory monitoring. 

Sameni et al. [17] proposed a non-linear Bayesian adaptive filter framework for 

denoising single channel ECG. Noise-free ECG segments (190 segments, each of 30s 

duration) from MIT-BIH normal sinus rhythm database with sampling frequency 128 Hz were 

used for the investigation. Real muscle artifact (ma) from MIT-BIH noise stress test database 

with sampling frequency 360 Hz was resampled at 128 Hz and added to the noise-free ECG to 

get noisy signals. SNR Improvements (± standard deviation) of 12 (± 1.5), 11 (± 2), 9 (± 2.6), 

6 (± 3.5) and -1 (± 4.9) dB were obtained for input SNR of -5, 0, 5, 10 and 30 dB, 

respectively. It was reported that this adaptive filter might fail when abnormal waves appear 
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in certain cycles of ECG. Problems of convergence-time, stability, estimation bias and 

preciseness of filter results were also reported. 

In [18], a normalized adaptive neural filter (NANF) was proposed for artifact 

cancellation. The filter coefficients were updated using steepest-descent error estimation 

technique, to minimize the error between second-order estimated output values and the 

desired artifact-free ECG signals. Seven ECG signals from MIT-BIH arrhythmia database 

(records 101, 103, 106, 116, 123, 202 and 232) with added muscle artifacts (record „ma‟) 

from MIT-BIH noise stress test database were used as test signals. The RMS error and 

correlation coefficient of 0.07 and 0.9864 were obtained for LMS filter, while the 

corresponding values of 0.01 and 0.9997 were obtained for NANF. In terms of SNR, the 

NANF achieved an average of 35.53 dB, which was about 19.23 dB higher than the 

corresponding result with the LMS filter. 

 

2.4 Independent Component Analysis (ICA) 

Barros et al. [19] used ICA for eliminating muscle, motion, and respiratory artifacts from 

ECG. A self-adaptive step size and a two-layer neural network were implemented to estimate 

the mixing parameters. The noisy ECG data used for validation was obtained by mixing 

artifact-free ECG and ECG-free artifact signals from MIT-BIH noise stress test database. 

Validation by visual inspection showed that ICA performed better when compared to digital 

filtering techniques. Foresta et al. [20] proposed an ECG denoising technique which 

combined the properties of wavelets with ICA. The proposed technique was tested on 

multichannel ECG signals. A correlation coefficient value of 0.9 was obtained between the 

artifact-free and denoised ECG. 

 

2.5 Empirical Mode Decomposition (EMD) 

Velasco et al. [21] used EMD based denoising technique for suppression of baseline wander 

and EMG noise. The ECG records 100, 103, 105, 119 and 213 of MIT-BIH arrhythmia 

database were used. The signal-free artifacts, em and ma, from MIT-BIH noise stress test 

database was added to the artifact-free ECG signals to generate noisy ECG. For input SNR of 

6, 10 and 14 dB, the output SNR values of 10.24, 13.08 and 15.74 dB were obtained, 

respectively. The technique was also reported to be effective in denoising of Holter monitor 

ECG signals. 

An ECG denoising technique which employed EMD and wavelet adaptive 

thresholding was implemented in [22]. Adaptability of EMD was used to choose the wavelet 



 

9 

function and wavelet thresholding was used to prevent the distortion introduced due to EMD 

based ECG denoising. The output SNR of 87.03, 79.22 and 82.83 dB, and mean square error 

(MSE) of 0.10776, 0.01306 and 0.01305 were obtained for EMD, wavelet and EMD-wavelet 

based denoising, respectively. Visual inspection of the denoised signals showed that a higher 

SNR with a lower MSE could be obtained when the signal is severely distorted resulting in 

reduction of its L2 norm of the signal. Tang and Qin [23] used EMD for noise wide band 

noise suppression. Artifact-free ECG records 100, 101,103 and 213 of MIT-BIH arrhythmia 

database were added with Gaussian noise to generate test signals. It was reported that 

denoising using EMG resulted in an output SNR of 14.82, 17.61, 19.21, and 20.03 dB for 

input SNR values of 6, 10, 14, and 16 dB, respectively. 

 

2.7 Discrete Wavelet Transform (DWT) 

The applicability of wavelets for denoising ECG signals has been studied extensively, due to 

its unique property of access to both time and frequency contents simultaneously. Several 

techniques using different wavelet shapes and thresholding have been studied. Proper 

selection of wavelet function and thresholding technique is considered to be important for 

efficient suppression of artifacts [25]. Also, the shape of the wavelet function selected should 

be either similar to the ECG signal or the artifact or noise. Daubechies, Coiflets, Symlets and 

bi-orthogonal wavelets were primarily used for ECG denoising. 

Zhang [24] proposed a wavelet-based baseline wandering correction technique. For a 

sampling rate of 360 Hz, Ten-level decomposition with symlet-10 (sym10) was used due to 

its close similarity to QRS complex. The sampling frequency of the ECG signals determines 

the maximum number of decomposition levels to be used. It was reported that the coefficients 

of the eighth- level approximation corresponded to the low frequency drift in the baseline, but 

the high frequency components of the drift were not captured. Wavelet shrinkage (soft 

thresholding) was applied to remove the high frequency components of the baseline wander. 

The technique was investigated on ECG signal from record 118 of MIT-BIH arrhythmia 

database with baseline wander added from the record „bw‟ from MIT-BIH noise stress test 

database. Visual inspection showed that the method removed baseline wander. 

Kania et al. [25] studied the importance of the proper selection of mother wavelet 

with appropriate number of decomposition levels for reducing the noise content in high 

resolution multi-lead ECG signals. Soft thresholding with universal threshold was applied on 

the detail wavelet coefficients at each level. The efficiency of Daubechies (db1, db2, db3, 

db4, db5, db6, db7, db8), and symlet wavelets (sym2, sym3, sym4, sym5, sym6, sym7, sym8) 
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as well as biorthogonal wavelets (bior3.3, bio4.4, bio6.8) were compared using visual 

inspection. The best wavelet was chosen according to the perseveration of the signal 

morphology. It was reported that db1 (for 4th and higher decomposition levels), sym3 (for 4th 

level) and sym8 (for 4th decomposition level) had given the best results for ECG denoising. 

Singh and Tiwari [26] studied the performance of different wavelets (Daubechies of 

order 4, 6, 8, 10, 12; Symlet of order 4, 5, 6, 7, 8; Coiflet of order 1, 2, 3, 4, 5) on denoising 

and reported that db8 preserves the peaks of the ECG signal, which contains valuable 

physiological information for diagnostic purpose. The ECG data from biological signal 

processing (BSP) demonstration database with sampling frequency 500 Hz was used for the 

investigation. It was reported that db8 with Hybrid SURE shrink based denoising resulted in a 

lower RMS error, when compared to other wavelets. It was also reported that the error in 

detection of QRS was reduced to 5% for the denoised ECG from a corresponding value of 

27% for noisy ECG. 

Agante and Marques-de-Sá [27] used soft thresholding based on Donoho‟s statistical 

estimator and sliding window method for suppressing white Gaussian noise and powerline 

interference. The highly uncorrelated random noise like EMG noise and thermal noise were 

approximated to be white Gaussian noise. For a sampling frequency of 500 Hz, detail 

coefficients D1 corresponded to EMG and powerline frequency was located in D3. Soft 

thresholding was applied to the appropriate detail corresponding to the signal and the 

coefficients were reconstructed by climbing up the decomposition tree. The sliding window 

method of threshold estimation was reported to be more efficient over Donoho‟s statistical 

threshold estimation. ECG signals form CSE European database were used for investigation. 

The performance of the technique with Daubechies, Coiflet, and bi-orthogonal wavelets, were 

compared. Correlation coefficient (r) between the original ECG signal and denoised ECG was 

estimated to validate the performance of the wavelet for the QR, R peak, and RS regions. It 

was shown that biorthogonal wavelets preserve QR and R peak regions with an r value of 

0.998, while distort the RS region with an r value of 0.797. It was also reported that Coiflet 

and Daubechies show similar performances with r value of 0.999, 0.996 and 0.986 for QR, R 

peak and RS regions, respectively. 

Tinati and Mozaffary [28] proposed wavelet packet approach for baseline drift 

cancellation. The ECG records 103, 105, 115 and 210 of MIT-BIH arrhythmia database were 

used for the investigation. A sine wave of 0.01 Hz was added to the artifact-free ECG signals 

to generate noisy ECG signals with input SNR of -5 dB. A percentage RMS difference (PRD) 

value of 1.99 % was obtained for the denoised signal, indicating a good performance of the 

technique for baseline wander suppression. Cherkassy and Kilts [29] applied wavelet 
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denoising to suppress EMG noise from ECG signals The accuracy and robustness of several 

thresholding methods based on VISU, SURE and soft thresholding, were compared with a 

new thresholding approach based on Vapnik-Chervonekis (VC) learning theory. When 

applied on ECG with EMG noise, VC based denoising resulted in mean square error (MSE) 

of 7.77 %, 8.72 %, and 0.56 % less than that of VISU, SURE and soft thresholding. 

Pooranachandhra [30] proposed sub-band adaptive thresholding technique for 

removal of white additive Gaussian noise from ECG. 50 ECG signals (30 patients with 

normal and abnormal cardiac conditions) from MIT-BIH arrhythmia database with sampling 

frequency 360 Hz were used for the investigation. The performance of S-median threshold 

based estimation was compared with universal and minimax thresholds. In terms of SNR, for 

noise level of 10% (43.94 dB), the output SNR of 25, 26 and 27 dB were obtained for 

universal, minimax and S-median thresholds, respectively. The SNR degradation may be 

attributed to the distortion introduced due to processing. For 50 % noise level (0 dB SNR), the 

corresponding output SNR values of 15, 17 and 20 dB were obtained. These results indicated 

that noise suppression was much stronger when compared to small levels of distortions. For 

noise level of 90% (-43.94 dB), the corresponding output SNR values of 10.5, 11 and 14 dB 

were obtained. The results indicate that S-median based method introduced less distortion and 

also resulted in better denoising. 

Tikkanen [31] studied the performance of wavelet and wavelet packet based 

denoising for removing simulated noise from ECG. 50 noisy ECG data with input SNR of 5 

dB were generated by adding Gaussian noise, uniform white noise and non-white noise (using 

4
th
 order auto-regressive filter) to artifact-free ECG recorded with sampling frequency 512 

Hz. Validation using RMS errors showed that about 50% of error is localized in the QRS due 

to soft thresholding and wavelet based denoising performed better than wavelet packet based 

denoising. The wavelet packet approach showed higher standard deviation in RMS values 

indicating higher performance variation for different ECG signals. 

Sharma et al. [32] proposed a denoising technique based on the evaluation of higher-

order statistics at different wavelet bands of decomposed ECG. The higher-order statistics, 

kurtosis and the energy contribution efficiency were used as indicators of the noise content in 

the signal. The technique was implemented for noisy multichannel ECG signals from 12-lead 

data of standard ECG database, CSE mutli-lead measurement library with sampling 

frequencies, 360 Hz, 500 Hz and 1000 Hz. It was observed that the denoising scheme filtered 

the signal effectively and retained the diagnostic information. For ECG with real noise 

(dataset M01-003), denoising using soft thresholding resulted in a percentage RMS difference 

(PRD) of 1.1 % and wavelet weighted PRD (WWPRD) of 1.60 %, while denoising using the 
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proposed method resulted in the corresponding values of 7.4 % and 15.71 %. It was reported 

that wavelet energy-based diagnostic distortion measure (WEDD) could be used to 

distinguish between the increase in error between the noisy and denoised signal due to higher 

efficiency of proposed technique and the increase in error due to increase in induced 

distortions. The WEDD value was obtained as 1.94 % for soft thresholding and 1.87 % for the 

proposed method, showing that the lower WEDD was due to improved retention of 

morphological features of ECG. 

Mithun [33] investigated the use of wavelet based denoising with different wavelet 

functions for suppression of baseline wander. Artifact-free ECG signals from MIT-BIH 

arrhythmia database were added with noise signals from MIT-BIH stress test database. The 

performance of the wavelet functions were estimated using SNR improvement and RMS error 

statistics. It was reported that discrete Meyer wavelet showed best SNR improvement for 

denoising and least RMS error for reconstruction. In [34], improved thresholding function for 

suppression of EMG noise and coefficient limiting technique for suppression of motion 

artifacts was proposed. Ten-level decomposition was applied for the ECG signal sampled at a 

frequency of 360 Hz. The approximation coefficients A10 were set to zero for suppressing the 

baseline wander. It was reported that the detail coefficients D1−D4 contained the EMG noise 

components. The coefficients D2−D5 (for sampling frequency 360 Hz) were modified using a 

modified thresholding technique, combining the features of hard thresholding and soft 

thresholding. The thresholds for each level were estimated from the statistics of coefficient 

values of D1. As D1 had insignificant ECG components, it was set to zero. For motion artifact 

suppression, hard limiting was applied on detail coefficients on the non-zero levels. The 

thresholds for hard thresholding were estimated from noise-free segment of ECG. If a noise-

free segment was not located, the values were estimated using noise statistics of the ECG. For 

input SNR of -5, 0 and 5 dB, SNR improvements of 11.4, 8.3 and 4.9 dB were reported. It 

was also reported that the values of L2 norm and MaxMin based improvement indices were 

close to one indicating efficient denoising with significant distortion of the ECG. Performance 

evaluation based on R peak detection resulted in 12.3 % (54 failures and 14 false detections) 

error and 1.5 % (4 failures and 4 false detections) error, before and after denoising, 

respectively. The method could also be applied on signals with sampling rate of 200 Hz with 

an appropriate selection of levels. 

The research was taken further in [35] and two modified thresholding functions, with 

exponential and sinusoidal transition, were proposed for EMG suppression, while three soft 

limiting functions with piece-wise linear, sinusoidal and parabolic transition were proposed 
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for motion artifact suppression. For input SNR of -10, 5, 0 and 5 dB, the L2 norm 

improvement index was observed to be 1.1, 1.2, 1.5 and 2.2, respectively, while MaxMin 

improvement index was observed to be 1.2, 1.6, 3.9 and 11.8, respectively. Performance 

evaluation based on R peak detection for noisy ECG with simulated artifact resulted in 13 % 

failure (1.5 % false) and 2 % failure (0.2 % false) error, before and after denoising, 

respectively. Performance evaluation based on R peak detection for ambulatory ECG resulted 

in 9.8 % failure (2.5 % false) and 0.7 % failure (% 0.7 false), before and after denoising, 

respectively. It was also reported that wavelet thresholding resulted in ripples at sharp 

transitions in the signal due to Gibbs phenomenon, and that it could be reduced by using 

translation-invariant denoising. 

 

2.8 Translation-invariant Wavelet Transform (TIWT) and Stationary 

Wavelet Transform (SWT) 

Translation-invariant denoising was implemented in [36] to denoise ECG. Symlet-8 with 

4-level decomposition was used to remove EMG noise from ECG. The MIT-BIH ECG 

database with sampling frequency 360 Hz and signal length of 1024 was used for validation 

of the technique. The performances of hard, soft and an improvised thresholding using DWT 

and TIWT were compared. For an input SNR of 17.08 dB, the output SNR values for DWT 

with hard, soft and improvised thresholding were obtained as 21.37, 19.04 and 21.97 dB, 

while that of TIWT were 23.23, 20.44 and 23.33 dB, respectively. The improvement in SNR 

was attributed to the reduction in the effect of Gibbs phenomenon in the Q and S waves.  

Li et al. [37] used stationary wavelet transform based denoising for suppression of 

baseline wander, EMG noise, motion artifacts and powerline interference in the ECG signals, 

using symlet 4 and 5-level wavelet decomposition.. The ECG signal from MIT-BIH 

arrhythmia database, record 100, was mixed with the artifacts, bw, em, ma, from MIT-BIH 

noise stress test database. The SNR improvement for hard shrinkage function with EBayes 

threshold was estimated for different input SNR. For SNR varying from 1 dB to 10 dB, The 

performance for decomposition were compared for level 3 to level 8 and the best results were 

obtained for level 5 with output SNR varied from 11.6 to 20 dB. It was also reported that for 

the ECG signal from record 104 of nstdb, the SNR output of 1.1, 0.9 and 0.6 dB was obtained 

for input SNR values of -13.1, -19.0 and -22.6 dB. 

In [38], the performance of wavelet packet (WP), lifting wavelet (LW) and SWT were 

compared. The ECG signals from MIT-BIH database were used as test signals. Wavelet 

shrinkage was applied for 5-level wavelet decomposition using symlet 8. For an input SNR of 



 

14 

-32.46 dB, the output SNR values of -1.26, -1.23 and 0.52 dB were obtained for WP, LW and 

SWT based denoising, respectively. The corresponding output SNR values were 3.86, 2.54 

and 4.49 dB for an input SNR of 0.6035, respectively. 

 

2.10 Summary 

Several methods such as digital filtering, ensemble averaging, adaptive filtering, ICA, EMD 

and wavelet based denoising techniques have been reported for artifact and noise suppression 

in ECG. Linear filters are not very effective in denoising ECG due to spectral overlap 

between the noise and ECG components. Also, they induced distortions in the signal, 

especially in the ST segments, which is an important feature for the diagnosis of ischemia and 

myocardial infarction. The amplitude of QRS complex of the ECG was also found to be 

reduced in some cases. Adaptive filtering technique was found to be effective in motion 

artifact suppression when a reference electrode motion signal is available. ICA was found to 

be computationally inefficient. In EMD based denoising, the band limits of the decomposition 

depend on the noise content of the signal, and hence, it cannot be used for designing a 

uniform denoising technique. Wavelet based denoising techniques were found to be very 

effective when applied along with proper thresholding or clipping techniques and appropriate 

decompositions. 
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Chapter 3 

ARTIFACT SUPPRESSION IN ECG 

3.1 Introduction 

This chapter presents a wavelet based denoising technique for suppression of baseline 

wander, EMG noise, and motion artifacts. Level-dependent thresholding is used for 

suppression of EMG noise and coefficient limiting is used for suppressing motion artifact 

with thresholds estimated using the statistics of the noisy signal. All the analysis and 

processing are carried out using Matlab. A description of the denoising technique is given in 

Section 3.2. The effect of sampling frequency on the denoising technique is presented in 

Section 3.3. The results are presented and discussed in Section 3.4. 

 

3.2 Suppression of Baseline Wander, EMG noise and Motion Artifacts 

Several wavelet based ECG denoising methods have been reported in [24]−[38]. Wavelets 

have a unique property of time-frequency representation which can be used to capture noise 

present at a specific time and in a specific spectral band. In wavelet denoising, selection of the 

appropriate wavelet basis is very important. To capture the artifacts and noise in ECG, the 

shape of the wavelet (or its scaling function) should be similar to that of the ECG, as the noise 

and artifacts do not have a definite shape. 

The implementation of discrete wavelet transform based ECG denoising of ECG is 

shown in Fig. 3.1. For input signal sampled at 360 Hz, eight-level discrete wavelet 

decomposition of input ECG is applied to obtain detail coefficients D1 – D8 and approximate 

coefficients A8. The slow baseline wander which is captured in A8 is suppressed by setting the 

approximate coefficients to zero. The EMG noise and motion artifacts are suppressed using 

non-linear modifications of the detail wavelet coefficients as described in the following two 

subsections. 
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3.2.1 Suppression of EMG Noise 

EMG is a non-stationary broadband noise superimposed on ECG signal due to voluntary and 

involuntary muscle activities occurring in the body. In case of ECG corrupted with ECG 

noise, the noise is always present and is of lower amplitude when compared to ECG which is 

of relatively higher amplitude. Hence, thresholding of the wavelet coefficients can be used to 

EMG suppression. The suppression of EMG in ECG signals involves two steps: threshold 

estimation and thresholding of wavelet coefficients. The EMG noise is manifested only in 

lower scales of wavelet decomposition. For a sampling frequency of 360 Hz, the EMG noise 

is predominantly represented in details D1 – D5 and particularly in D1 and D2. In threshold 

estimation stage, a time-varying threshold i  is estimated from the detail coefficients D1 and 

D2 (upsampled and added to D1) and it is resampled to match the number of samples in each 

scale. 

The technique proposed in [34] and [35] is used as a base for further improvisation. 

The absolute value of the combined details Dth (obtained from D1 and D2) is high in segments 

corresponding to QRS complexes or with significant EMG noise. A time-varying threshold 

thus obtained is resampled to match the number of samples in iD . Since the duration of QRS 

complex is shorter than the typical EMG bursts, DthLP was obtained by applying a 35-point 

moving average filter on |Dth| to suppress the values corresponding to the QRS complexes. 

The time-varying threshold 
 3,4,5i i




 is obtained as. 

 ( ) ( ) 90 ( )i in n D n        (3.1) 

where 90 ( )iD n     is the 90th percentile of ( )iD n , ( )n  is a time-varying thresholding 

factor obtained from DthLP(n) and  is the EMG denoising control parameter. The extent of 
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Fig. 3.1 DWT based denoising of ECG. 
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noise suppression is controlled by an empirically set value for  . Too high a value of   may 

introduce distortions in the denoised ECG. 90th percentile of ( )iD n  is chosen to reduce the 

effect of overshoots induced by the anti-aliasing filter of the resampling operation on the 

estimated threshold. The time-varying thresholding factor ( )n  is calculated from DthLP(n) as  

thLP thρ5

thLP thρ5
thρ5 thLP thρ95

thρ95 thρ5

thLP thρ95

0,

( )
( ) , ( )

1, ( )

( )D D

D n D
n D D n D

D D

D n D

n






  













 (3.2) 

The lower threshold, thρ5D  is taken as 5th percentile of thLPD  and the upper 

threshold, thρ95D  is taken as half of the 95th percentile of thLPD . 5th percentile of thLPD  is an 

optimum value chosen to reduce the magnitude of the threshold for wavelet coefficients 

corresponding to noise-free ECG segments, while 95th percentile of thLPD  is chosen to have 

uniform threshold for wavelet coefficients corresponding to segments with high EMG noise. 

This is to ensure uniform EMG suppression in the regions with significant EMG noise and 

avoid shape change introduced due to non-uniformity. In thresholding stage, a sinusoidal 

thresholding technique developed by combining characteristics of soft and hard thresholding 

was applied on details D3 – D5. The sinusoidal thresholding function is given as 

 
 
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 (3.3) 

 

The function approximates soft thresholding for input coefficients lower than ( )
i

n  and 

approximates hard thresholding for values higher than  ( )
i in S  . For reduction of the EMG 

noise, iS  is empirically chosen to be 95th percentile of  ( ) ( )i iD n n values where 

( ) ( )i iD n n  to ensure maximum EMG reduction with minimum signal distortion. The 

coefficients used for estimating the threshold (D1 and D2) were set to zero during 

reconstruction as it predominantly contains EMG noise. 
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Fig. 3.1 Coefficient thresholding and limiting: (a) sinusoidal thresholding function and  

(b) sinusoidal soft-limiting function [35]. 

 

3.2.2 Suppression of Motion Artifact 

The main assumption of most of the noise suppression techniques based on wavelet 

thresholding is that the noise is always present and has low amplitude, while the signal is 

present in specific time segments and has relatively high amplitude [39]. In case of ECG 

corrupted with non-stationary motion artifact, ECG signal is always present and motion 

artifacts occur only intermittently and have generally higher amplitudes when compared to 

that of ECG. Hence, limiting of wavelet coefficients can be used for motion artifact 

suppression [34]. For an automated operation, the parameters for limiting are statistically 

obtained from the signal itself. 

The suppression of motion artifact is carried out in two stages – threshold estimation 

and limiting of wavelet coefficients. Since the estimated threshold should be high enough to 

exclude the possibility of reducing the artifact-free ECG and low enough to suppress the 

motion artifact, the thresholds are estimated by dividing the ECG record into segments of two 

cardiac cycles. The limiting threshold 
i
  for a scale i is calculated as 

i i i
    , where   

is a motion artifact denoising control parameter and is empirically set, 
i

 and 
i

  are the mean 

and standard deviation, respectively, of the maximum absolute values of coefficients in the 

segments. A value of   close to 0.5 has been found to result in effective denoising without 

distortion. A larger value can be used for signals with very large motion artifacts, but it can 

result in distortion in the artifact-free ECG segments. A sinusoidal coefficient limiting 
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function obtained by combining hard limiting and soft limiting techniques as given by eq. 3.4 

was applied on details D3 – D8. 

   
 
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 (3.4) 

where ( ) / ( ) 2 /
i i i i
        , i

  and i
 are two additional thresholds used for 

incorporating a smoother transition between them. The coefficients below the threshold i
  

remain unmodified, while the coefficients above i
  are limited to i . The coefficients lying 

between the thresholds i
  and i

  are modified using a function having a transition from i
  

to i
 . The above mentioned limiting thresholds for each scale can be obtained from the noisy 

ECG itself or from artifact-free segment of the ECG signal. 

 

3.3 Decomposition levels for Different Sampling Frequencies 

Since wavelet based denoising technique involves capturing time and frequency features, 

sampling frequency of the input ECG is important. For different sampling frequencies, noise 

and artifacts are expressed in different scales. Resampling the signals to 360 Hz and applying 

artifact suppression technique may not be effective as some important diagnostic points may 

be affected due to the anti-aliasing filter of the resampling operation. Hence, the denoising 

technique has to be adapted for different sampling frequencies. The number of decomposition 

levels and the scales used for suppression of EMG and motion artifacts are chosen according 

to the scales corresponding to the spectrum of the EMG and motion artifacts and by RMS 

error based investigation. Table 3.1shows the total number of decomposition levels applied, 

the detail scales used EMG suppression and the detail scales used for motion artifact 

suppression for sampling frequencies from 100 Hz – 500 Hz in steps of 10 Hz. 

For sampling frequencies 128 and 150 Hz, seven-level decomposition was used and 

A7 was set to zero for baseline wander suppression. The thresholds were estimated from detail 

coefficients D1 for EMG suppression and modified thresholding was applied on detail 

coefficients D1 - D3 for EMG suppression. For sampling frequency of 200 Hz, seven-level 
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Table 3.1 Number of decomposition levels and scales used for EMG and motion artifact 

suppression for different sampling frequencies. 

Sampling 

frequency (Hz) 

No. of 

decomposition 

levels 

Scales used for 

EMG threshold 

estimation 

Scales used 

for EMG 

suppression 

Scales used 

 for MA 

suppression 

100−115 6 D1 D1−D3 D2−D6 

116−179 7 D1 D1−D3 D2−D7 

180−230 7 D1 D2−D4 D2−D7 

231−287 8 D1 D2−D4 D2−D7 

288−359 8 D1 D2−D4 D2−D7 

360−460 8 D1, D2 D3−D5 D3−D8 

461−500 9 D1, D2 D3−D6 D3−D9 

 

decomposition was used and A7 was set to zero for baseline wander suppression. The 

thresholds were estimated from detail coefficients D1 for EMG suppression and D1was set to 

zero. Modified thresholding was applied on detail coefficients D2 – D4 for EMG suppression. 

For motion artifact suppression, coefficient limiting was applied on for details D2 – D7 with 

thresholds estimated from respective scales. For sampling frequencies of 250 and 360 Hz, 

eight-level decomposition was used and A8 was set to zero for baseline wander suppression. 

Detail coefficients D1 and D2 were used to the thresholds EMG suppression and the 

coefficients were set to zero. Modified thresholding was applied on detail coefficients D3 – D5 

for EMG suppression. For motion artifact suppression, coefficient limiting was applied on for 

details D3 – D8 with thresholds estimated from respective scales. For sampling frequencies of 

500 Hz, nine-level decomposition was used and A9 was set to zero for baseline wander 

suppression. The thresholds were estimated from detail coefficients D1 – D3 for EMG 

suppression and D1 – D3 were set to zero. Modified thresholding was applied on detail 

coefficients D3 – D6 for EMG suppression. For motion artifact suppression, coefficient 

limiting was applied on for details D3 – D9 with thresholds estimated from respective scales. 

 

3.4 Results and Discussion 

Wavelet based denoising techniques were investigated for the suppression of EMG noise and 

motion artifacts in ECG. EMG noise was reduced by modified thresholding, combining the 
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Fig 3.3 Suppression of EMG noise in ECG using level-dependent thresholding: (a) ECG signal 

corrupted with baseline wander and EMG noise, (b) denoised ECG, and (c) estimated baseline 

wander and ECG noise. 

 

Fig 3.4 Suppression of motion artifacts in ECG using wavelet coefficient limiting:  

(a) ECG signal corrupted with motion artifact, (b) denoised ECG, and (c) estimated motion 

artifact. 
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features of hard and soft thresholding. Motion artifact was reduced by limiting the wavelet 

coefficients. Thresholds for both the denoising were estimated from the statistics of the noisy 

signal in an automated manner. The effect of discrete wavelet transform based denoising on 

the ECG signals corrupted with EMG and motion artifact is shown in Fig. 3.2 and Fig. 3.3, 

respectively. It can be seen that the denoising technique can effectively remove baseline 

wander, EMG and motion artifacts. The artifact-free segments are not affected much by for 

EMG suppression, but for motion artifact suppression the QRS complexes in the artifact-free 

ECG region are slightly attenuated. When thresholding or limiting is applied, ripples are 

formed in the neighborhood of QRS complexes due to the effect of Gibbs oscillations in the 

vicinity of sharp changes in the ECG signals. Translation-invariant wavelet transform and 

stationary wavelet transform based denoising are investigated for suppressing the effect of 

Gibbs phenomenon. Extensive qualitative and quantitative analysis of the denoising 

techniques on simulated noisy ECG signals are given in Chapter 6. The techniques are also 

validated on patient data with cardiac abnormalities and real-time artifacts from sudden 

cardiac death database and MIT-BIH ECG databases with sampling frequencies. 

A LabWindows based application “ECG Denoiser, v.2” has been developed for 

artifact suppression technique in 8-bit ECG signals recorded using Holter monitor at a 

sampling rate of 200 Hz. The application involves wavelet based denoising applied on 3-Lead 

ECG. The user manual of the application is given in Appendix A. 
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Chapter 4 

SUPPRESSION OF 

DENOISING RELATED DISTORTION 

4.1 Introduction 

Thresholding and coefficient limiting techniques based on the discrete wavelet transform 

sometimes exhibits visual artifacts due the effect of pseudo-Gibbs phenomena in the 

neighborhood of sharp changes in the signals. This can be mainly seen as ripples being 

formed at Q and S parts of the QRS complexes of ECG. Also, due to thresholding, some 

undershoots or overshoots may appear in the other parts of the ECG signals which are 

corrupted by noise [40]. Two methods have been reported to suppress the effect of Gibbs 

phenomenon; (a) translation-invariant wavelet transform (TIWT) [36] and (b) undecimated or 

stationary wavelet transform (SWT) [37]−[38]. Investigations using translation-invariant 

wavelet transform and stationary wavelet transform are described in Sections 4.2 and 4.3, 

respectively. The results from the two methods are compared with DWT based denoising in 

Section 4.4. 

 

4.2 Translation-Invariant Wavelet Denoising 

The size and extent of localized Gibbs phenomenon, which is introduced by discrete wavelet 

transform based denoising, depends on the actual location of the sharp transitions and the 

number of sharp transitions in the ECG signal. If a sharp transition has an exact temporal 

alignment with the sharp transitions of the wavelet function, then no pseudo-Gibbs 

oscillations occur and the number and amplitude of oscillations increases with the increase in 

time difference between the location of sharp transition in the ECG signal and the wavelet 

function [40]. Thus, different temporal alignments of the same ECG signal with respect to the 

analysis window generate different oscillatory artifacts or even fewer ripples. 
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Fig. 4.1 TIWT based ECG denoising. 

 

In TIWT processing, the input ECG signal is circular time-shifted and the traditional 

wavelet denoising is applied. The resultant denoised ECG is realigned to the original starting 

point by circular shifting in the opposite direction. For an ECG signal which contains several 

sharp transitions, the denoised ECG obtained from a specific alignment might give best result 

for one sharp transition and may have largest ripples for another sharp transition. Processing 

of the signal with different amounts of circular shifts and ensemble averaging of the resulting 

outputs is likely to suppress the ripples. The extent of suppression depends on the number of 

circular shifts applied. The implementation of TIWT ECG denoising is shown in Fig. 4.1.  

For the investigation of TIWT based denoising, SNR is estimated with QRS and by 

subtracting QRS complex is applied for simulated ECG signals denoised using different 

number of circular shifts. The effect of number of circular shifts used in translation-invariant 

denoising on the output SNR when applied on artifact-free ECG and noisy ECG with SNR of 

5 dB is shown in Fig. 4.2 and Fig. 4.3, respectively. 
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An overall increase of the output SNR with the increase in the number of circular 

shifts was observed. The exact variation of the SNR was found to depend upon the location 

and number sharp transitions in the ECG signal. To quantify the amount of distortion induced 

in ECG due to denoising, TIWT based denoising was applied on an artifact-free ECG signal 

of 10 s duration from MIT-BIH arrhythmia database with sampling frequency 360 Hz. For 

DWT based denoising (TIWT with zero circular shifts) on artifact-free ECG, an output SNR 

of 22.3 dB was obtained, where 6.5 dB corresponds to the QRS complex. This is mainly due 

to the ripples introduced in the neighborhood of the QRS complex. With increase in number 

of iterations for TIWT, the SNR improves due to decrease in the amount of induced 

distortions, as shown in Fig. 4.2.(a). A 4 dB increase in output SNR was be observed for 180 

shifts. This shows that when compared to DWT, TIWT based denoising has lesser effect on 

artifact-free segment of EC. The processed output ECG signals are shown in Fig. 4.3 showing 

significant reduction in the number of ripples and ripple amplitude with increase in the 

number of circular shifts. When the change in output SNR estimated with QRS complex is 

compared with output SNR estimated by subtracting QRS complex, it can be observed that a 

similar pattern of SNR change occurred with a difference in SNR of about 6 dB. This 

indicates that effect of TIWT based denoising is mainly in the region outside the QRS 

complex, where the ripples are introduced by DWT based denoising and are suppressed by 

TIWT based denoising.  

 

 

Fig. 4.2 Effect of number of circular shifts in TIWT based denoising: on output SNR for (a) artifact-

free ECG and (b) noisy ECG with input SNR = 5 dB (-1. 7059 dB when estimated by subtracting 

QRS). 
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Fig. 4.3 Processed output from translation-invariant denoising applied on artifact-free ECG. 

(ECG amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 

 

 

Fig. 4.4 Processed output from translation-invariant denoising applied on noisy ECG with 

input SNR of 5 dB. (ECG amplitude in arbitrary units and shifted for non-overlapping plots 

of the waveform.) 
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Table 4.1 Performance comparison of DWT, TIWT and SWT for artifact-free ECG and 

noisy ECG with SNR = 5dB (-1.7059 dB without QRS). 

Wavelet Method 

Output SNR for 

 artifact-free ECG 

Output SNR for 

 noisy ECG 

With QRS Without QRS With QRS Without QRS 

DWT 22.28 15.82 13.90 7.84 

TI (n=200) 26.02 19.40 17.36 10.98 

TI (n=400) 26.35 20.02 16.36 10.37 

TI (n=1000) 27.61 21.37 16.38 10.26 

SWT 24.51 17.88 18.44 11.95 

 

Noisy ECG signals of SNR 5 dB are generated by adding ECG-free artifacts from 

records „bw‟, „em‟ and „ma‟ of MIT-BIH noise stress test database to the artifact-free ECG 

signal. Application of DWT based denoising on the artifact-free ECG resulted in an output 

SNR of 22.3 dB. Excluding the QRS complexes, the output SNR was found to 15.8 dB, 

indicating that the distortion in the form of ripples occurred outside the QRS complexes. 

When TIWT based denoising was applied to noisy ECG, a similar effect was seen as 

shown in Fig. 4.2.(b). An output SNR of 13.9 dB for input SNR of 5dB (from -1.71 dB to 

7.8 dB when estimated by removing the QRS complex) was obtained for DWT based 

denoising due the ripples introduced in the sharp transitions in the neighborhood of the QRS 

complex. A steep increase in the SNR to 17.4 dB (and 11.0 dB without R-peak) is seen till 

180 shifts, but after 180 shifts the effect of TIWT based denoising is seen to be deteriorating 

indicating that the misalignment between the sharp changes in ECG and the wavelet function 

is increased for circular shifts greater than 180 samples. This implies that proper estimation of 

number shifts implemented in the denoising technique is very important for effective ripple 

reduction. The processed output ECG signals are shown in Fig. 4.4. For different ECG signals 

which have different number and location of sharp transitions, the number of shifts required 

for maximum ripple suppression varies. When the change in output SNR estimated with QRS 

complex is compared with output SNR estimated by subtracting QRS complex, it can be 

observed that a similar pattern of SNR change occurred with a difference in SNR of about 

6 dB. This indicates that the QRS complex is not affected by TIWT based denoising and the 

effect is mainly in the region outside the QRS complex.  
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Fig. 4.5 SWT based denoising of ECG. 

 

Fig. 4.6 Suppression of artifacts in ECG using SWT: (a) artifact-free ECG, (b) noisy ECG 

(SNR = 5 dB) and (c) ECG denoised using SWT (output SNR = 18.4 dB). 

 

4.3 Denoising using Stationary Wavelet Transform 

Stationary wavelet transform is another method designed to overcome the lack of translation-

invariance of wavelet transform and pseudo-Gibbs phenomenon. The translation-invariance 

property was achieved by removing the down-samplers and up-samplers in the signal path of 

traditional discrete wavelet transform and up-sampling the wavelet filter coefficients by a 

factor of 2
(i-1)

 for i
th

 level of decomposition or reconstruction. The implementation of SWT 

based denoising is shown in Fig. 4.5.  
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The processed output ECG signal with SWT based denoising is shown in Fig. 4.6. 

When SWT based denoising is applied on artifact-free ECG, an output SNR of 24.5 was 

obtained. It can be observed that the induced distortion for SWT based denoising on artifact-

free ECG signals is slightly higher than that of TIWT based denoising. For a simulated noisy 

ECG signal with input SNR of 5 dB, the processed output ECG resulted in an SNR of 18.44 

dB. An SNR improvement of about 4.5 dB and 1.8 dB was observed when compared to DWT 

and TIWT based denoising. It can also be observed that the ripples introduced in the Q and S 

part of QRS complex was reduced by about 50 % in SWT method when compared to DWT 

based denoising method. A comparison of the performance of DWT, TIWT and SWT for 

different number of circular shifts in terms of output SNR with and without QRS complexes 

is given in Table 4.1 for artifact-free ECG and simulated noisy ECG. It can be seen that the 

performance of TIWT was higher than SWT based denoising when applied on artifact-free 

ECG, while the performance of SWT was found to higher for noisy ECG. 

 

4.4 Discussion 

It was observed that ripples were induced due to the effect of Gibbs phenomenon at the 

vicinity of sharp transitions. The translation-invariant denoising and stationary wavelet 

transform based noise suppression methods were investigated to suppress these denoising 

related distortions. To quantify the performance of the denoising methods in ripple reduction 

in the neighborhood of R peak, SNR and RMS error analysis was used by removing QRS 

complex. The performance of translation-invariant wavelet transform based denoising was 

found to be dependent on the number and the locations of sharp transitions in the input ECG 

signal. Hence, it is difficult to fix a particular value for the number of circular shifts involved 

in its implementation. For an n-sample signal, the time complexity of translation invariance 

based denoising was of the order of n log (n). Stationary wavelet transform was found to be 

superior to TIWT due to comparatively lower time complexity and its performance being 

independent of the location and number of sharp transitions. TIWT based denoising technique 

could be used to applications where there is lesser time and memory constraint as in the case 

of offline processing. But, for automatic detection systems which require online processing 

and SWT based denoising technique is more promising. The comparative evaluation of DWT, 

TIWT and SWT based denoising is presented in Chapter 5. 
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Chapter 5 

TESTS AND RESULTS 

5.1 Introduction 

For evaluating the denoising technique, it was applied on ECG signals with simulated 

artifacts. Measures such as SNR, percentage RMS difference (PRD), L2 norm and MaxMin 

improvement indices are used for measure the performance and induced distortion. The 

effectiveness of the denoising is also validated using the improvement in R-peak detection 

after denoising. The evaluation is carried out using Matlab based implementation of the 

technique. The details of the ECG signal used for validation are described in Section 5.2. 

Section 5.3 describes the measures used for evaluation. The results for ECG with simulated 

artifacts and real artifacts are presented in Section 5.4 and 5.5, respectively. 

 

5.2 ECG Signals Used for Validation 

The denoising technique was evaluated by applying it on ECG signals with known levels of 

artifacts. For this purpose, signals with simulated artifacts were generated by adding artifact-

free ECG and signal-free artifacts of 10 s duration. A total of 15 records (100, 101, 103, 105, 

106, 116, 118, 119, 123, 202, 203, 210, 213, 220, and 232) from MIT-BIH arrhythmia 

database [45] with 360 Hz sampling frequency and 11-bit resolution were used. A total of 3 

records (baseline wander: bw, muscle artifact (EMG): ma, and electrode motion artifact: em), 

from MIT-BIH stress test database [46] were used as ECG-free artifacts. All the signals and 

noise records were scaled to have the same RMS value. Signals were simulated with three 

kinds of noise: (a) EMG noise, (b) motion artifact, and (c) mixed noise. EMG noise was 

generated by adding „bw‟ and „ma‟ in 1:1 ratio. Motion artifact was generated by adding „bw‟ 

and „em‟ in 1:1 ratio. Mixed noise was generated by adding „ma‟ and „em‟ in 1:2 ratio. 
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 Table 5.1 ECG databases from PhysioNet and their sampling frequencies 

Database 

No. 
ECG Database 

Sampling 

Frequency (Hz) 

1 MIT-BIH Normal Sinus Rhythm Database (nsrdb) 128 

2 MIT-BIH Arrhythmia Database (mitdb) 360 

3 MIT-BIH Noise Stress Test Database (nstdb) 360 

4 MIT-BIH Atrial Fibrillation Database (afdb) 250 

5 MIT-BIH ST Change Database (stdb) 360 

6 MIT-BIH Malignant Ventricular Ectopy Database (vfdb) 250 

7 T-Wave Alternans Challenge Database (twadb) 500 

8 Sudden Cardiac Death Holter Database (sddb) 250 

 

These ratios are in accordance with the occurrence of the noises in ambulatory recordings. 

The resultant noises were scaled to have the same RMS as that of the ECG signal. The signal 

with simulated noise was generated by adding noise-free signal s(n) with scaled signal-free 

noise d(n), as the following  

 

      x n s n d n   (5.1) 

where α is used for the given required SNR as  

 

(SNR) 20 login   (5.2) 

Three different noises for each simulated noise type (EMG, motion artifact, and mixed) were 

added to each artifact-free ECG signals to generate 45 noisy ECG records for a particular 

SNR. 

In addition to applying the technique on signals with simulated artifacts for 

quantitative evaluation, the technique was also applied on ECG with real artifacts. Eight ECG 

databases available at PhysioBank [43], [52] were used for the investigation and validations 

of the proposed denoising techniques. The databases used and their sampling frequencies are 

given in Table 5.1. These databases [44]-[51] contain ECG signals with real artifacts and are 

acquired from normal subjects and patients with myocardial infarctions, transient ischemia, 

ventricular tachyarrhythmia, and other risk factors for sudden cardiac death. 320 ECG records 

of 20 s duration each were considered for evaluation by visual inspection. 

Ambulatory ECG signals recorded using a Holter monitor (ECIL, Hyderabad, India) 

at 200 Hz with 8-bit resolution were also used. These recordings were acquired from five 

healthy volunteers in resting condition and during common ambulatory activities like hand 
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movements, walking, and climbing stairs. The recordings were used to test the application 

“ECG Denoiser, v.2” described in Appendix A and also for validating the software. 

 

5.3 Evaluation Measures 

In addition to visual inspection of the denoised signal, several quantitative evaluation 

measures have been reported for assessing the effectiveness of denoising techniques. Some of 

these measures, requiring signals with simulated noise, are SNR improvement [12], [15], [17], 

[18], [21], [23], [28], [30], [33]−[38], RMS error [18], [22], [26], [29], [31], [33], and 

percentage RMS difference (PRD) [28], L2 norm and MaxMin based improvement indices 

[13], [34], [35], correlation coefficient [9], [18], [27], wavelet weighted PRD (WWPRD) [32], 

and wavelet energy-based diagnostic distortion measure (WEDD) [32]. R-peak detection 

efficiency with respect to manually marked detection has also been reported [26], [34], [35]. 

Generally, multiple measures are needed for performance estimation. 

 

5.3.1 Visual Inspection 

It is the primary assessment technique used to analyze the performance of a denoising 

technique on a noisy signal. It is very valuable to understand the distortion being introduced 

as well as the qualitative effects on characteristic points. For this method of evaluation, the 

availability of noise-free signal is not essential. Visual inspection of the results is highly 

subjective in nature and is an accurate technique. Minor distortions or amplitude changes 

could be overlooked due to limitation of the eye perception. 

 

5.3.2 Signal-to-Noise Ratio (SNR) or Signal-to-Error Ratio (SER) 

SNR improvement is the most commonly used quantitative measure [12], [15], [17], [18], 

[21], [23], [28], [30], [33]−[38]. For this measure, availability of noise-free signal s(n) is 

necessary. SNR in the noisy input x(n) is measured as  
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Similarly, the SNR in the output y(n) is measured as 
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The SNR improvement is given as 

 

improvement in out(SNR)   (SNR) (SNR)   (5.5) 
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The output SNR measurement for noise-free input gives a measure of the distortion 

introduced by denoising technique. 

 

5.3.3 Root Mean Square Error (RMSE) and Percentage RMS Difference (PRD) 

Root mean square error is a measure of the deviation between the noise-free signal s(n) and 

the noisy signal x(n) [18], [22], [26], [29], [31], [33] and given by 
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Percentage RMS difference (PRD) gives the relative RMS error [28] and is given by   
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 (5.8) 

It is seen that SNR and PRD measures are directly related. Reduction in PRD due to 

denoising gives a direct measure of the percentage of noise suppressed.  

 

5.3.4 Correlation Coefficient ( r ) 

Correlation coefficient r is a measure of statistical relationship or dependence between the 

signals [9], [18], [27]. In case of signals with simulated artifacts, the correlations of the input 

and output are calculated with the noise-free signals as  
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and 
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Increase in correlation is an indicator of noise suppression. In case of noise-free signals, the 

decrease in correlation is an indicator of distortion. 

 

5.3.5 L2 Norm, MaxMin and Improvement Index (II) 

L2 norm is measure of the energy of a signal, while MaxMin is the difference between the 

maximum and the minimum value in the signal [13], [34], [35]. The measurement of L2 

Norm and MaxMin statistic is given by 

    2
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and      MM  max ( ) min ( )
nn

x x n x n


   (5.12) 

The improvement index for L2 norm and MaxMin is computed for signals with real artifacts 

by using an artifact-free segment. As the L2 norm and MaxMin capture different 

characteristics of the signals, an improvement index value close to one for both the indices 

indicates effective noise suppression, while a value less than and greater than unity indicates 

ineffective denoising and signal distortion, respectively. 

 
(Pre-denoising value)  (Post-denoising value)

II = 
(Pre-denoising value)  (Artifact-free value)




 (5.13) 

 

5.3.6 R-peak Detection Efficiency 

The R-peak detection technique uses Pan-Tompkins‟ QRS detection algorithm [41] as an 

automated QRS detector and these peaks are compared with visually marked peaks. When 

ECG is corrupted with artifacts, the QRS detection algorithm may fail due to detect the QRS 

complexes or an artifact might be detected as a QRS complex. „Success‟ gives the percentage 

of the correct detections, while „Failure‟ is the percentage of QRS complexes missed. „False‟ 
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is the percentage of artifacts detected as QRS complexes. An increase in the value of success 

with decrease in the value of false indicates effective denoising. An increase in the value of 

failure indicates suppression of QRS complexes and an increase in the value of failure 

indicates induced distortions [26], [34], [35]. 

 

5.4 Results for ECG Signals with Simulated Artifacts 

The denoising technique was evaluated for simulated noisy ECG signals with input SNR 

values ranging from -10 to 10 dB in steps of 5 dB. For artifact suppression, the denoising 

control parameters for a specific input SNR were set empirically by visual inspection of the 

noise content in the signal. For ECG with simulated EMG noise, the EMG denoising control 

parameter, ε is set to 0.6, 0.3, 0.05, 0.1 and 0.01 for input SNR of -10, -5, 0, 5 and 10 dB, 

respectively. The value of motion artifact denoising control parameter, η is to 0 for all SNR 

values due to the absence of motion artifacts in the noisy signal. For ECG with simulated 

motion artifacts, ε is set to 0.01 due to presence of baseline wander and high frequency noise 

in the noisy signal, while η is set to 0.7, 0.6, 0.5, 0.02 and 0.01 for input SNR of -10, -5, 0, 5 

and 10 dB, respectively. For ECG with mixed noise, ε is set to 0.3, 0.2, 0.1, 0.05 and 0.01 

with the corresponding values of η set to 0.6, 0.5, 0.5, 0.02 and 0.01, the for input SNR of -10, 

-5, 0, 5 and 10 dB, respectively. 

The results obtained for DWT based denoising in terms of SNR improvement, 

reduction in PRD, L2 norm and MaxMin improvement, and correlation coefficient are given 

in Tables 5.2, 5.3, 5.4 and 5.5, respectively. For EMG suppression, as the input SNR 

increased from -10 to 10 dB, the SNR improvement was observed to decrease from 12.9 to 

8.7 dB and the extent of noise suppression (in terms of reduction in PRD) was observed to 

increase from 63% to 78%. The L2 norm and MaxMin values close to unity for input SNR 

values -10 to 0 dB indicate effective denoising without signification distortion introduced in 

the ECG. It can be seen that the L2 norm improvement is 1.2 and 1.5 for input SNR values of 

5 and 10 dB indicating that the extent of distortion induced is greater than that of artifact 

suppression. An improvement in correlation coefficient from 0.3 to 0.8 is observed for input 

SNR of -10 dB indicating effective denoising, while the correlation value increased from 0.95 

to 0.99 is for input SNR of 10 dB. For motion artifact suppression, SNR improvement ranging 

from 14.97 to 10.8.67 dB for input SNR of -10 to 10 dB indicates efficient suppression of 

motion artifacts. It can also be seen from Table 5.2 that SNR improvement for input SNR of 5 

dB deviates from the improvement pattern and a value of 4.02 is obtained. This is due the  
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Table 5.2 Mean (standard deviation) of SNR improvement in dB for simulated noisy ECG processed 

using DWT based denoising. Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 12.98 (0.20) 12.71 (0.21) 12.10 (0.26) 10.89 (0.65) 8.71 (1.20) 

Motion art. 14.97 (0.39) 12.38 (0.87) 8.65 (1.29) 4.02 (1.62) 8.67 (1.28) 

Mixed 14.46 (0.68) 11.92 (0.98) 8.05 (1.21) 3.70 (1.53) 4.06 (0.83) 

 

Table 5.3 Mean reduction in PRD (in %) simulated noisy ECG processed using DWT based denoising. 

Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 77.57 76.83 75.14 71.39 62.99 

Motion art. 82.13 75.83 62.66 36.09 62.76 

Mixed 81.02 74.50 60.04 34.02 37.07 

 

Table 5.4 Mean improvement indices of L2 norm [MaxMin] for simulated noisy ECG processed using 

DWT based denoising. Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 0.95 [0.83] 0.97 [0.81] 1.00 [0.84] 1.23 [0.86] 1.47 [0.80] 

Motion art. 1.04 [0.93] 1.19 [1.02] 1.51 [1.15] 1.52 [1.15] 1.12 [0.71] 

Mixed 1.07 [0.94] 1.20 [1.02] 1.55 [1.14] 2.52 [1.39] 1.83 [0.76] 

 

Table 5.5 Mean output r [input r] for simulated noisy ECG processed using DWT based denoising. 

Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 0.80 [0.30] 0.92 [0.49] 0.97 [0.71] 0.98 [0.87] 0.99 [0.95] 

Motion art. 0.83 [0.30] 0.91 [0.49] 0.94 [0.70] 0.94 [0.87] 0.99 [0.95] 

Mixed 0.80 [0.30] 0.90 [0.49] 0.93 [0.70] 0.94 [0.87] 0.98 [0.95] 
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Table 5.6 Mean (standard deviation) of SNR improvement in dB for simulated noisy ECG processed 

using TIWT based denoising. Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 14.37 (0.33) 13.93 (0.38) 13.48 (0.37) 12.40 (0.62) 10.24 (1.12) 

Motion art. 16.07 (0.51) 13.48 (0.75) 9.60 (1.03) 5.06 (1.19) 10.12 (1.37) 

Mixed 15.00 (0.62) 13.19 (1.00) 9.43 (1.09) 4.99 (1.21) 10.49 (1.60) 

 

Table 5.7 Mean reduction in PRD (in %) for simulated noisy ECG processed using TIWT based 

denoising. Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 80.87 79.88 78.79 75.96 68.96 

Motion art. 84.26 78.74 66.68 43.70 68.40 

Mixed 82.18 77.97 65.99 43.21 69.58 

 

Table 5.8 Mean improvement indices of L2 norm [MaxMin] for simulated noisy ECG processed using 

TIWT based denoising. Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 0.98 [0.84] 0.99 [0.84] 1.03 [0.89] 1.10 [0.96] 1.22 [1.10] 

Motion art. 1.06 [0.96] 1.20 [1.08] 1.51 [1.26] 2.45 [1.19] 1.25 [1.01] 

Mixed 1.03 [0.91] 1.18 [1.04] 1.50 [1.21] 2.43 [1.58] 1.29 [1.01] 

 

Table 5.9 Mean output r [input r] for simulated noisy ECG processed using TIWT based denoising. 

Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 0.83 [0.30] 0.94 [0.49] 0.98 [0.71] 0.99 [0.87] 1.00 [0.95] 

Motion art. 0.87 [0.30] 0.94 [0.49] 0.96 [0.70] 0.96 [0.87] 0.99 [0.95] 

Mixed 0.83 [0.30] 0.93 [0.49] 0.95 [0.70] 0.96 [0.87] 1.00 [0.95] 
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Table 5.10 Mean (standard deviation) of SNR improvement in dB for simulated noisy ECG processed 

using SWT based denoising. Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 14.32 (0.20) 13.77 (0.23) 13.36 (0.16) 12.74 (0.45) 10.94 (0.92) 

Motion art. 15.88 (2.04) 12.12 (2.53) 7.50 (2.79) 2.54 (2.85) 10.40 (1.29) 

Mixed 14.66 (1.71) 11.35 (2.33) 7.03 (2.57) 2.31 (2.73) 10.57 (1.45) 

 

Table 5.11 Mean reduction in PRD (in %) for simulated noisy ECG processed using SWT based 

denoising. Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 80.77 79.50 78.52 76.90 71.46 

Motion art. 83.43 74.18 55.71 21.48 69.46 

Mixed 81.16 74.86 61.35 35.47 69.97 

 

Table 5.12 Mean improvement indices of L2 norm [MaxMin] for simulated noisy ECG processed 

using SWT based denoising. Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 0.97 [0.86] 0.98 [0.84] 1.00 [0.89] 1.11 [0.99] 1.15 [1.08] 

Motion art. 1.11 [1.06] 1.29 [1.21] 1.73 [1.48] 3.09 [2.10] 1.17 [0.99] 

Mixed 1.12 [1.01] 1.28 [1.01] 1.70 [1.35] 3.05 [1.89] 1.18 [0.98] 

 

Table 5.13 Mean output r [input r] for simulated noisy ECG processed using SWT based denoising. 

Total no. of records = 45. 

Noise type 
Input SNR (dB) 

-10 -5 0 5 10 

EMG 0.83 [0.30] 0.94 [0.49] 0.98 [0.71] 0.99 [0.87] 1.00 [0.95] 

Motion art. 0.84 [0.30] 0.90 [0.49] 0.91  [0.70] 0.91 [0.87] 1.00 [0.95] 

Mixed 0.79 [0.30] 0.87 [0.49] 0.89  [0.70] 0.94 [0.87] 1.00 [0.95] 
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Fig. 5.1 Mean of SNR improvement versus input SNR for three noise types: (a) EMG, (b) motion 

artifact, and (c) mixed noise. 

 

 

Fig. 5.2 L2 norm based improvement index versus input SNR for three noise types: (a) EMG, (b) 

motion artifact, and (c) mixed noise. 

 

 

Fig. 5.3 MaxMin based improvement index versus input SNR for three noise types: (a) EMG, (b) 

motion artifact, and (c) mixed noise. 
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Fig. 5.4 Correlation coefficient versus input SNR for three noise types: (a) EMG, (b) motion artifact, 

and (c) mixed noise. 

 

increase in large standard deviation of the artifacts resulting in lower limiting threshold values 

resulting to reduction in QRS amplitude. The L2 norm and MaxMin values greater than unity 

with the range of 1.19 to 1.52 and 1.02 to 1.15, for input SNR range of -5 to 5 dB, 

respectively, indicate that significant distortion is induced in the ECG. Maximum distortion 

was obtained for an input SNR of 5 dB. This is due to the reduction in overall mean value of 

the signal and its wavelet coefficients at each level, resulting in resulting reduction of the 

amplitude of the QRS complex. This results in higher limiting thresholds and lower induced 

distortion when compared to that of input SNR of 5 dB. On the contrary, the distortions 

induced caused by denoising for the ECG with input SNR 10 dB is lesser as the mean and 

variance values of the noisy signal were closer that of the artifact-free signal. For correlation 

coefficient, a similar trend can be seen with a value of 0.83 for -10 dB input SNR and 0.99 dB 

for 10 dB input SNR. The results from multiple quantitative measures indicate that EMG 

artifact suppression technique is efficient and better than most of the earlier reported artifact 

suppression techniques. The trend for suppression of mixed artifacts is seen to be similar to 

that of motion artifacts as the occurrence of motion artifacts is twice as high as that of EMG 

noise. 

The results for TIWT based denoising in terms of SNR improvement, reduction in 

PRD, L2 norm and MaxMin improvement, and correlation coefficient are given in Tables 5.6, 

5.7, 5.8 and 5.9, respectively. A similar trend can be observed for TIWT based denoising with 

an improved performance due to ripple suppression can be observed for suppression of EMG. 

For TIWT, the SNR improvement is seen to range from 10.2 to 14.4 dB which is 2 dB greater 

than that of DWT based denoising and percentage noise suppression is seen to range from 

69% to 81 % for input SNR values from -10 to 10 dB. An improvement of 2 dB when 
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Table 5.14 Rate of success, failures, and false detection in percentage by the automated 

R-peak detection algorithm for simulated noisy ECG for different input SNR (in dB) values. Total 

number of cardiac cycles = 288 each. 

Type of 

ECG 

Success (%) Failure (%) False (%)  

-10 -5 0 5 -10 -5 0 5 -10 -5 0 5 

Noisy 94.44 94.79 99.65 100 6.25 4.86 0.35 0 21.18 6.94 1.04 0 

Denoised 99.31 99.31 100 100 0.69 0.69 0.0 0 14.93 2.08 0.0 0 

 

Table 5.15 Rate of success, failures, and false detection in percentage by the automated 

R-peak detection algorithm for simulated noisy ECG. Total number of cardiac 

cycles = 3456. 

Type of ECG 

Record 

Success 

(%) 

Failure 

(%) 

False 

(%) 

Pre-denoising 97.47 2.43 7.12 

Post-denoising 99.65 0.35 4.25 

 

compared to the DWT based denoising was observed for TIWT based motion artifact 

suppression indicating better performance with SNR improvement ranging 14.5 to 4.1 dB. It 

can be seen that the L2 norm and MaxMin improvement indices are closer to unity indicating 

better performance. A comparatively higher output correlation coefficient is observed with a 

value of 1.0 for input SNR of 10 dB. A similar trend can be observed with an improved 

performance due to ripple suppression and reduction in the suppression of the amplitude of 

QRS complex can be observed for motion artifact suppression. It can be seen that the SNR 

improvement ranges from 16 dB to 10 dB for SNR input of -10 to 10 dB. The improvement in 

L2 norm and MaxMin indices indicates that the suppression of amplitude of the QRS complex 

is significantly reduced. Although, the motion artifact suppression is inducing some 

distortions, it is still very effective in removing the artifacts. This is indicated by significant 

improvement in the correlation coefficient values and the resultant values being close to unity. 

A similar trend with SNR improvement ranging from 15.0 to 10.5 dB for SNR input of -10 to 

10 dB can be observed for mixed artifact suppression. 

The results for SWT based denoising in terms of SNR improvement, reduction in 

PRD, L2 norm and MaxMin improvement, and correlation coefficient are given in Tables 

5.10, 5.11, 5.12 and 5.13, respectively. For SWT based denoising, a similar performance as 
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Fig. 5.5 Suppression of EMG noise in simulated noisy ECG with input SNR = -5 dB with 

output SNR of 7.42, 8.75 and 8.76 dB for DWT, TIWT and SWT based denoising. (ECG 

amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 

 
Fig. 5.6 Suppression of motion artifact in simulated noisy ECG with input SNR = 0 dB with 

output SNR of 6.74, 8.46 and 8.01 dB for DWT, TIWT and SWT based denoising. (ECG 

amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 
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Fig. 5.7 Suppression of mixed noise in simulated noisy ECG with input SNR = 5 dB with 

output SNR of 11.02, 12.27 and 12.30 dB for DWT, TIWT and SWT based denoising. (ECG 

amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 

 

Fig. 5.8 Automated R-peak detection applied on ambulatory ECG: (a) pre-denoising and (b) post-

denoising. 
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seen for DWT based denoising was observed for EMG artifact suppression. But the 

performance is worse for SWT based motion artifact suppression, indicating that it is not 

efficient in motion artifact reduction. 

Fig. 5.1 shows that SWT and TIWT based denoising has similar performance when 

compared to that of DWT based denoising for ECG corrupted by EMG noise, while the 

performance is bit poorer for motion artifact suppression. These results are validated with L2 

norm and MaxMin based improvement indices, and the improvement in correlation 

coefficient values as shown in Fig. 5.2, Fig. 5.3 and Fig. 5.4, respectively. Fig. 5.5, 5.6 and 

5.7 show the suppression of EMG noise, motion and both in simulated noisy ECG, 

respectively. 

The performance of R-peak detection based on Pan-Tompkins‟ algorithm applied on 

noisy ECG and denoised ECG is shown in Fig. 5.8. It can be observed that Pan-Tompkins‟ 

QRS detection algorithm, which was designed to detect QRS complexes for wide range of 

cardiac conditions, may fail in the presence of noise and artifacts. Table 5.14 and 5.15 shows 

increase efficiency of the automatic R-peak detection technique and the reduction in 

percentage of false peak detection due to denoising when applied on ECG signals with 

simulated EMG and motion artifacts. The evaluation of R-peak efficiency is carried out on 

DWT based denoising as the performance of DWT, TIWT and SWT are the same with 

respect the QRS complexes. It can be observed that as the SNR decreases the efficiency of R-

peak detection was observed to be reduced, which was restored by denoising the noisy ECG 

signals. The performance saturates for input SNR of 5 dB with 100 % detection of the QRS 

complex.  

 

5.5 Results for Ambulatory ECG with Real artifacts 

It is important to inspect the performance of the denoising technique on ECG signals with 

abnormal cardiac activities as many of the denoising techniques which are efficient in artifact 

suppression for ECG signals from normal subjects fail in presence of arrhythmias. Effective 

artifact suppression has been observed by visual inspections for ambulatory ECG signals with 

atrial fibrillation as shown in Fig. 5.9 It can be seen that ripples of higher amplitude are 

introduced for DWT based denoising leading to lesser retention in the morphological shape. 

This is overcome by TIWT and SWT based denoising, where the amplitude of the ripples is 

lower and the morphological shapes are retained. It can also be observed that technique was 

efficient for a heart rate as low as 45 beats per minute. Fig 5.10 shows the performance for 
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Fig. 5.9 Suppression of artifacts in patient‟s ambulatory ECG with atrial fibrillation. (ECG 

amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 

 

 
Fig. 5.10 Suppression of artifacts in patient‟s ambulatory ECG with atrial flutter. (ECG 

amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 
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Fig. 5.11 Suppression of artifacts in patient‟s ambulatory ECG corrupted by noise. (ECG 

amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 

 

 
Fig. 5.12 Suppression of artifacts in patient‟s ambulatory ECG with ventricular bigeminy. 

(ECG amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 
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Fig. 5.13 Suppression of artifacts in patient‟s ambulatory ECG with pre-mature ventricular 

contraction. (ECG amplitude in arbitrary units and shifted for non-overlapping plots of the 

waveform.) 

 

 
Fig. 5.14 Suppression of artifacts in patient‟s ambulatory ECG with ventricular fibrillation. 

(ECG amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 
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Fig. 5.15 Suppression of artifacts in patient‟s ambulatory ECG with ST elevation. (ECG 

amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 

 

Fig. 5.16 Suppression of artifacts in patient‟s ambulatory ECG with its morphological 

features masked by high noise content. (ECG amplitude in arbitrary units and shifted for non-

overlapping plots of the waveform.) 
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Fig. 5.17 Suppression of artifacts in ECG recorded using Holter monitor in walking condition. 

(ECG amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 

 

 

 

Fig. 5.18 Suppression of artifacts in ECG recorded using Holter monitor in sitting position. 

(ECG amplitude in arbitrary units and shifted for non-overlapping plots of the waveform.) 
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Table 5.16 Rate of success, failures, and false detection in percentage by the automated 

R-peak detection algorithm for ambulatory patient ECG. Total number of cardiac 

cycles = 1918. 

Type of ECG 

record 

Success 

(%) 

Failure 

(%) 

False 

(%) 

Pre-denoising 63.19 36.81 0.10 

Post-denoising 90.56 9.43 0.05 

 

atrial flutter signals with mild EMG noise and a heart rate of 120 beats per minute. It can be 

observed that amount of distortions introduced due to denoising is greater than the extent of 

artifact suppression. Fig. 5.11 shows EMG and motion artifact suppression in ambulatory 

ECG. It can be seen that the P-wave is completely distorted and masked by the ripples for 

DWT based denoising. For TIWT, though the ripples are suppressed, the amplitude of the p-

wave is suppressed in a few regions. SWT based denoising shows greater shape retention. 

Fig. 5.12 shows the effect of denoising for ventricular bigeminy at a heart rate of 60 

Hz. It can be seen that TIWT has the maximum shape retention while DWT based denoising 

has visible ripples. It can also be observed that the morphology of ventricular bigeminy is not 

affected by the denoising. The mild baseline wander has also been removed. The denoising 

technique was also found to be efficient for ECG with pre-mature ventricular contractions as 

shown in Fig. 5.13. When the artifact suppression algorithm was applied on ECG with 

ventricular fibrillation as shown in Fig. 5.14, EMG suppression technique was found to be 

effective. But, the motion artifact suppression technique resulted in significant reduction in 

the amplitude of the fibrillation. This effect is higher for DWT based suppression when 

compared to TIWT based suppression. Hence, motion artifact suppression technique might 

fail in the presence of ventricular tachycardia in the ECG signal. It can also be seen that the 

denoising in the regions with normal cardiac activity is not affected by the presence of 

arrhythmias in the denoising time frame. Fig. 5.15 shows the performance for ECG with ST 

elevation. The ECG signal is corrupted with baseline wander. Though there is a spectral 

overlap between the ST elevation or depression, it can be observed the artifact suppression 

has not affected the ST deviation in the ECG. But, when the motion artifact coincides with the 

ST elevation or depression, then motion artifact suppression technique may fail in retaining 

the deviation. 

The performance of the denoising technique when applied for ECG signals corrupted 

by extreme high level noise recorded using Holter monitor is shown in Fig. 5.16. It can be 
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observed that the denoising technique is highly efficient. Fig. 5.17 shows that SWT based 

denoising performed better than TIWT and DWT based denoising technique when applied on 

ECG signals acquired from a subject while walking using a Holter monitor, in terms of both 

artifact suppression and reduction in induced distortions. Fig. 5.18 shows the performance of 

the denoising technique on ECG signals recorded using the Holter monitor, when higher 

denoising control parameters were set. It can be observed that DWT based denoising 

introduced larger ripples, but TIWT and SWT based have not introduced any visible 

distortions in the denoised ECG. Also, the ST segment elevation was retained. Table 5.16 

gives the success, failure and false percentages of the automatic R-peak detection algorithm 

for wavelet denoising when applied on ECG signals acquired using a Holter recorder 

available at „Sudden cardiac death‟ ECG database. The result show an improvement in R-

peak detection from 63.2 % to 95.6 % and a reduction in false detections from 0.1% to 

 0.05 %. 

 

5.6 Summary 

Artifact-free ECG signals from MIT-BIH arrhythmia database and ECG-free artifacts from 

MIT-BIH noise stress test database were used to generate simulated noisy ECG. SNR 

improvement, reduction in PRD, L2 norm and MaxMin improvements, correlation 

coefficient, and efficiency in R-peak detection were used for evaluating the denoising 

technique. Quantitative and qualitative assessment of the technique showed significant noise 

suppression for both EMG and motion artifacts without introducing any visible signal 

distortion. Better results were obtained when compared to most of the earlier reported ECG 

denoising techniques. For an input SNR of -10 dB, the SNR improvement of 14.7, 15.0 and 

14.7 dB were obtained for DWT, TIWT and SWT based denoising, respectively. The 

corresponding PRD reduction values indicated 81.0 %, 82.2 % and 81.2 % of noise reduction. 

An improvement in QRS detection efficiency from 94.4 % to 99.3 % with reduction in false 

detection percentage from 21.2 % to 14.9 % was obtained for simulated noisy ECG. 

Validation on ECG signals from MIT-BIH ECG databases, sudden cardiac death 

database and on ambulatory signals recorded using a Holter monitor showed that the 

technique was efficient in artifact suppression without significant distortions for normal ECG, 

ECG with arrhythmias, ST deviation, atrial fibrillation, atrial flutter, bigeminy, ventricular 

tachycardia, ventricular flutter, ventricular fibrillation and premature ventricular contraction 

with low and moderate noise levels. But it failed in some cases with extremely high noise. 

Significant improvement in QRS detection efficiency from 63.2 % to 90.6 % with reduction 
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in false detection percentage from 0.10 % to 0.05 % was obtained for denoising of ambulatory 

patient ECG with various cardiac conditions. 

EMG suppression technique was found to be very effective and performance was 

observed to be better than motion artifact suppression. The amplitude of the QRS complexes 

present in the artifact-free segments was found to be reduced when motion artifact is present 

only for a short duration in the noisy ECG. DWT based motion artifact suppression fails when 

ventricular fibrillation is present in the ECG and significant amount of fibrillation is 

suppressed. When motion artifact was superimposed on ST elevation or depression of the 

ECG, the deviation was suppressed in a few cases. SWT based motion artifact suppression 

was not as effective as the TIWT based suppression. 
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Chapter 6 

SUMMARY AND CONCLUSION 

ECG signals are vital cardiac signals for analyzing the functioning of the heart. As 

many of the cardiac abnormalities are manifested in ECG only while performing normal day-

to-day activities and during stress test, it is inevitable to record ECG corrupted by artifacts 

and noise. Suppression of artifacts is very important because their presence masks the 

morphological features and makes it difficult to get correct diagnostic information. Wavelet 

based denoising techniques, using discrete Meyer (dmey) wavelet, were investigated to 

suppress noise and artifacts in ECG. Approximate decomposition levels required for different 

sampling frequencies were also investigated. Level-dependent thresholding was used for 

EMG noise suppression with thresholds estimated from scales which predominantly 

represented EMG noise. Coefficient limiting was used for suppression of motion artifacts 

with limiting thresholds estimated from noise statistics at each scale. As ripples were 

introduced in the denoised ECG signals when processed using DWT, TIWT and SWT based 

denoising methods were investigated and implemented. 

Artifact-free ECG signals from MIT-BIH arrhythmia database were used for the 

evaluation of the artifact suppression. The methods were validated using SNR improvement, 

L2 norm and MaxMin improvements, correlation coefficient, reduction in PRD and efficiency 

in R-peak detection. Quantitative and qualitative assessment of the technique by applying it 

on recordings from several healthy subjects showed that both types of artifacts were 

suppressed without introducing any visible signal distortion. For an input SNR of -10 dB, the 

SNR improvement of 14.5, 15.0 and 14.7 dB were obtained for DWT, TIWT and SWT based 

denoising, respectively. The corresponding PRD reduction values indicated 81.0 %, 82.2 % 

and 81.2 % of noise reduction. An improvement in QRS detection efficiency from 94.4 % to 

99.31 % with reduction in false detection percentage from 21.2 % to 14.9 % was obtained. 

TIWT and SWT based denoising were found to be better than DWT based ECG denoising. 
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The proposed denoising techniques were also validated on ECG signals from MIT-

BIH ECG databases, sudden cardiac death database and on ambulatory signals recorded using 

the Holter monitor. Artifact suppression was efficient in artifact suppression without 

significant distortions for normal ECG, ECG with arrhythmias, ST deviation, atrial 

fibrillation, atrial flutter, bigeminy, ventricular tachycardia, ventricular flutter, ventricular 

fibrillation and premature ventricular contraction with low and moderate noise levels. But, the 

technique was found to fail when extremely high noise levels with motion artifacts are 

superimposed on the ECG. Significant improvement in QRS detection efficiency from 63.2 % 

to 90.6 % with reduction in false detection percentage from 0.1 % to 0.05 % was obtained for 

denoising of ambulatory patient ECG with the abnormal cardiac conditions. 

A software application based on DWT based ECG denoising has been developed for 

artifact suppression in 3-lead ECG signals recorded using a Holter monitor at a sampling 

frequency of 200 Hz. 

Application of motion artifact suppression technique resulted in decrease in the 

amplitude of some of the QRS complexes in the artifact-free segments. Hence, there is a need 

for further improving the motion artifact suppression. DWT based motion artifact suppression 

fails when ventricular fibrillation is present in the ECG. When motion artifact gets 

superimposed on ST elevation or depression, the deviation may be suppressed in a few cases. 

A few distortions were seen in the processed ECG due to limiting function involved in the 

motion artifact suppression technique which resulted in a lower SNR improvement for ECG 

corrupted with motion artifacts when compared to ECG corrupted with EMG noise. The 

developed wavelet based denoising technique uses empirically set denoising control 

parameters. Further improvisation is possible by investigating the relation between the noise 

level in ECG and the denoising control parameters for an automatic selection of denoising 

control parameters. 
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Appendix A 

User Manual for “ECG Denoiser, v.2” 

A.1 Introduction 

The “ECG Denoiser, v.2” is a graphical user interface (GUI) application developed using 

LabWindows Version 9.1 for denoising three-lead ECG signals acquired using a Holter 

monitor. It reads the ECG data from text files in Holter monitor‟s file format (as given in 

A.10) and saves the denoised data back in the same format. It graphically displays the three 

ECG leads simultaneously, and it has ten control buttons for the display and denoising 

operations: load, block, start, span, display, settings, save, print, strip chart, and background. 

 

A.2 „Load‟: Input File Selection 

It is used, with the help of a file-select-popup, to select the ECG file to be displayed and 

denoised. If the file format is correct, the three ECG lead signals are displayed, assuming the 

sampling frequency to be 200 Hz and with default time axis as 0-10 s. The file name and the 

patient ID (from the file) are also displayed. 

 

A.3 „Block Position‟, „Start‟, and „Span‟: Segment Selection 

The input data file may contain signal recording of a very long duration. For processing, the 

signal from the input data file is read as a block of 100 s duration. The „Block Position (s)‟ is 

initially set as 0 s and it can be varied to navigate through the recording. The „Start‟ and 

„Span‟ can be used to navigate within the selected block. „Start (s)‟ controls the start time of 

the displayed segment and „Span (s)‟ sets its span. They can be changed by entering the time 

in the text box or by incrementing/decrementing the value using the up/down arrows next to 

the text box. When the selected segment is changed by changing either the start or the span, 

the displayed unprocessed segment of the signal is updated and processed for suppression of 
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the artifacts. The presence of emergency event marker in the input data is shown as a 

horizontal bar above the corresponding segment of the displayed waveform. 

 

A.4 „Display‟: Display Mode Selection 

The ECG signals can be displayed using one of the three display modes: (a) original ECG, (b) 

denoised ECG, and (c) original and denoised ECG. The mode can be selected using the 

drop-down „Display‟ option. An example of the displays using the three modes is shown in 

Fig. A.4. 

 

A.5 „Settings‟: Selection of Processing Parameters 

It is used for selecting, for each of the three leads, the processing parameters: EMG noise 

level, MA (motion artifact) level, and segment thresholding. Selection of the processing 

parameters for a specific signal segment helps in denoising optimization without introducing 

signal distortion. „Denoise‟ button is used for denoising with the newly set parameters. 

„EMG (0-1)‟ may be used to control the extent of suppression of EMG noise. It may 

be varied over 0−1, with a default value of 0. The extent of noise suppression increases as the 

value is increased, but too high a value may introduce distortion in the denoised ECG. A low 

value should be used if the segment is not contaminated by EMG noise.  

„MA (0-1)‟ is used to control the suppression of motion artifact. Its default value is 

0.5. The threshold levels for the motion artifact reduction are obtained either from the 

displayed segment or from a motion-artifact-free segment, as controlled by the „Seg-Th‟ 

checkbox. If the box is not checked, the thresholds are estimated from the noisy ECG segment 

itself. The box can be checked for estimating the thresholds from a manually selected noise-

free ECG segment. This method is expected to give better results.  

Checking of the “Seg-Th” box operates as a toggle. Clicking on the unchecked box 

results in a new pop-up window, showing a plot of the input ECG waveform. By panning the 

waveform using „Ctrl + Shift + mouse cursor‟, a segment which does not contain significant 

motion artifact can be selected. The window disappears after the „Ok‟ button (below the graph 

after selecting the segment) is clicked, and the „Seg-Th' box appears as checked. The 

threshold levels for motion artifact reduction are obtained from the selected artifact-free ECG 

segment. Another artifact-free segment for threshold selection can be chosen by un-checking 

„Seg-Th‟ and clicking it again. 
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When the „Denoise‟ button is clicked, the analysis segment is denoised using the 

updated parameters. Clicking the „Cancel‟ button cancels the changes made and the parameter 

values are reverted to the previous setting. 

 

A.6 „Save‟: Saving the Signal 

If the display mode is „original‟, the unprocessed ECG is saved. If the display mode is 

„denoised‟ or „original and denoised‟, the denoised signal is saved. There are four „Save‟ 

modes: save complete ECG, save displayed ECG, append displayed ECG, and save screen. 

When one of the options is clicked, a file select pop-up appears, the directory and file name 

can be given. In „save complete ECG‟ mode, the selected block of ECG (the three leads) are 

saved. In „save displayed ECG‟ mode, only the selected segment is saved. In „append 

displayed ECG‟ mode, the selected segment is appended to the data in an existing file. In 

„save screen‟ mode, an image of the screen is saved as a file in „png‟ format, for later use in a 

document or for printing. 

 

A.7 Print 

It can be used for printing the displayed screen. On clicking the „Print‟ button, a dialog box 

opens for selecting the printer and setting its properties. By selecting a “PDF” printer, the 

displayed screen can be saved to a file  

 

A.8 Strip Chart 

It may be used for a continuous display of the three-lead ECG from the selected input file. 

The display mode and the processing parameters can be changed, but the save option is 

disabled. 

 

A.9 „Background‟: Changing the Background Colour 

It may be used for setting the background colour of the plots. „Dark‟ mode gives a high 

contrast with the waveforms plotted as green (denoised) and yellow (unprocessed) colours on 

black background. „Light‟ mode uses white background with the waveforms plotted as black 

(denoised) and blue (unprocessed) and it is better suited for printing the screen image. 



 

60 

 

 

Fig. A.1 Initial view of ECG Denoiser after startup, showing the control buttons at the top. 

 

Fig. A.2 Settings panel of ECG Denoiser showing „EMG (0-1)‟, „MA (0-1)‟ 

and „Seg-Th‟ fields for each lead. 

 

 

Fig. A.3 Pop-up panel for selecting motion-artifact-free segment used for calculating the 

threshold levels used by motion artifact reduction technique. 
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(a) 

 
(b) 

 
 (c)  

Fig. A.4 Different modes of display of ECG Denoiser: (a) Original ECG, (b) Denoised ECG, and 

(c) Overlapped of original and denoised ECG.
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2.10 Holter Monitor File Format 

The Holter monitor stores the 3-channel ECG data in text files, with extension “.txt”. The 

instrument has an “emergency switch” which can be pressed during signal recording to 

indicate certain events and the status of this switch is recorded along with the signal. In the 

file, the first line records patient ID. Each of the subsequent lines gives a time stamp followed 

by the sample values for successive segment, each of 1 s duration. Each line ends with line 

feed <LF> and carriage return <CR>. The three channels are as the following. Channel-1: 

Lead-I, Channel-2: Lead-II, Channel-3: Lead-V5. Each channel is sampled at 200 Hz, and 

thus there are 600 sample values in each segment. 

The patient ID is recorded in the first line as „Patient Id:‟ (11 characters) followed by 

a four digit number (between 1000 to 9999, giving the patient ID). Each of the subsequent 

lines starts with a time stamp giving the starting time as “hh:mm:ss:” (9 characters) followed 

by a character giving the status of the emergency switch at that time. If the switch is pressed, 

the character is „@‟ else it is „!‟. The following characters (ASCII values in the range 33-255) 

give the sample values for 1 s segment of the signal. The values of the three channels at each 

sampling instant are given as consecutive bytes corresponding to the first, second, and third 

channels. The format is also described in Table A.1. 
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Table A.1 Holter Monitor File Format 

Line 

No. 

Char. 

No. 
Content Remarks 

1 

1 Character „P‟ 

Patient ID 

2 Character „a‟ 

3 Character „t‟ 

4 Character „i‟ 

5 Character „e‟ 

6 Character „n‟ 

7 Character „t‟ 

8 Space 

9 Character „I‟ 

10 Character „d‟ 

11 Character „:‟ 

12 1
st
 digit of 4 digit number 

Any 4 digit number between 

1000 to 9999, giving patient 

ID 

13 2
nd

 digit of 4 digit Number 

14 3
rd

 digit of 4 digit Number 

15 4th digit of 4 digit Number 

16 <CR> 
Separator 

17 <LF> 

1+ n 

 

(n = 

time in 

s) 

1, 2 „hh‟ (two digits for hours of time) 2 characters 

3 Character „:‟  Separator 

4, 5 „mm‟ (two digits for minutes of time) 2 characters 

6 Character „:‟ Separator 

7, 8 „ss‟ (two digits of seconds of time) 2 characters 

9 Character „:‟ Separator 

10 Character „!‟ or „@‟ 
„!‟ if emergency switch off, 

@ if emergency switch on 

11 1
st
 sample of channel-1 

1
st
 sampling instant of n

th
 

second  
12 1

st
 sample of channel-2 

13 1
st
 sample of channel-3 

14 2
nd

 sample of channel-1 
2

nd
 sampling instant of n

th
 

second 
15 2

nd
 sample of channel-2 

16 2
nd

 sample of channel-3 

| | | 

| | | 

608 200
th
 sample of channel-1 

600
th
 sampling instant of n

th
 

second 
609 200

th
 sample of channel-2 

610 200
th
 sample of channel-3 

611 <CR> 
Separator 

612 <LF> 
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