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Abstract

Impedance glottography is a noninvasive method to monitor the degree of contact
between the vibrating vocal folds. Time-varying electrical impedance, measured by
placing a pair of electrodes on either side of the thyroid cartilage, is used for
diagnosing voice disorders, estimation of pitch, and speech training aids. The
objective of the project is to develop (a) a laryngeal impedance simulator for testing
the sensitivity and frequency response of the impedance glottograph instrument, and
(b) an impedance glottograph instrument using novel circuits for improving the

frequency response and noise rejection.

A laryngeal impedance simulator, using a microcontroller, analog switches,
and digital potentiometer is developed and tested. Simulation parameters (frequency,
basal resistance and change in basal resistance) are set through serial port. An
impedance glottograph instrument, consisting of a sinusoidal source, voltage-to-
current converter, voltage sense amplifier, and synchronous demodulator, has been
designed and tested. A voltage, in the frequency range of 50-500 kHz, generated
using a direct digital synthesizer (DDS) is given as input to a voltage-to-current
converter with complementary current outputs, designed using a pair of
transconductance amplifiers to output a low amplitude (< 5 mA) current. This current
Is injected using a pair of electrodes held in contact with the skin on both sides of the
thyroid cartilage. The resulting amplitude modulated voltage is amplified using a
voltage sense amplifier and given to the demodulator. Synchronous demodulation
with current steering and baseline restoration circuit is used to get the demodulated
waveform, representing the impedance variation. Sampling of the demodulator
waveform in synchronism with the peaks of the excitation waveform is used for

improving ripple rejection.
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Chapter 1

INTRODUCTION

1.1 Overview

Organs involved in speech production can be divided in three main groups: lungs,
larynx, and the vocal tract. Lungs are the source of airflow which passes through the
larynx and the vocal tract, finally exiting from the mouth. Larynx has two muscular
membranes stretched horizontally, called vocal folds. The space between the folds is
known as the glottis. Air expelled from lungs through the glottis creates pressure
difference across the vocal folds, causing vibration, resulting in an air flow. This
process is known as phonation. Vocal tract, which acts as a time-varying acoustic
filter, consists of laryngeal cavity, pharynx, ora cavity, and nasal cavity. Sound
waves, generated due to phonation, pass through the voca tract resulting in

articulation or speech production [1], [2].

Laryngeal diseases affect the phonation mechanism causing abnormal speech.
Monitoring of the movement of the vocal folds is important for diagnosing laryngeal
diseases. Location of the vocal folds causes difficulties in analysis of their
functioning, because a direct measurement of their movement is difficult. The
techniques used for monitoring vocal folds can be broadly classified into visual,
acoustic, and indirect methods [4]. Table 1.1 summarizes different methods and

associated techniques.

The visual methods of measuring vocal tract movement, described briefly in
Appendix A, are invasive and uncomfortable. Visual and acoustic methods give
information about separation of the vocal folds but very little information about nature
of the vocal folds contact. Impedance glottography or e ectroglottography, a non-
invasive method, is used to measure the vocal fold contact during voicing without
affecting speech production [3]. It gives information about the contact phase of the
vocal folds[13]. It is based on sensing of electrical impedance. It was first reported by



Table 1.1 Techniques for monitoring vocal folds

Method Techniques

Visual Laryngoscopy [3], [4], videokymography [5], stroboscopic
imaging[6], high speed photography[7], and photoglottography [8]

Acoustic Inverse filtering[9]

Indirect Ultrasonoglottography[10] and electroglottography [11],[12]

Fabre (1957), and other significant contributions have been made by Frokjaer-Jensen
(1968) and Fourcin (1971) [4]. An electrode pair is placed over the skin on each side
of the thyroid cartilage. The impedance between the electrodes increases as contact
between the vibrating vocal folds decreases and impedance decreases as contact
between the vibrating vocal folds increases. This technique alows recording of
contact pattern of vocal folds continuously over time. Thisis alow cost and easy to
use method. However, it does not provide information as the motion of the vocal

cords during the open phase [11], [12].

1.2 Project objective

Development work for electroglottograph has been carried out at 1T Bombay as part
of several student projects [25]-{31]. The objective of the project is to develop (@) a
laryngeal impedance simulator for testing the sensitivity and frequency response of
the impedance glottograph instrument and (b) an impedance glottograph instrument

using novel circuits for improving frequency response and noise rejection.

1.3 Outline of the dissertation

The second chapter gives an overview of the techniques for the evauation of
laryngeal behavior. It also gives a detailed description of the impedance glottography
technique and a review of development work carried out at |IT Bombay. The
hardware design of laryngeal impedance simulator has been reported in the third
chapter. Chapter 4 describes the design and implementation of impedance
glottograph. Summary and conclusion are given in the last Chapter. Supplementary

information is provided in the appendices.



Chapter 2

IMPEDANCE GLOTTOGRAPHY

2.1 Speech production

Vocal tract refers to the portion above the larynx and includes ora cavity, nasal
cavity, tongue, lip and pharynx. Figure 2.1 shows the overview of the vocal tract and
parts that are important in speech production. Speech production comprises of two
mechanical functions namely phonation and articulation. Phonation takes place in the
larynx whereas articulation is carried out in the vocal tract. During normal breathing,
the air passes through the larynx and vocal tract remains unobstructed creating no or
little sound [1], [2]. The source of most speech occurs in the larynx where the vocal
folds partialy or completely obstruct the air flow from the lungs. When the air is
expired, its pressure pushes the vocal folds apart and air flows rapidly. This rapid flow
of air causes Bernoulli effect, causing vocal folds to pull towards each other. This
stops the air flow, building pressure again which again opens the vocal folds, causing
the vocal folds to vibrate. The rate of vibration is called the fundamental frequency or
the pitch. Typica pitch range for male and femal e speakers are 100250 Hz and 200—
450 Hz, respectively.

2.2 Basics of impedance glottogr aphy

The impedance glottography (EGG), electroglottography (EGG), or laryngography is
a noninvasive technique to monitor the glottal activity by measuring the variation in
electrical impedance between two electrodes placed on both sides of the thyroid
cartilage. Electrodes are held in contact with the skin, alowing the speaker to speak
and breathe naturally. The vibration of vocal folds is monitored by measuring the
variation in electrical impedance across the electrodes. The contact pattern of vocal
folds is represented as a time-varying signa known as electroglottogram, or

laryngogram (Ly) [2].

Figure 2.2 shows the sequence of vocal folds vibrations [16]. There are three

phases. opening phase, separation phase, and contact phase. In opening phase, the air
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Figure 2.1: Speech production mechanism [14]

between the vocal folds tissues results in high electrical impedance. During
separation, the air between the folds decreases but the electrical impedance remains
high. During contact phase, the electrical impedance decreases due to contact of the
folds. Hence, the impedance increases when folds are in the opening and separation
phases and decreases during the closing phase, resulting in EGG waveform, which is
inversely related to the vocal folds contact pattern as shown in Figure 2.3 [15].

The impedance glottogram or electroglottogram is generaly obtained during
the utterance of an isolated vowel such as /i/ by the speaker. EGG is a depiction of
vocal fold contact area. It is a waveform whose slope increases during the opening

phase and decreases during the closing phase of the contact area of vocal folds[17].

Parameters estimated from el ectroglottogram are open quotient, close quotient,
speed quotient, pitch period, and fundamental frequency [17]. Figure 2.3 shows
different glottal phases in the EGG waveform. Opening phase starts when slope of the
curve begins to increase (vocal folds opening) and ends at the highest peak (folds
completely open). Contact phase starts when slope of curve begins to decrease (folds
closing) and ends at the lowest point (folds completely closed).
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Figure 2.2: Vocal folds vibration sequence. Opening phase (1-3),
complete separation (4-7), closing phase (8-10) [16].
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Figure 2.3: EGG waveform [4]
Speed quotient (SQ) is defined as the ratio of the duration of the opening
phase Tg to the duration of the contact phase Ty.

SQ=Te/ T (2.1)

Open quotient (OQ) is defined as the ratio of the separation duration Tg to the glottal
period Tp. Separation duration is the time when the folds are separated.

0Q=Te/ To (2.2)

Close quotient (CQ) is defined as the ratio of the duration of the complete closure of
the folds T to the glottal period Tp.

CQ=T¢/Tp (2.3)
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Figure 2.4. (a) EGG signal (b) DEGG [18]

The differential of the EGG, as shown in Figure 2.4, is known as DEGG. The
rate at which vocal folds vibrate is known as the fundamental frequency. It is the
reciprocal of the pitch period which can be measured as the period between two peaks
of DEGG [18].

There are severa application of the EGG waveform in the assessment of vocal
disorders and speech analysis.

(@) Pathology: The EGG signa gives the variation of impedance due to
movement of vocal folds, which depends on the pathological condition of
vocal folds. Analysis of EGG waveform, such as the closing rate and closed
percentage, are particularly useful in assessing the degree of vocal fold

tension, muscle stiffness or weakness [18].

(b) Estimation of fundamental frequency: Fundamental frequency or pitch can be
calculated easily from EGG with high accuracy. The differential of EGG can
be used to calculate pitch value by finding the time period between either zero
crossings or between minimaof differential EGG waveform [18].

(c) Voicing detection: Thresholding of EGG is used to classify voiced and
unvoiced signal. For voiced speech, EGG is periodic and large in amplitude.
For unvoiced signal, EGG is amost zero [19].

Some of the commercially available instruments are

(@) Laryngograph microProcessor, marketed by Laryngograph Limited of UK
[20].

(b) VoceVista, marketed by Vocevista of Netherlands [21].

(c) lingWAVES EGG, marketed by WEVOSY S of Germany [22].
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Figure 2.5: (a) Impedance detection method described by Childers

and Larar [19]
(b) Equivalent circuit

(d) EG 90, marketed by F-J Electronics of Denmark [23].
(e) EG2-PCX2, by Glottal Enterprise, marketed by Tiger DRS, Inc. [24].

2.3 Impedance detection methods

Severa methods have been used to detect the glottal impedance variation. The
impedance detection scheme of Childers and Larar [19] is shown in Figure 2.5 (a). A
pair of electrodes is placed on both sides of the thyroid cartilage. A high frequency
voltage signal is applied using a transformer and the resulting amplitude modulated
voltage is picked up by using another transformer. Equivalent circuit of the scheme s
given in Figure 2.5 (b). The impedance between the electrodes can be modeled as
fixed impedance Zy varying impedance Zy,. Zs is the source impedance and Z, is the

input impedance of the detecting circuit. Thus,

V, =V Z
Z +Zs+Z,+Z,
z
~ Vg Z 1- . (2.4)
Z +Zs+2Z, Z +Zs+2Z,

When the vocal folds vibrate, Z,, changes, resulting in amplitude modulated output.

Resultant modulation index is small as Z, is small as compared to (Z,+ Zs + Z;).
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Figure 2.6: (a) Impedance detection method used in instrument
patented by Rothenberg [39] (b) Equivalent circuit

The impedance detection scheme used by Rothenberg [35] is shown in Figure
2.6 (a). A high frequency voltage signal is applied across the electrodes which are in
parallel with the source and sensing transformers. An equivalent model can be given
as shown in Figure 2.6 (b). The impedance between the electrodes can be modeled as
fixed impedance Z; in series with time-varying impedance Zy, Zsis source impedance
and Z, istheinput impedance of the AM detection amplifier, Thus,

Z, (2, +2,)

*Z+7,.11(2,+2,,)

(0]

~
~

Z v
. L 1429 (2.5)
Z +Zs+2, 212,42, (Z4+2,)!Z, Z

g

When the vocal folds vibrate, Zg, changes resulting in amplitude modulated output.

The impedance detection scheme used by Fourcin [36] is shown in Figure 2.7
(@. A pair of central disc and ring electrode is held over the skin on both sides of
thyroid cartilage. A transformer is used to apply high frequency voltage signal across
the central disc and ring on one side. The output voltage between its central disc and
ring on the other side is sensed. The source side electrode is referred to as the
transmitter and the sensor side electrode is referred to as the receiver. An equivalent

circuit of scheme isgivenin Figure2.7(b). The impedance between the electrodes
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can be modeled as fixed impedance Z; in series with time-varying impedance Zg,. Zs
IS source impedance, Z; is input impedance of the detecting circuit and Zc1, Zg1, Zco
and Zgr, are the contact impedances of the electrodes CE1, RE1, CE2 and RE2
respectively. Zcr, is the impedance across the skin between CE1 and RE1, and Zcgy, iS
the impedance across the skin between CE2 and RE2. The circuit can be simplified to
the circuit of Figure 2.8 (c), Thus,

VARV Z,+Z, | Z
ZS+ZC1+ZR1+Zg+ng 2 +Z.,+ 2y,

— ZCRl
s = S
ZS + ZCRl

Zs‘ = ZCRl " Zs

ZL' = ZCRZ I ZL
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This resultsin output voltage,
: ' z '
V, 2V, — Z | g 147, Z‘S+Z(31+ZRl
2\ +Zey+ 2y || Zs+Zei+ Zea + 2, N 2y (Zs+Zes + 2o+ Z,)

(2.6)
Thus, when vocal folds vibrate, Zy, varies and the output gets amplitude modulated.

The impedance detection scheme used in our project is as shown in Figure 2.8
(a@). A pair of electrodes is placed in contact with the skin on both sides of the thyroid
cartilage. A high frequency voltage signa is converted in to current and is injected.
The equivalent circuit of the scheme is shown in Figure 2.8 (b). The impedance
between the electrodes can be modeled as fixed impedance, Z; in series with time-
varying impedance Zg,, Zs is source impedance. When the vocal folds vibrate, Zg,
varies and the output gets amplitude modulated. The modulation of the output voltage
isdirectly related to the glottal impedance variation.

Vo =15 Zs11(Z,+ 2 )12, ] 2.7)

~(Z 11z, | zg)[1+ ;ﬂ} s (2.8)

9

10



assuming Zgv << Zg and Zg << ZS || ZL. This method gives an output voltage
proportiona to the time-varying impedance and with arelatively high sensitivity.

2.4 Instrument development

Development work for an impedance glottograph has been carried out at [1T Bombay
as part of student project [25]—30]. Chitnis [26] in 1998 developed a glottal impedance
sensor that could detect less than © impedance variation usin g ~3 MA sinusoidal
excitation of 300 kHz. He also developed data acquisition and LCD graphics display unit.
Patil [27] in 2000 modified the hardware and the instrument developed could sense the
variation using ~1 mA excitation. He used PC sound card for acquisition, anayss, and
display of the glottal waveform. The impedance sensor used Wien-bridge oscillator with
FET based amplitude stabilization circuit. To demodulate the waveform, a detector
circuit with a precision full-wave rectifier and a band pass filter were used. A high
impedance indicator using comparator verified proper contact at the skin-eectrode
interface. To test sengitivity and frequency response of the hardware, a glottal impedance
smulator was developed, using an astablemultivibrator and analog switches to generate
periodic step variation in the impedance. Luthra [28] in 2004 developed hardware with
increased bandwidth up to 5 kHz, to acquire eectroglottogram waveform effectively and
sengtivity of instrument increased keeping noise level low. He used the instrumentation
amplifier to remove common mode pick-up. Sarvaiya [29] in 2006 developed andog
switches based laryngeal impedance smulator and a glottogram for improving the noise
performance. The waveform generator IC MAX038 was used in place of Wien-bridge
oscillator to improve amplitude stability. An operational amplifier based voltage-to-current
convertor with a high frequency transformer (PT6E) was used to avoid stray current and
externa pick-up. A second order Butterworth high pass filter followed by fourth order
Butterworth low passfilter realized using IC MAX 274 was used to get a bandwidth of 75
Hz—4 kHz [41], [42].

Mandloi [30] in 2011 used a direct digital synthesizer (DDS) to get sinusoidal
waveform with high amplitude stability and selectable frequency. Trans-conductance
operational amplifier OPA 861 was used for the voltage-to-current conversion with
balanced complimentary outputs. The quad SPDT ADG734 along with OPA 861 was
used to implement the synchronous demodulator using current steering to achieve

11



high sensitivity and better noise performance. Another DDS chip was used to generate
synchronized square wave with settable delay to serve as the reference input for
controlling the switches for synchronous demodulation. For serial data transmission
and for isolation between the instrument and a PC or a computing device used for
control and signal acquisition, a4-channelisolator 1C 1ISO7241A was used.

Several aspects of the earlier design have to be examined to develop an
enhanced instrument. The voltage-to-current converter circuit needs to be thoroughly
examined. Sensitivity and linearity of demodulator need to be evaluated. After testing
of the circuit blocks individually, complete assembled circuit along with software
needs to be tested and calibrated. This requires the use of a glottal impedance

simulator.

12



Chapter 3

BIOIMPEDANCE SIMULATOR

3.1 Overview

A bioimpedance simulator can be used for testing sensitivity, linearity, and dynamic
response of a bioimpedance measuring instrument. It can aso be used for studying the
effect of common mode interference on the measurement. In our application, the
bioimpedance can be modeled as a time-varying resistance. For finding the dynamic
response of the instrument, variation in the simulated bioimpedance can be in the
form of a sinusoidal, triangular, or a square wave. As generating a step change in
resistance is smpler and the square wave response can be used for obtaining the
transient and frequency response [33], a square wave variation in the resistance with a
selectable frequency is used.

A simulator developed earlier [27] used astable multivibrator with a
potentiometer to control the frequency and analog switches to change the resistance.
Sarvaiya [29] used a microcontroller for generating the square wave and controlling
the analog switches. LCD and two keys interfaced to the microcontroller were used
for setting the simulation parameters. This design reduced the wiring related pickups
and improved the operational flexibility. Mandloi [30] redesigned the simulator by
using adigital potentiometer along with fixed R network for simulating the resistance
variation. The frequency, base resistance, and the change in resistance were set using
four keys and LCD interfaced to the microcontroller. The circuit provided four
different basal resistances in the range of 3040 Q and a frequency range of 75-500
Hz.

A bioimpedance simulator using a microcontroller, analog switches, and a
digital potentiometer has been developed and prototyped. It provides a digital control
of basal resistance and a precise control of the change in basal resistance. An increase
in the number of basal resistances in the range 10-160 Q2 makes the simulator usable
for testing different bioimpedance measuring instruments. The simulation parameters
are set through an isolated serial interface. The circuit is powered by a battery which

13
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Figure 3.1: A model of the impedance simulator.

can be charged using a USB connector. It can also be powered directly through the
USB connector. The circuit is designed in association with Desai [34].

3.2 Bioimpedance model

The time-varying bioimpedance, with 2-electrode measurement setup can be modeled
by aresistive network as shown in Figure 3.1 [37]. The terminals E1 and E2 represent
the electrode contact points. Resistance R, is the fixed resistance and R, represents
resistance variation due to physiological effects or internal artifacts. Resistances Re;
and Re; represent the electrode-tissue contact impedances. The common mode
interference due to internal bioelectric sources or external pickup is represented by V,
in series with resistance R,, connected between the reference point Aref and the
ground of the impedance sensing instrument. The resistance R, represents the
impedance of the common-mode pickup path. The equivalent resistance across E1 and
E2 isgiven by,
Re=RolIR 3D
For being useful, a bioimpedance simulator should have the base resistance
and the variation in the resistance settable over a large range. We need the basa
resistance in the 10-160 Q range and the square wave variation in the resistance with
a settable frequency of 0.1-1000 Hz. Both operations can be achieved by using a
digital potentiometer. As digital potentiometers currently available have a wiper
resistance of about 50Q, they cannot be used for setting the base resistance. We can
use a resister network and analog switches for selecting the value of the base

resistance, by using switches having on resistance much lower than 0.5 Q. A series
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Figure 3.2: Schematic of bioimpedance simulator circuit.

connection of resistors, each paralleled by an analog switch provides maximum
flexibility in selecting the values. A resistor network with four analog switches is
used, because four analog switches are generally available in one IC. The digital
potentiometer used should have a value much larger than its wiper resistance and it
can be connected in parallel with base resistance to realize small changes.

The schematic of a bioimpedance simulator for the impedance model of Figure
3.1 is shown in Figure 3.2. The basal resistance is realized using a resistive network
and analog switches. The switches S,—S, are operated in different combinations for
selecting different basal resistance values. Variation in the resistance is achieved by
the digital potentiometer, Rdp. The equivalent resistance across the terminas E1 and
E2 isgiven by,

Re1e2 = R [l (Ra+ Ro) [ Rep (3.2)

where, Ry 1S the resistance obtained by control of the combination of resistors Ry, Ry,
Rs, R4 through the analog switches. An interna reference of 1.65 V is used as Arg.
The signal across the digital potentiometer iswith respect to A .

3.3 Block diagram of the simulator

A block diagram of the impedance simulator is shown in Figure 3.3. It consists of an
analog switch and R-network in paralel with adigital potentiometer, controlled by a

microcontroller for setting the base resistance and variation in resistance.
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Figure 3.3: Block diagram of bioimpedance simulator.

The simulated resistance is obtained across terminas E; and E,. Square wave of
the desired frequency is generated using the on-chip programmable counter/timer of
the microcontroller. The settings are controlled by the seria port, using PC or some
other external controller for user interface. Isolated RS232 driver is used for providing

isolation between simulator and the user interface.

3.4 Hardwar e blocks

The smulator is realized using a digital potentiometer and analog switches and
resistors, all controlled by a microcontroller. Different basal resistances can be
selected by the analog switches. The resistance of the digital potentiometer is varied
as a sguare wave by sending the digital control word to its seria register. The values
of the basal resistance, variation in the resistance, and the frequency are set through
the isolated serial port, to avoid any common mode interference due to user

interfacing.
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Figure 3.4: Circuit of the resistance variation part of the simulator
using the digital potentiometer and analog switches.

3.4.1 Resistance variation circuit

The resistance variation circuit is realized using the digital potentiometer AD8400
(Analog Devices) [38], used here as U1, and quad analog switch ADG811 (Analog
Devices), used here as U2 as shown in Figure 3.4. The digital potentiometer has a
resistance of 1 K2 which can be varied in 256steps from 0 Q to 1 kQ Each step

change of digital potentiometer changes its resistance by 4Q. The wiper resistance of

ADB8400 is approximately 50 Q. The change in resistance of digital potentiometer in
parallel with the basal resistance is used to get overal resistance change of = 0.1 Q.
The digital potentiometer operates at 3.3 V supply voltage with maximum supply
current of 1 mA.

The on-resistance of quad analog switch U2 is less than 0.5 Q. It operates at
supply voltage of 3.3 V with maximum supply current of 0.5 mA. Resistors R—Rg
along with different combinations of switches can be used to get 16 nominal
resistance values over 0-180 Q as given in Table 3.1. The circuit formed by the
switches and resistors is and connected in paralel with the variable digital

potentiometer resistance Rap. The resistance across E; and E; is given by,

Re1e2 = Rop 1 (Riz+ Ria) | Rew (3.3)
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Table 3.1: Resistance values (nominal) for different switch combinations

Switch control Resistance
S1 S2 S3 5S4 Ro (€2)
0 0 0 0 0
1 0 0 0 10
0 1 0 0 20
1 1 0 0 30
0 0 1 0 50
1 0 1 0 60
0 1 1 0 70
1 1 1 0 80
0 0 0 1 100
1 0 0 1 110
0 1 0 1 120
1 1 0 1 130
0 0 1 1 150
1 0 1 1 160
0 1 1 1 170
1 1 1 1 180

where Ryyis given as Ry, = SRy + SRs + SRy + SiRyo thevalue of S, S, Ssand S is
0 if the corresponding switch is closed and 1 if it is open. The resistance of the digital
potentiometer is set by digital control word transmitted to its seria register from the
microcontroller via SPI interface.

With S; and S; closed and S, and S; open, we get, Ry, = 60 Q. For Rdap = 312
Q the resistance across electrodes E1 and E2 is Reier = 50 Q. 312 Q. With Rap
changed to 304 Q, we get Reiex = 49.9 Q, i.e., AR = 0.1 Q. Periodic change in the
resistance is achieved by programming the digital potentiometer periodically at the set
frequency.
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Figure 3.5: Microcontroller and serial line driver interconnection.

3.4.2 Microcontroller and isolated serial interface

The microcontroller PIC24FJ64GB004 (Microchip) [8] is used here as U3. It has 4
programmabl e counters/timers, 2 SPI modules, 2 UART modules and an in-built USB
module. The maximum operating clock frequency of the microcontroller is 32 MHz.
Internal RC oscillator with PLL is used for generating clock, eliminating the use of
external clock or crystal. The microcontroller operates at 3.3 V supply voltage, with
maximum supply current of 16 mA. The digital potentiometer is controlled using SPI
module, the analog switches are controlled via general purpose 1/0 pins, and RS-232
line driver is connected via UART 0 module.

The parameters of the bioimpedance smulator are set through the serid interface
between microcontroller and a PC or an externa device. Serid interface is established
using an isolated single channel RS-232 line driver ADM3251E (Anaog Devices) used as
U4. It operates at 3.3 V supply voltage on the primary side (microcontroller side) with
maximum supply current of 5 mA and 5 V on the secondary side (PC side) with
maximum supply current of 12 mA. It is powered by a USB connector on the
secondary side. Alternatively, it can be operated with a single supply, connected at the
primary side. Its internal isolated dc-dc converter can be enabled by not connecting
the external 5V supply (V_ISO). This method is not used as large current (140 mA) is

19



R4 1k

MN
U MCP73833 .__L
¢ PROG vss 2 GND V_UsB
7 4 RS 1k LED1
J3 PG STAT2
G | Rt 10k g 3 R6 1k % LED2
2 NN THERM STAT1 AN @
. 9 2 V_USB %
VBAT VDD
10 1
BATTERY R2 VBAT VDD o 1 J4  USB CON.
CONNECTOR 0 V_USB —
62 K, 1% 01y [E==]
R3 | ,
SWL YW ml GND oD
SPDT| v ysg 100k, 1% GND
g \L;IYN TC1017 VDD
[ VOUT| 5 X ) T
SION e 4 | o |
[ 4 R15
c3 1+ _|c2 2{GND - 00T 01uT 10k
f\_ T f— Aref
10u 0.1n 0.01 ci9 ]~ cxo nll
R16
o o g
' ' 1
GND

Figure 3.6: Power supply circuit with battery charge management controller
MCP73833.

drawn from the primary side. Simulation parameters are set using a cable with stereo

jack connector J2 on the microcontroller sde and DB9 connector on the PC side.

3.4.3 Power Supply

All the components used in the circuit can operate at supply voltage of 3.3 V. A single
linear regulator with required current rating and low dropout voltage is used for
powering al the components. The maximum current drawn by the circuit, estimated
as the sum of the currents of individual components (digital potentiometer U1: 1 mA,
quad analog switch U2: 0.5 mA, microcontroller U3: 16 mA, primary side of the
isolated seria driver U4: 5 mA), is 22.5 mA. A low dropout regulator chip TC1017—
3.3VLT isused as U7 as shown in Figure 3.6. It can deliver up to 150 mA of current
with quiescent current of 90 PA. It has operating input range of 3.58-5.63 V at
maximum load current of 150 mA. For load current of 22.5 mA, the input voltage

rangeis 3.58-6.4 V with maximum power consumption of 61 mW.

20



A Li-lon battery with output voltage of 4.2 V when fully charged is used for
powering the regulator. Charge capacity of a typical Li-lon battery is about 1200
mAnh. The charger circuit, as shown in Figure 3.6, consists of a stand-alone linear Li-
lon charge management controller MCP73833 (Microchip) used as U6. It can operate
with supply voltage of 4.5-6 V with quiescent current of 3 mA. Temperature sensing
of U6 is disabled and a 10 kQ register is connected to THERM as recommended in
the datasheet. LED1is used to indicate battery charging and LED2 for indicates
whether the battery is fully charged. The board is powered through a USB connector.
A double throw switch SW1is used to power the regulator by battery or directly by the
USB connector.

Common mode interference rejection of the external circuit can be tested by
injecting interference at common mode input point. An interna reference point at 1.65

V with respect to GND is provided to simulate common mode input point.

3.5 Software

The digital potentiometer U1 is controlled by the microcontroller via SPI interface
and the quad analog switch U2 is directly connected to the 1/O port of the
microcontroller. The microcontroller also communicates with the PC for setting the
simulation parameters via UART 0. The program involves simulating the change in
basal resistance at a given frequency based on the set values of R and AR. The
algorithm is described as below.
Main Program

1. Configure seria port.

2. Set timerl configure bits.

3. Set the default values of digital potentiometer and analog switch.

4. Load timer registers with the counts according to the set default frequency.

5. Update the simulation parameters when the seria interrupt occurs.
Interrupt Service Routine
If the interrupt is due to timer, do the following.

1. Reload the timer registers.

2. Update digital potentiometer register by the specified value from the look-up

table.
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3. Invert the SYNC pin to generate square wave.
4. Return.
If the interrupt is due to seria byte reception, do the following.
1. Decode the received byte and set the different parameters.
2. Update the analog switch controls.
3. Return.

3.6 Assembly and testing

The component list is provided in Appendix A. The complete schematic of the
bioimpedance ssimulator is given in Appendix B. A double sided PCB with PTH was
designed for the impedance simulator. Size of the PCB is 73 mm x 61 mm.
Components are popul ated on one single side of the PCB. Supply planeis provided on
the top layer and ground plane on the bottom layer to reduce the external noise. Care
is taken to minimize the length of the supply track for ICs. Supply for each IC is
decoupled by 0.1uF capacitors placed as close as possible to the ICs. Most of the
components including resistors and capacitors are in SMD packaging. The component

placement with track layout is given in Appendix C.

3.7 Test results

The resistance values were measured using a multimeter (HP34401A) across
terminals E1 and E2 as shown in Figure 3.2. For different combination of switch
positions and digital potentiometer values, basal resistances (R) along with change in
resistance (AR) obtained are tabulated in Table 3.2. Ry and Ry are the digital
potentiometer values used to get the basal resistance and change in resistance at the
set frequency. The measured values show a good match with the nominal values.

22



Table 3.2 Basal resistance R (Q2) and change in resistance AR (Q)

ResistanceacrossEl1 —-E2

itch stat Digital pot. value .

Switch status g P Nominal M easured
S1 2 S3 4 Rip1 (Q) Rz (Q) R(Q) AR(Q) R(Q) AR(Q)
0 1 1 0 160 36 10.00 0.50 9.99 0.49
0 1 0 0 38 64 20.00 0.50 19.98 0.50
1 1 0 0 920 600 30.00 0.50 29.95 0.52
1 1 1 0 312 272 50.00 0.50 50.00 0.55
1 0 O 1 608 540 60.00 0.50 60.07 0.52
0 1 0 1 600 552 70.00 0.50 70.03 0.52
1 1 0 1 212 52 80.00 0.50 80.01 0.55
0 1 1 1 484 464 100.00 0.50 100.02 0.53
0 1 0 1 644 604 120.00 0.50 120.01 0.52
1 0o 1 1 844 824 160.00 0.50 159.88 0.53
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Chapter 4

IMPEDANCE GLOTTOGRAPH

4.1 Introduction

A block diagram of impedance glottograph, to monitor the degree of contact
between the vibrating voca folds, is shown in Figure 4.1. It consists of sinusoidal
source, voltage-to-current converter, voltage sense amplifier and demodulator.
Impedance is sensed by generating an excitation signal in the frequency range of 50—
500 kHz. This signal is provided to a voltage-to-current converter to output a low
amplitude (< 5 mA) current, which is injected using a pair of electrodes held in
contact with the skin on both sides of the thyroid cartilage. The resulting amplitude
modulated signal is amplified using a voltage sense amplifier and given to the
demodulator. The output waveform of the demodulator represents the impedance
variation, and is known as the impedance glottogram or electroglottogram or
laryngogram.

Excitation signal is generated using Direct Digital Synthesizer (DDS) which
provides digital control of the frequency and high amplitude stability. The
complementary outputs of the DDS are given to a differential amplifier. The output of
the amplifier is fed to a voltage-to—current converter for constant current output, and
to the demodulator for baseline restoration. Two outputs with amplitude controls are
achieved using two digital potentiometers.

The current output from the voltage-to-current converter isinjected on the skin on
both sides of the thyroid cartilage through electrodes |1 and 12. The impedance across
the electrodes is primarily resistive for the excitation frequency in the range of 100
kHz to 1 MHz. The impedance is typicaly in the range of 100 to 500 €, and the
time-varying component is much less than 1 Q [19]. The amplitude modulated signal
due the change in degree of contact between the vibrating vocal folds is sensed by an
instrumentation amplifier. As the time-varying component of the impedance is low
(<<1 Q), a demodulator with very high noise rgjection, high sensitivity, and low

carrier rippleis needed. Further to preserve the waveshape of the sensed signal,
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Figure 4.1: Block diagram of the impedance glottograph device
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a demodulator circuit with low phase distortion is needed. It is designed to achieve
synchronous demodulation for extracting the impedance variation z(t) from the
amplitude modulated output of the instrumentation amplifier. There is a provision to
connect three external analog inputs for flexibility in the application of the instrument.
These inputs aong with z(t) are sampled by in-built ADC of the microcontroller. User
settings are controlled by a PC or some other external device which is connected to

the microcontroller through an isolated RS232 driver.

4.2 Excitation source

The excitation source consists of a waveform generator, amplitude control circuit and
voltage-to-current converter. Frequency and phase of the waveform regenerators
along with the amplitude of the current output of the voltage-to-current converter are

controlled by the microcontroller.

4.2.1 Waveform generator

A sinusoidal source with high amplitude stability is required, as any instability in the
waveform generator would contribute to the noise in the output, resulting in a
corrupted glottogram signal. A sinusoidal source with amplitude instability of lower
than 0.1% is preferred. Hence a direct digital synthesizer with precise control over
frequency and phase is used as a stable waveform generator. The DDS AD9834
(Analog Devices) [39] is used as U2 and U3. It can produce accurate sinusoidal,
triangular and square waveforms using samples stored in its on-chip memory. The
frequency and the phase of the output are controlled by sending the required count
words to its 24 bit frequency and 12 bit phase registers respectively. The output
frequency and phase are given by,

four = fmcik Nereores / 2 (4.1)

Oout = 21 Npuaseres / 22 (4.2)

where, Npgporee @nd Npyaseree are the counts loaded in the frequency and the phase

registers of the DDS and f,,. isthe master clock frequency given to the DDS. The

DDS can generate output waveform with maximum frequency of f,,., /2. The chip

canbe reset either by software or hardware. Softwarereset is achieved by setting

26



A3V3

D3V3
C210.1y C24 014
R o
UL dsPIC33E . 22,01 | AVSS DUSs
i | v Apssu
C
033 AVDD |19 l |61 7y | Havon  pvoop A3
RL = | . 4 C27 0y
ngo w1l [ U{oeser REFOUT 122C26 P
|, .0 REIS ;g g FSYNC SLEEP[™—  AVSS
o RF5 SDATA 1OV
pvss 10K Rr 3L sk FADI TTRIAN,
D3V3 MCLK IOUT C18,,0.1y l
C52 9 20 AVSS
2 o b U2_Vo1
— VoD DVSS 1g|PSEL ;l * UV02
01 SBO -
DvssY+H
VSS VSS AVSS 0SS AVSS | cag| Spyzcan| Sy
7 18 “g p—
9 25 JZO 1l 1 33 180 33n| <180
T DVSS AVSS
DVSS  AVSS ASV3 1 I
Sllii_ll_“ D3v3 AVSS  Avss
€39 0.1y
pavg 4 SCSSIH DVSS AVSS H
" C35,,0.1y
VDD out 18 = | B AD834 | DVSS
c33 s | e : A3V3
0.4y GND \*H | L=HAVDD  pvDD
T L Sleap 30l
DVSS D3v3 covP 2 C400.1
DVSS T Mgeser ReFout—— =+,
12 -
i;’ FSYNC  SLEEP e AVSS
SDATA 1
16 ek FSRDIf ] Rie, 68K
8 — VWV
g|VeLk 1OUTE ] cos 0.1 AVSS
[ FSEL ot "
PSEL
DVSS 1p SBO
DVSS AVSS c371f3an avss
7 18 R20 180
DVSS AVSS
C38'133n Avss

UL

U3_REFOUT
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appropriate bit in the control register and hardware reset is achieved by setting the
RESET pin from high to low. The device can be controlled by SPI interface with
maximum clock frequency of 40 MHz. This synthesizer has two complementary
unipolar current outputs. The amplitude of the current can be controlled by connecting
an external resistor from FSADJ pin to the ground and the current is given by,

o =18V, / Ry (4.3
where, Ry IS the resistance connected between pin FSADJ and ground, Vet 1S the
internally generated constant reference voltage, equal to 1.2 V and is provided on pin
2 of the DDS. The voltage generated across the resistor Rg should not exceed 0.8 V.

In our design, two DDS chips U2 and U3 are used. Both are clocked by a
single crystal oscillator SG531H used as U4, with output clock frequency of 40 MHz.
U2 and U3 are connected to the microcontroller U1l dsPIC33EP256M U806 via SPI
interface. Both the DDS chips have their SDATA and SCLK pins connected in
common to the microcontroller. Their FSYNC pins are connected separately to the
microcontroller and used as chip select for transferring the data. A resistance of 6.8
kQ is connected to FSADJ pin to provide an output current of 3.17 mA. Resistors are
connected between the two output pins and the ground to convert the current output to
voltage, as shown in Figure 4.2. The voltage across these resistors should not exceed
the compliance limit of 0.8 V. Two resistors of 220 Q are used to convert current to
voltage, resulting in peak-to-peak output of 0.7 V. The maximum current drawn by
each DDS is 8 mA. The output of the first DDS (U2) is connected to the differential
amplifier and output of the U3 is used for synchronous demodulation which is
discussed later. They are operated in the frequency range of 100-500 kHz. Two DDS
are synchronized by simultaneously setting the control bit in the control resistor. The
FSYNC pinisused as chip select pin for selecting the individual DDS chips.

4.2.2 Amplitude control circuit

The input voltage levels at the voltage-to-current converter and the baseline correction
circuit need to be independently set. The complementary outputs of the DDS (U2) are
given to the differential amplifier. The output of the differential amplifier isfed to two

digitally controlled potentiometers to obtain two independent output voltages which
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Figure 4.3: Amplitude control circuit using digital potentiometers.

are provided as input to the voltage-to-current converter and the baseline correction
circuit. The amplitude control circuit is shown in Figure 4.3.

The digital potentiometer AD8400 (Analog Devices) [40] is used as U5 and
UG6. It has a resistance of 10 K2 which ca n be varied in 256 steps from 0-10 kQ. The
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wiper resistance of the digital potentiometer is approximately 50Q. Each step change
of digital potentiometer changes its resistance by @0 It operates at 3.3 V with
maximum supply current of 1 mA.

The complementary outputs of the DDS, used as U2 VO1 and U2 VO2, are
given to the differential amplifier U7. The differential amplifier circuit is built using
the operational amplifier MCP6021 (Microchip) [41] used as U7. It can be operated
with supply voltage in the range of 2.5-5.5 V and has rail-to-rail output voltage
swing. The gain bandwidth product of MCP6021 is 10 MHz and it can source or sink
current up to 30 mA. U7 is powered from a single supply of 5V and has a maximum
supply current of 2 mA. An anaog reference of 1.6 V used as A1V6, is used to bias
the input signal so as to get the full swing within the supply range. The gain of the
differential amplifier is 1. The output of the differential amplifier is fed to the two
digital potentiometers U5 and U6. Both the potentiometers are controlled by the
microcontroller via SPI interface. Thus two independent output voltages at pin 7 of

digital potentiometer U5 and U6 with digitally controlled levels are achieved.
4.3 Voltage-to-current converter

Voltage-to-current converter (V/1) is used to convert the voltage signal in to a constant
current signal. V/I converter should have high output impedance to drive the electrode
for injecting a constant current in the laryngeal region. A low amplitude (< 5 mA)
sinusoidal current isinjected using a pair of electrodes held in contact with the skin on
both sides of the thyroid cartilage.

The smplest realization of V/I converter is an operationa amplifier based
inverting amplifier [42] with the load connected in the feedback as shown in Figure
4.4. Theresistor Ry is used to prevent op amp from entering saturation in case of poor
tissue-electrode contact. The capacitors C, and C, are used to avoid DC current
passing through the electrodes. The circuit is unbalanced as one of the electrodes is
connected to the virtual ground, and this may lead to possible arise in stray current
and common mode pick-up. Sarvaiya[29] used pulse transformer as a high frequency
isolation transformer to get an isolated current source, as shown in Figure 4.5, to

avoid the effect of stray current and common mode pick-up. Patil [27] designed a
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Figure 4.5: V/I converter based on high frequency pulse transformer as

used in [29].
transformerless current source using modified Howland circuit, as shown in Figure
4.6. Its advantage is that the output impedance can be made very high by matching the
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resistance ratios R/R, = RJ/Ry. Instability in the circuit due to stray currents is

avoided because one end of the load is connected to ground.

Mandloi [30] used balanced complementary current output design based
voltage-to-current converter. The circuit was implemented using trans-conductance
amplifiers. The same circuit is used in the present design, because the balanced
complementary current output eliminates the need of a transformer. Trans-
conductance amplifier OPA 861 (Texas Instruments) [43] is used. It can be operated
with single supply of +5V or at dual supply of + 5 V. It has a bandwidth 80 MHz,
slew rate of 900 V/us, and trans-conductance of 95 mA/V. The output current | of the

circuit shown in Figure 4.7 is given by,
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Figure 4.8: V/I converter using trans-conductance amplifier.
| =V, /(Re+(1/9,)) (4.6)

where gnis trans-conductance and Re is the emitter resistance. The trans-conductance
is constant over a wide range of collector currents resulting in higher linearity. The
quiescent current is set by connecting the resistor R from pin number 1 to VSS.

Balanced complementary current outputs are achieved by connecting two OPA
861 used as U8 and U9 as shown in Figure 4.8. The voltage waveform is given at the
base of U9, while the base of U8 is connected to analog reference A1V6. The
quiescent current is set with resistor 220 Q connected from pin number 1 to VSS of
U8 and U9. The output current is given by

Iout = (\/m _Varef )/ (RSA + (1/ gm)) (47)

(4.8)

|out :_Iout

The complementary current isinjected into the larynx through a pair of electrodes. U8

sources the current and the same current is sunk by U9 resulting in balanced
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Figure 4.9 Voltage sensing amplifier using IN155.
complementary currents. The magnitude of the current is set by resistor Rs4 as given
by the Equation 4.8. Capacitors C79 and C80 are used to block DC current from
passing through the electrodes. Resistances R51 and R52 are used for connecting the
circuit reference to reduce common mode pickup. Resistors R50 and R56 are used to

reduce the effect of any unbalance between the two currents.

4.4 Voltage sense amplifier

The signals obtained from the electrodes are prone to common mode noise.
Instrumentation amplifier based circuit can be used to remove such common mode
noise pick up. Hence an instrumentation amplifier circuit is used to sense the
difference between the voltages developed across the two electrodes placed on either
side of the larynx. The instrumentation amplifier INA155 (Texas Instruments) is used
as U10. It can be operated with 2.7-5.5 V supply with a current drain of 2 mA. It has
a gain bandwidth product of 5.5 MHz, slew rate of 6.5 V/us and rail-to-rail output
swing. The CMRR of INA155 istypically 100 dB. Its gain can be set as 10-50 as,

400 kQ
G=10+4| —————
+(10 kQ+ F?GJ (49

where, Rg is the resistance connected between pin number 1 and 8 of INA155. In the
present design, U10 is operated with 5 V supply and an analog reference A1V6 is
connected to pin number 5. The resistor and capacitor network (C45-R64, C53-R60)
as shown in Figure 4.9 forms a high-pass filter with cut-off frequency of 16 kHz,

given as,



c_ 1
27RC (4.10)

where R60=R64=R and C53=C54=C. With R =100 kQ and C = 100 pF, we get f = 16
kHz. This helps in reecting pick-ups without affecting the sensed voltage. This

filtered output is given as an input to the instrumentation amplifier. With R61 = 10 k
kQ and R62 = 0 to 5 kQ, R = 10-15 kQ. A gain of 10 is achieved by not connecting
the resistor R62.

4.5 Demodulator

The amplitude modulated signal, due to variation in the laryngea impedance needs to
be demodulated to get the EGG signal. Highly accurate demodulator is necessary as
the modulation index of the waveform is in the range of 0.2—2%. Luthra [28] used a
full-wave rectifier using operational amplifier. Sarvaiya[29] used a precision rectifier
using voltage clamp amplifier IC AD 8037 for demodulation. Patil used a dlicing
amplifier based demodulator in impedance cardiography circuit [27]. The signal was
sliced up to the level of modulation depth and then amplified, for increasing the
sensitivity of the demodulator, but it resulted in an increase in carrier ripple. Sampling
near the peaks was used in place of a low-pass filter to reduce the carrier ripple,
because low-pass filtering introduces phase distortion. Thus circuit achieved high
sensitivity and low carrier ripple. However, any noise near the sampling instants
contributes to the noise in the output voltage.

Mandloi [30] used synchronous demodulation scheme using current steering.
In this design a full-wave rectified signal results at the current summing node as
shown in Figure 4.10. Analog switches are controlled by using a square wave
synchronous with the sinusoidal carrier. Input components which are synchronous and
in phase with the square wave contribute to the output. The load on each voltage
source remains constant as current is delivered to the current summing node or to A,
hence avoiding any discontinuity in the current flow. An ADC is used to sample the
output Vo, in synchronism with the clock to reject any carrier ripple present in the
signal.

Various artifacts due to body movement and analog components in the circuit
cause drift in the modulated signal. Therefore, before A/D conversion, drift
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Figure 4.10: Schematic for the synchronous demodulation scheme using

current steering.

cancellation using baseline restoration technique has to be carried out to utilize the
complete dynamic range of ADC. Demodulated output is used to control the
amplitude of the baseline restoration signal Vi, and thus to keep the demodulated
output within the specified range.

The waveform generated by the DDS1 passes through various blocks before
reaching the demodul ator, whereas the clock to demodulator is directly from DDS2,
resulting in a phase delay between the two. Therefore a phase correction needs to be
done by sending appropriate phase word to both the DDSs. The flow chart
representing the phase correction logic is shown in Figure 4.11.The phase of the
sinusoidal excitation is varied in the range of 0° to 360° with step increment of 5°. At
each step increment, ten samples of demodulated output are taken every 100 cycles,
averaged and stored in an array. The angle corresponding to the maximum value of
the array is taken as the optimum value for the phase correction between demodulator
and sinusoidal excitation.

The complementary pair of currents in the demodulator circuit is realized
using two trans-conductance amplifiers. A total of four OPA861 are used for reaizing
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Figure4.11: Flow chart for phase correction logic.
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Figure 4.12: Circuit of synchronous demodulation and baseline restoration.

rectification (U11, U12) and baseline restoration (U13, U14) logic, as shown in Figure
4.12. The quad SPDT chip ADG734 (Analog Devices) used as U15, has four
independently selectable switches, operates in the supply range of 1.8-5.5 V with rail-
to-rail input swing [44]. It has a maximum operating frequency of 160 MHz and has a
switching time of 19 ns. All the four SPDT switches are driven by a single clock
signal from DDS2. The switches steer the two current outputs in synchronization with
the DDS2 clock. The current outputs U15 |,; and U15 |, from the demodulator and
baseline correction circuits are fed to the current summer designed using OPA861,
used as U16 as shown in Figure 4.13. The output of the current summer is fed to a
second order active low pass filter formed by op amp MCP6012, used as U17. The
transfer function of thefilter is given by,
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Figure 4.13: Circuit of current summer and low pass filter.

Vowszo_vo)(S) —Ra
[2122(S) 1+ SC5(Ra1+ Ruas) + S°C7C5Ra1Ras

(4.11)

For a second order current-to-voltage Butterworth low-pass filter with cut-off

frequency wc, we have,

Vo(S) _ R 4.12
ILlZZ(S) 1+ \/E(S/a)c) + (S/COC)Z ( )

Thus, we need to have

Rs1+ R4 |Cs \/E

VR41R4s N Cra (4.13)
Oc = 1 (4.14)
v R41R46C74C 75

To meet the condition in (4.13), we have selected Rys = Ry1 and Cz4 = 2Cys. Thus we
get the cut-off frequency wcand trans-resistance R; as the following

1
- \/E R41Cs

R =-Ry (4.16)
With R41 = 10 kQ and C75 = 3.3 nF, we get a cut-off frequency of 3.5 kHz and trans-

we (4.15)

resistance of 10 kQ.
The change in output voltage of the circuit for excitation current with peak-to-

peak value of 1, and AR the change in the resistance being measured is given by,
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AV _ (lep/ﬂ')AR Av- Ra
R35+(2/gm) (4'17)

where, Av is the gain of instrumentation amplifier, and R35 is the resistance
connected across the emitter terminals of U24 and U26. With Av = 10, 1/gm = 10.5
Q, and R35 =270 Q, we have

AVo = 2191pAR (4.18)
For Iy, of 1 mA, the circuit has a sensitivity of 219 mV/Q.
The low pass filtered output is the impedance variation signal z(t) or impedance

glottogram.

4.6 Basdlinerestoration

Baseline restoration is needed to keep the output signal within the pre-specified upper
and lower threshold using a digital potentiometer. The complementary current outputs
of U13 and U14 are connected to D3 and D4 of anlog switch U15 as shown in Figure
4.12. The amplitude of input voltage signal to U13 is controlled by the programmable
digital potentiometer U6, as shown in Figure 4.3.

The demodulated output Z(t) is sampled by on-chip ADC of the
microcontroller. It is then compared with the pre-defined threshold limits. If the
sampled value crosses the upper threshold limit then amplitude of the restoration
signal is increased by updating the control word of digital potentiometer. This brings
the demodulator output back to the pre-specified range. And if the output crosses the
lower threshold limit then a decrease in amplitude of restoration signal causes the

demodul ated output to increase and keep it within the range.

4.7 High impedance indicator

A high impedance indicator is used to indicate an inappropriately connected el ectrode.
When the contact between the skin-electrode interface is not proper, demodulator
output will get saturated because of the high impedance. The demodulator output is
sampled by the on-chip ADC in the microcontroller and compared with the threshold
value. If the sampled vaue is larger than the threshold value, high impedance is
indicated by glowing the LED, D6 connected to pin 36 of the microcontroller as
shown in the Figure E.5 in the appendix E.
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Figure 4.14: Microcontroller circuit.

4.8 Microcontroller
The control and signal acquisition operations in the circuit are handled by a
microcontroller. The microcontroller dsPIC33EP256M U806 (Microchip) [47] is used
as U1, as shown in Figure 4.15. It can be powered by 3.0-3.6 V separate supplies for
analog and digital part. The maximum clock frequency is 80 MHz, resulting in 40
MIPS. Its internal RC oscillator and PLL are used for generating clock, thus
eliminating use of externa clock or crystal.

It has an in-built SPI module operating at clock frequencies up to 10 MHz.
The two DDSs and the flash are programmed through SPI interface. U1 also has an
on-chip ADC with 10-bit or 12-bit conversion at a maximum sampling rate of 1.1
Mbps and 500 kbps respectively. ADC has 32 input channels with a support for
simultaneous sampling on four channels in 10-bit mode. Five channels of ADC are
used: one to sample the demodulator output z(t), three general purpose analog input
channels, and one for the battery voltage monitoring. The microcontroller has 14
PWM DAC outputs each having 16-bit resolution. One PWM DAC output is used to
generate the EGG signa or its differential. The on-chip UART module is used to

interface the microcontroller with PC or an external device.
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Figure 4.15: Isolated RS232 driver.

4.9 |solated serial interface

The parameters of the impedance glottograph circuit are set through the seria
interface between microcontroller U1 and a PC or an external device. Serial interface
is established using an isolated single channel RS-232 line driver ADM3251E
(Anaog Devices) used as U4. It can operate at 3.3 V supply voltage on the primary
side (microcontroller side) with internal charge pump enable to power the secondary
side (PC side) with total maximum supply current of 140 mA. The tota supply
current can be reduced to 12 mA, by powering the secondary side of the line driver
from an external source as discussed in section 3.4.2. Parameters for measurement are
set using a cable with stereo jack connector J2 on the microcontroller side and DB9

connector on the PC side.

4.10 Analog I nput
Three general purpose analog input channels are provided in the design. These
channels can be used to feed external signals such as speech or other sensor signals.

All the channels are buffered before connecting to the microcontroller pins as shown
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Figure 4.17: circuit of serial flash interface
in Figure 4.16. A 3.3V zener diode DZ1 is connected at the input of the buffer so that
the analog input voltage level does not exceed the ADC input range of 0-3.3 V.

4.11 Flash Memory

An externa memory is used to store the EGG samples for further processing. Serial
flash IC SST25VF064C (Microchip) [45] used as U19, is interfaced with the
microcontroller via SPI interface as shown in Figure 4.16. It has storage capacity of 8
MB and can support up to 80 MHz clock rate for high speed reading. It can operate in
the supply range of 2.7-3.6 V supply, with maximum supply current of 20 mA.
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4.12 Power Supply
The circuit requires separate analog and digital power supplies. The power supply
circuit is shown in Figure 4.18. The total current consumption of the circuit for the
analog and digital supplies are estimated as the following

D3V3 (digital 3.3 V): 39 mA [U2, U3: 3mA, Ul: 20 mA, U4: 1

mA, U20: 12 mA]

D5V (digital 5 V): 143 mA [U15: 1 mA, U5, U6: 1 mA, U36:

140 mA]

A3V3 (analog 3.3 V): 15 mA [U1l: 5mA, U2, U3: 10 mA]

A5V (analog 5 V): 50 mA [U29, U7, U17: 2 mA, U1l, U12,

U13, U14, U16, U8, U9: 6 mA, U10: 2 mA]

Supply voltages of 5V and 3.3 V are generated using low drop-out (LDO) regulator
ICs MCP1802T-5002 (U24,U26) and MCP1802T-3302 (U27,U28) respectively. Each
LDO can deliver up to 300 mA load current at 25 pA quiescent current. For 3.3 V
operation, the operating input voltage range is 3.6-10 V and for 5 V operation, it is
5.3-10 V. To keep the dissipation in the 3.3 V regulators low, their inputs are
obtained from the corresponding 5 V regulators. Thus U24 has to supply 182 mA (143
mA + 39 mA) and U26 has to supply 65 mA (15 mA + 50 mA). Each has a maximum
power dissipation of 250 mW at 300 mA load current.

Analog reference of 1.65 V is generated using the voltage divider circuit using
R9, R10 and a buffer U8, to facilitate the bipolar voltage swing around 1.65 V as the
on-chip ADC of the microcontroller operates at 3.3 V. Analog 5V and 3.3V are
labeled as A5V and A3V 3 respectively, digital 5V and 3.3 V as D5V and D3V3
respectively and analog reference of 1.65V islabeled as A1V6.

The LDOs are powered from a DC-DC converter LM2622 (National
Semiconductor) used as U23. It has an input voltage range of 2 — 12 V and can give
maximum output voltage of 23 V. It operates at a switching frequency of 600 kHz
and has a quiescent current of 2 mA. The DC-DC converter is designed to provide 6 V
output. A MOSFET switch AM 3837 (U22) is used to select the supply source for DC-
DC converter. When powered from USB, the switchisturned onand the DC-DC
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converter is connected to USB supply. When the USB is disconnected, the switch is
turned off and the input is provided from the battery.

A Li-lon battery with output voltage of 4.2 V when fully charged is used for
powering the regulator. Charge capacity of a typical Li-lon battery is about 1200
mANh. The charger circuit as shown in Figure 3.6, consists of a stand-alone linear Li-
lon charge management controller MCP73833 (Microchip) used as U21. It can
operate with supply voltage of 4.5-6 V with maximum supply current of 3 mA. Since
temperature sensitivity of U6 is disabled, a 10 kQ register is connected to THERM as
recommended in the datasheet. LED1is used to indicate battery charging and LED2
indicates whether the battery is fully charged.

4.13 Assembly and testing

The component list is provided in Appendix A. The complete schematic of the
bioimpedance simulator is given in Appendix B. A double sided PCB was designed
for the impedance simulator. Size of the PCB is 89 mm x 152 mm. Components are
populated on one side of the PCB. Supply planes are provided on the top layer and
ground planes on the bottom layer to reduce the external noise. Care is taken to
minimize the length of the supply track for 1Cs. Supply for each IC is decoupled by
0.1uF capacitors placed as close as possible to the ICs. The component placement
with track layout is given in Appendix C. Most of the components used are in SMD
packaging. Figures 4.19 and 4.20 shows the images of top and bottom sides of the
assembled PCB.

4.14 User interface

User can set parameters such the frequency and amplitude of the excitation current
through the user interface provided. It is designed using Visual Basic software.
Screenshot of the user interface is shownin Figure 4.21. The PC running the user
interface is connected to the microcontroller via seria port. A click on SET button
sets the parameters of the microcontroller. Record button is used to record the EGG
signa and to store it in the flash. Display button is used to transfer the data from flash

to microcontroller.
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Figure 4.20: Bottom view of the assembled PCB.
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Chapter 5

TEST RESULT

5.1 Overview

The hardware is tested for linearity, noise rejection, sensitivity, and frequency
response using the bio-impedance simulator described in Chapter 3.

5.2 Demodulator output

The filter circuit is disconnected from the demodulator by removing the resistance
R45. The capacitor C73, connected to the current summer is replaced by a 100 Q
resistor to observe the full wave rectified signal. An excitation current of 2.5 mA (p-p)
with frequency of 100 kHz is injected to a test resistance of 55 Q. The voltage
developed across the injecting electrode is sensed by the voltage-sense-amplifier. It
has a gain of 10. The baseline signal for baseline restoration is set at 1.6 V anaog
reference. The output of the voltage-sense-amplifier along with the baseline signa is
fed to analog switch via V-to-l converter circuits. The signal is rectified
synchronously with the clock by current steering mode. Figure 5.1 shows the
demodulated output along with reference clock captured by the CRO. Phase
correction logic is implemented for synchronous demodulation. Phase is corrected
until the phase difference between the input signal and the reference clock is minimal.
Switching causes spikes in the circuit. The magnitudes of these spikes are small and
they cancel out over one cycle of the reference clock. Figure 5.2 shows the

demodul ator output when the input signal is connected t01.6 V reference signal.

5.3 Linearity

Demodulator module together with lowpass filter is tested for linearity. The output of
the demodulator which is passed through the low pass filter is measured for different
values of test resistances. The cutoff frequency of low pass filter is set to 5 kHz with
unity gain. The amplitude and frequency of the excitation signal is set to 3 mA and
100 kHz respectively. Change in test resistance along with corresponding change the
filter output is shown in table 5.1. We can see from the Figure 5.3 that the circuit

shows agood linearity over the tested range of test resistances.
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Figure 5.1: Demodulated output (CH1) and reference clock (CH2)
with excitation current of 2.5 mA (p-p) and test resistance = 55 Q.
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Table 5.1 Demodulator output voltages for equal increments in test resistance.

Resistance (Q) Demodulator output voltage (V)
10 1.80
20 1.88
30 1.96
50 2.16
60 2.24
70 2.32
100 2.56
110 2.64
120 2.72
130 2.76
3 -
( 4
2.7 -
S
c 2.4 -
5
o
5 2.1 A
o
S
<
= 1.8 -
S
;
o 1.5 : : .
0 50 100 150
Test resistance (in Q)

Figure 5.3: Demodulated output voltage Vs test resistances.

5.4 Interferenceregjection

Interference current at different frequencies are injected in to the test resistance to
examine the interference rejection capability of the circuit. A fixed test resistance of
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Figure 5.4: Setup for interference rejection testing.

55 Q is used. The excitation current amplitude was set to zero and frequency was set
to 100 kHz respectively. The baseline correction signal was connected to the analog
reference of 1.6 V. The interference voltage amplitude was kept at 1 V (p-p) and its
frequency was varied from 1 Hz — 1 MHz. Table 5.2 shows the peak-to-peak value of
the demodulator output and time period of the of the variations in the demodulator
output for different interference frequencies. We can see from the table that

interference signal is present mostly at 100 kHz and its odd multiples.
5.5 Validation of hardwar e using impedance simulator

The bio-impedance simulator discussed earlier was used to test the impedance
glottograph. The square wave variation in the resistance provided by the simulator is
used to check the sensitivity and frequency response of the hardware. The excitation
current amplitude and frequency of the hardware are set to 2.5 mA (p-p) and 100 k Hz
respectively. The current injecting and the voltage sensing electrodes of the hardware
were connected to the terminals E1 and E2 of the bio-impedance simulator. The
voltage is sensed through the voltage-sense-amplifier with gain of 10. The low-pass
filter used in the demodulation circuit has a cut-off frequency of 4.8 kHz and a gain of
20. Figure 5.5-5.8 shows the output waveforms for different simulator settings
provided in Table 5.3.
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Table5.2: Demodulator output at different interference frequencies

Interference Demod. output Time period demod.
freq. (kHz) ac (mVp-p) output (ms)
0-96 - -
97 160 0.34
98 160 0.5
98.5 160 0.65
99 190 1
99.2 210 1.26
99.4 220 1.67
99.6 240 2.5
99.8 256 5
100 260 600
100.2 256 4.96
100.4 240 2.49
100.6 224 1.66
100.8 216 1.25
101 196 1
101.5 170 0.67
102 150 0.5
103-297 - -
298 200 0.5
299 260 1
299.5 328 2
300 370 200
300.5 320 1.98
301 260 1
303 -498 - -
499 216 1
500 300 125
502-1000 - -
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Table5.3: Simulator settings for the outputs shown in Figure 5.5 —-5.8

Figure R(Q) AR (Q) F (Hz)
5.5 30 0.8 150
5.6 30 0.8 10
5.7 50 0.5 10
5.8 50 1 10
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Figure5.5: CHI: Demod. output for F= 150 Hz, R =30 Q and
AR = 0.8 Q. CH2 : Clock output from the impedance simulator
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Figure5.6: CHI: Demod. output for F = 10 Hz, = 30 Q and
AR = 0.8 Q. CH2: Clock output from the impedance simulator
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Chapter 6

SUMMARY AND CONCLUSIONS

The objective of the project was to develop (a) a laryngeal impedance simulator for
testing the sensitivity and frequency response of the impedance glottograph
instrument and (b) an impedance glottograph instrument using novel circuits for
improving the frequency response and noise rejection.

A laryngeal impedance simulator, using a microcontroller, anaog switches,
and digital potentiometer is developed. Simulation parameters (frequency, basa
resistance and change in basal resistance) are set via PC or an externa device through
seria port. The device is battery operated and it can provide square wave variation of
resistance in the frequency range of 0.1-1 kHz with basal resistance in the range of
10-160 Q. The simulator has been tested for satisfactory operation.

The impedance glottograph instrument, consisting of a sinusoidal source,
voltage-to-current converter, voltage sense amplifier and demodulator has been
improvised and tested. Impedance is sensed by generating an excitation signal in the
frequency range of 50-500 kHz using a direct digital synthesizer (DDS). This signal
is provided to a voltage-to-current converter based on complementary current output
configuration designed using a pair of trans-conductance amplifiers to output a low
amplitude (< 5 mA) current, which is injected using a pair of electrodes held in
contact with the skin on both sides of the thyroid cartilage. The resulting amplitude
modulated signal is amplified using a voltage sense amplifier and given to the
demodulator. Synchronous demodulation with current steering and baseline
restoration circuit is implemented to get the demodulated waveform. Sampling of the
demodulator waveform in synchronism with the peaks of the excitation waveform is
used for improving the ripple rejection.

The hardware was assembled on a two-layer PCB. Different hardware blocks
were tested and found to give satisfactory performance. The dynamic response of the
circuit, its sensitivity, and baseline restoration was tested using the bio-impedance

simulator. The circuit needs to be thoroughly tested before its clinical use.
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Appendix A

GLOTTOGRAPHIC TECHNIQUES

Laryngoscopy is an invasive technique involving illumination and simultaneous
viewing of vocal folds vibration. In optical fiber based laryngoscopy, fiberscope is
inserted into pharynx through nostril and nasal cavity. An optical fiber is used to
illuminate the larynx and to transmit the image back to the optical sensor. The
inspection of vibrating vocal folds during speech is possible due to the flexible
fiberscope. In direct laryngoscopy, after anaesthesia, arigid tube is inserted inside the
pharynx to observe the movement of vocal folds. In the indirect laryngoscopy, a
mirror inserted into back of mouth to view the larynx and vibration of vocal folds. In
this technique field of view and large distance from the larynx limits the amount of
information. In video laryngoscopy, images of the glottis are obtained by a
CMOS active pixel sensors placed at the tip of the laryngoscope blade, which
transmits the image electronicaly to a remote screen. Glidescope, McGrath
laryngoscope, and Pentax AWS are some of the commercialy available

laryngoscopes [3], [4].

Videokymography technique is used to monitor the vibrating vocal folds
through a specia charge coupled device (CCD) video camera. The camera has two
modes, in one mode it works as a regular video camera and in high speed mode the
camera delivers images from a single scan line of the whole video field at a rate of
7812.5 line images per second. The consecutive line images are presented below each
other on a monitor to create a new, videokymography image which shows vibratory
pattern of the selected part of the vocal folds. This technique has lower cost than the
high speed imaging method. But full image cannot be obtained due to single line
along the glottis[5].

Stroboscope technique involves flashing of a light source with frequency
dlightly above the fundamental frequency of vibration of the vocal folds. Due to the
flashing, difference in frequency of voca folds and light source, a slow motion
illusion of folds is created. This alows easy observation of the vocal folds. It limits

the detailed analysis of glottal cycle especially in irregularities consecutive images of
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different glottal cycle. Furthermore, stroboscopic image is not a real time continuous
signal, therefore it cannot be used for simultaneous recording of audio or other

glottographic signals [6].

High speed photography is used to acquire continuous visua data in the form
of images on single vocal fold oscillation. An endoscope is used with a camera body
containing an image sensor and a digital image memory to capture images. The image
sensor was scanned at a high rate and the laryngeal images are stored in image
memory. Recent developments include the use of tele-endoscope to obtain accurate
information of voca folds oscillation. The tele-endoscope allows simultaneous
capturing of audio, video, and even colour images using contemporary equipment.
The disadvantage of the technique is its high cost. It is also invasive and
uncomfortable to the patient [7].

Photoglottography (PGG) is a semi-invasive technique in which a
photoel ectric sensor is placed on the neck below the cricoids cartilage. A fiberscopeis
used to brightly lit the vocal folds. The light emitted through the glottis and the neck
tissues is recorded using the photoelectric sensor. PGG records the change in glottal
area in real time, but it is unable to give information about the relative motion of
lower and upper vocal fold lips and left and right vocal folds which is a common
irregularity in vocal folds pathology [8].

Inverse filtering technique is first introduced by Miller (1951). It is based on
source-filter theory of speech production. In principle if transfer function of vocal
tract is known then by feeding the speech signal through the inverse of the vocal tract
filter, the glottal excitation signa can be reconstructed. Estimation of glottal

waveform is difficult for noisy speech signals[9].

Ultrasonoglottography is a noninvasive technique based on transmitting
continuous-wave ultrasound through the larynx. Two transducers are used to record
echoes from both sides of the glottal rim and pulses transmitted through the larynx.
Air is poor medium for ultrasound transmission. When an ultrasound beam of
frequency 3.2 MHz is projected across the larynx through transmitting transducer, it is

interrupted by the air in the open glottis. When the vocal folds are in contact the wave
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Figure 1.1: A schematic illustration of afiberscope (on the left) and a solid
endoscope for high speed photography (on the right) [13].

is partly transmitted. Thus a change in the vocal folds contact area results in amplitude
modulation of the recelved signal. This technique is safe and comfortable for the
subject, but received signals are not uniquely related to the pattern of motion of the
vocal folds [10]. Figure 1.1 shows a schematic illustration of a fiberscope (on the | eft)

and a solid endoscope for high speed photography (on the right) [13].
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Appendix B
COMPONENT LIST

Table B.1: Component list of the bioimpedance simulator.

Component designator Component description ~ Part Number Quantity
Ivalue

C1 Capacitor, ceramic, chip 1 uF 1

C2,C4, C6, C7, C8,

C9, C10, C11, C12,

C13, C15, C16, C17,

C19, C22 Capacitor, ceramic, chip 0.1 uF 15

C3,C5,C14,C20 Capacitor, ceramic, chip 10 uF

c21 Capacitor, ceramic, chip 0.01 pF

R1, R11, R15, R16 Resistor 10 kQ

R4, R5, R6 Resistor 1kQ

R13, R14 Resistor 5kQ

R7 Resistor 10 Q

R8 Resistor 50 Q

R9 Resistor 20 Q

R10, R12 Resistor 100 Q

Ul IC, Charge controller MCP73833

U2 IC, LDO TC1017-3.3VLT
U3 IC, quad analog switch ADG811

U4 IC, digital Potentiometer =~ AD8400

us IC, microcontroller 24FJ64AGB004
U6 IC, RS232 driver ADM3251E
CON1 Connector , 3-pin

D1, D2 LED LED

J1, 33 USBCON USBconMINIB
J2 Connector , 5-pin DEBG

4, 5,38, J11 Stereo phone jack PHONEJACK
J9 Connector , 2-pin

PRPRRPNOMNNRPRRPRRPRPRRPREPNRPRPREPNODNPRDN
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Appendix C

SCHEMATIC DIAGRAM OF THE BIOIMPEDANCE
SIMULATOR

ey IS ey M gy -
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Figure C.1: Schematic diagram of the bioimpedance simulator.
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Appendix D

PCB LAYOUT OF THE BIOIMPEDANCE SIMULATOR
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FigureD.1: Top overlay of the bioimpedance simulator (77 mm x 73 mm).
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Figure D.2: Top side of the bioimpedance simulator.
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Figure D.3: Bottom side of the bioimpedance simulator.
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Appendix E

SCHEMATIC DIAGRAM OF IMPEDANCE
CARDIOGRAPH
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Appendix F
PCB LAYOUT OF IMPEDANCE CARDIOGRAPH
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