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ABSTRACT

Persons with sensorineural loss experience gréfatutty when the speech is contaminated
by noise. This thesis presents investigationsdal-time enhancement of noisy speech using
spectral subtraction for suppressing the exteraelenin hearing aids and sensory aids for the
hearing impaired. Investigation using offline presiag for enhancing the noisy speech with
different types of noise and SNR values is cardatlto select the optimal set of steps and
parameters for real-time processing. Results shwt median based noise estimation is
effective in estimating noise from noisy speechwiit a voice activity detector, for different
SNRs and types of stationary and non-stationargasoilt is shown that a cascaded-median
can be used as an approximation to median forfgigntly reducing the computation and
memory requirement. Speech enhancement using radgngpectrum subtraction with 3-
point 4-stage cascaded median for noise estimaiwh resynthesis using noisy phase
resulted in improvements of 0.11 — 0.43 in PESQexctor speech material from NOIZEUS
database and different types of additive statiorsang non-stationary noises at 6 dB SNR.
Resynthesis using phase estimated from the enhanagditude spectrum did not result in
any further improvement in the scores. The techmidgu implemented and tested for
satisfactory operation, with sampling frequencyl0fkHz, 30 ms analysis window with 50%
overlap, using a DSP board based on 16-bit fixadtpprocessor with on-chip FFT
hardware. The implementation uses data transferbarfigéring operations devised for an
efficient realization of analysis-synthesis and eménd DMA for acquisition of the input
signal and outputting of the processed output $idree real-time operation is achieved with
signal delay of approximately 48 ms and using alomet-seventh of the computing capacity

of the processor.
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Chapter 1
INTRODUCTION

1.1 Problem overview

Hearing aids generally provide frequency-select@eplification to compensate for the
elevated hearing thresholds. Hearing aids for persadth sensorineural loss employ multi-
channel dynamic range compression with configuraliack time, release time, number of
channels, and compression ratios to compensat¢héoreduced dynamic randgé]—[4].
Sensorineural impairment is also associated withessed spectral masking due to widened
auditory filters. Several techniques, such as bedagdichotic presentation [5], [6], spectral
contrast enhancement [7], and multiband frequenoypression [8], [9], have been reported
for reducing the adverse effect of increased spkntasking on speech perception. Despite
these advances, hearing aid users with sensorineysairment experience great difficulty
in speech perception in noisy environments. Sindifficulty is faced by users of cochlear
prostheses and other sensory aids for the hearipgiied [1]. Use of a second microphone
in these aids to provide reference input for nassgpression by adaptive filtering is
impractical. Hence, single-input noise suppressisnthe most practical solution for
improving speech quality and intelligibility.

The noise suppression technique should have loweritignic delay and low
computational complexity to permit its implemerpation a low-power processor in a
sensory aid. Spectral subtraction is a single-irgm&tech enhancement technique developed
for use in audio codecs and speech recognition-[20]. It involves estimating the noise
spectrum, subtracting it from the noisy speech tspe; and re-synthesizing the speech
signal. As the interfering noise is non-stationatg, spectrum needs to be dynamically
estimated. Under-estimation of the noise resultsesidual noise and its over-estimation
results in distortion leading to degraded qualibhd aeduced intelligibility. Noise can be

estimated during the silence intervals identifigd Vmice activity detection [10]. But the



detection may not be satisfactory under low-SNRdda@ns and the method may not
correctly track the noise spectrum during long shesegments. Several statistical techniques
for estimating the noise spectrum, without voictvég detection, have been reported [10],
[20]-[27]. Their computational complexity and memeequirement pose difficulty in real-

time processing using a low-power processor.

1.2 Project objective

The project objective is to implement a systenré&al-time enhancement of noisy speech for
use in hearing-aids and other sensory aids foh#aeing impaired. Towards this end, various
noise estimation techniques for use in spectratraation for speech enhancement are
investigated. A spectral subtraction technique $peech enhancement using cascaded-
median based continuous updating of the noise mpectwithout using voice activity
detection, is presented. It is implemented for-teaé operation on a 16-bit fixed-point DSP

processor, with on-chip FFT hardware.

1.3 Dissertation outline

Chapter 2 describes the generalized spectral stibtnaalong with different noise estimation
techniques. Investigations on enhancement of ngfgech with different types of noises,
using Matlab based offline processing and resuéigpeesented in the next chapter. Chapter 4
presents a DSP processor-based real-time impletimntd speech enhancement and results

are discussed. The last chapter gives a summargarudusions of the work.



Chapter 2
SPEECH ENHANCEMENT USING SPECTRAL SUBTRACTION

2.1 Generalized spectral subtraction

Spectral subtraction is a single-input noise rddactmethod based on the short-time
estimation of the magnitude spectrum of the noRecessing involves estimating the
magnitude spectrum of the noise, using it for esting the magnitude spectrum of the
speech signal, and re-synthesizing the speech tisingnhanced magnitude spectrum along
with the phase spectrum of the noisy speech. Akbtliegram of speech enhancement using
spectral subtraction is shown in Fig. 2.1. WindoViresines of the noisy speech sigmét),
which is a sum of noise-free speech and noisegiaen to a FFT block to find magnitude
and phase spectra. The magnitude spectra of thidrpages are used to estimate the noise
magnitude spectru,(k). The noise is estimated during non-speech segnusirtig a voice
detector or it is dynamically estimated using statal methods. The enhanced magnitude
spectrum Y,(K)| is computed using spectral subtraction. IFFTtalken for the complex
spectrum formed by enhanced magnitude spectrumnaigy phase spectrum. Enhanced
signal is reconstructed using overlap-add methedefal investigations have been reported,
providing different methods for each of these s{@f$-[27]. The effectiveness of the noise
removal process is dependent on obtaining an aecspactral estimate of the noise from the
noisy speech signal. Significant differences betwte estimated noise and the actual noise
present in the short-time speech spectrum maytresuhe presence of isolated residual
spectral peaks of large variance. These residusgltigh contents manifest themselves in the
reconstructed signal as varying tonal sounds knasvimusical noise” and may result in an
unnatural quality.

The power spectrum after spectral subtraction neeyain some negative values due
to errors in the estimated noise spectrum. Thedeesaare rectified using half-wave
rectification (set to zero) or full-wave rectifican (set to its absolute value). This can lead to
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Fig. 2.1 Speech enhancement by spectral subtra[29]

further distortions in the resulting time signab ©vercome the shortcomings of spectral
subtraction, Beroutet al. [11] developed a generalized spectral subtracflére enhanced
magnitude spectrunYj(k)| computed using generalized spectral subtractiay given as the
following

Ya ()= [ Xn ()P = a(Da ()7 if | Xy (€)]> o + B} Dy (K)

(2.1)
pY7D, (K), otherwise

Here y is an exponent factor, resulting in power subtoactfor y = 2 and magnitude
subtraction fory = 1. Use of subtraction facter > 1 reduces the broadband peaks in the
residual noise, but it may result in deep vallegaysing warbling or musical noise and
adversely affecting the speech quality. The musitaise is masked by a floor noise
controlled by the spectral floor factgr These two factors offer a great flexibility ineth
algorithm. Several methods, with different compotal complexity, using frequency-
dependent factors and factors as functionsagbosteriori estimate of SNR have been
reported [10].

Assuming that the phase error does not signifigaatfect the intelligibility and
quality of speech, the enhanced magnitude specisucombined with the original noisy
phase, to get the complex spectrum

Yo (k) =1 Yo (k) [ 700 (22)

In order to avoid phase calculation, the compleecpim is calculated using



Yo () =[Yn (K) [ X (K) /] X (k) | (2.3)
The resulting complex spectra are used to re-sgigbethe speech signal. As spectral
subtraction involves modification of short-time Few transform, there may be
discontinuities between signal segments correspgntti the modified complex spectra of
the consecutive frames. Use of overlap-add in #ieynthesis helps in masking and in
reducing the perceived distortions related to theicontinuities.

In the generalized spectral subtraction [11], iassumed that the noise affects the
entire spectrum uniformly, which is generally naligl in the case of real-world noise. A
multi-band spectral subtraction has been propose&dmath and Loizou [12]. In this
method, different subtraction factors are usediffer@nt frequency bands on the basis of
SNR estimated in the bands. Further, the genedakpectral subtraction is based on the
assumption that speech and additive noises arenateted and hence cross terms are made
zero. However, this assumptions is not valid whengpeech is processed on frame-to-frame
basis [10]. Lu and Loizou have proposed a geomapproach [13] for spectral subtraction

without setting the cross terms as zeros.

2.1.1 Multi-band spectral subtraction

Spectral subtraction proposed by Beraettial. is based on the assumption that the entire
spectrum is uniformly affected by noise. Setting 2 in (2.1), results in power spectral
subtraction. Here the subtraction factois constant for the entire spectrum. But the real-
world noises (e.g., car noise, cafeteria noisendbuniformly affect different frequency
regions [10]. Kamath and Loizou [12] proposed a tivhdnd approach to spectral
subtraction. Here the speech spectrum is dividemiBmon-overlapping bands, and spectral
subtraction is performed independently in each b&agver spectral subtraction using multi-
band approach fath band is given as

IYa ()= BY2 1 X ()] if [ Xn (K) < (46)Y? | Dy (K) | (2.4)

[ X, () =6 | Dy (k)P 1¥?  otherwise

whereq; is subtraction factor for baridand depends on the SNR of the corresponding band

andg; is a tweaking factor. SNi dB is estimated as



SNR, (dB) =10|og10[ (%xn(k)f)/ (%Dn(k)f)] (2.5)
by by

wherebs; andbe; are the beginning and ending frequency sampléseath band. Subtraction
factora; depends on the SNR (in dB) of the particular bamdi is given as

5 SNR <-5
g =44~ (3/20)SNR,  -5<SNR; <20 (2.6)
1 SNR. > 20

Tweaking factow; is empirically set for each frequency band to @uste the noise removal
properties as

1 f. <1kHz

6 =125 1kHz<f <(Fg/2)-2kHz (2.7)

1.5  f, >(Fs/2)-2kHz
wheref; is the upper frequency of théh band andrs is the sampling frequency. They
evaluated the method using ten sentences from HiH¢&ring In Noise Test) database as the
speech material and added speech-shaped noisedEtafd 5 dB SNR. The Itakura-Saito
(IS) distance was used as an objective measureaoate the performance. The method
showed an improvement in the objective measure tiverconventional power spectral
subtraction and the informal listening showed thatprocessed output had a very little trace

of musical noise.

2.1.2 Geometric approach to spectral subtraction

In the spectral subtraction method proposed by Rel] and Beroutiet al[11], the cross
term is taken as zero, assuming the speech and twise uncorrelated. This assumption is
generally not valid for processing using short-tim@dowed speech [10]. Lu and Loizou
[13] proposed a geometric approach to spectraractiin without assuming the cross terms

to be zero. In this method, the enhanced spectfiarframen is estimated as
Ya (k)| = Hga (N K)[ X (K)| (2.8)

whereHga(n, K) is known as suppression function. Its valuenstéd to 1 and is calculated

as



A R -1
~ +1- 2 ~ -1- 2
Hea(nk) = 1 Uk ! i)™ |[ 1= (Ank =17 Enk) 2.9)
4ﬂn,k 4én,k
whereun x andé, k are the posteriori and priori SNRs, calculatethasollowing
tnie = X () /Dy () (2.10a)
2 2
Enk = Yn(K)*/|Da(K) (2.10b)
The smooth estimates pfand¢ for framen for gain function are obtained
Aink = Afinsic + = 2).minf (X (k)2 /|Dy(K) 20] (2.11)
o= mao] 11Pn10F J+ @0 ok -1 ]
Enk =MaXq 0.05,6.(Y 1 (K)|"/[Dp-1 (K)|* |+ @~ 0).\/ itnk —1 (2.12)

where ¢ and 2 are smoothing constants. They evaluated the metisoty speech from
NOIZEUS database (30 sentences spoken by 3 malg temdale speakers) and added multi-
talker babble, street noise, and car noise tal@n the AURORA database and white noise
at 0, 5 and 10 dB SNR levels. Mean square errorE]M8 true and estimated magnitude
spectra was calculated and compared with the twadit spectral subtraction. The proposed
method resulted in much less MSE than the traditi@pectral subtraction. The results
showed that cross terms can be ignored at veryalogv high SNRs but not near to 0 dB.
Objective evaluation was carried using PESQ andikefjhood ratio (LLR) to compare GA
with traditional spectral subtraction and MMSE altons. The PESQ score of GA was
significantly higher than that of the spectral sabtion in all the cases. MMSE algorithm has
higher PESQ scores than the GA except in babble @B and 5 dB SNR. Use of LLR
measure also showed the same pattern. GA algoh#madvantage over MMSE in terms of
computational requirement [13]. On the basis abinfal listening, the authors have reported
that the processed output of GA had no audible caligioise and the residual noise was
smooth and pleasant.

2.2 Noise estimation

Because of the non-stationary nature of most ofitherfering noise, the noise spectrum

needs to be dynamically estimated. An under-esiimaesults in residual noise while an



over-estimation results in distortion leading togeled quality and possibly a loss in
intelligibility. Noise estimation is carried out asmoving average over several overlapping
windows during the silence intervals, identified dgpeech/non-speech classifier or a voice
activity detector [10]. Estimated noise is assunmedremain stationary during speech
segments. This method may not work satisfactomiges conditions of low SNR and it may
not track the variation in noise spectrum during $peech segments. Hence, it is desirable to
have a method that does not depend on voice gctigiection. Several statistical techniques
for dynamically estimating the noise spectrum with@volving voice activity detection
have been reported, e.g. minimal-tracking algorghtime-recursive averaging algorithms,
histogram based algorithms, and quantile-baseditiges [10], [20]-[27].

2.2.1 Minimal-tracking algorithms

Minimal-tracking algorithms are based on the asgionpthat in an individual frequency
band the power of noisy speech signal decays tpdter level of the noise, even during the
speech activity. Hence tracking the minimum of nloésy speech power in a frequency band
can roughly estimate the noise level in that bavchimum statistics (MS) algorithm [20]
tracks the noise as minima of the past frames. BaaWw of this algorithm is that it cannot
respond to fast changes of the noise spectrum.ritigo is suitable for real-time operation,
but it often under-estimates the noise and requaréggh subtraction factor. As a constant
subtraction factor may result in removal of someegih parts in weaker segments, a SNR-
dependent subtraction factor is required. In mimmisacking algorithm [21], the noise is
updated continuously by smoothing the noisy spgemker spectra in each frequency bin
using a nonlinear smoothing. In [21], the noisenestion was combined with spectral
amplitude estimator [22] and informal listening sled that the algorithm performed well
compared to conventional spectral subtraction.ddmbined technique was implemented on
a floating-point DSP processor (Analog Devices, AE2.020) for real-time processing. The

processor utilization was 14% — 23%.



2.2.2 Time-recursive averaging algorithms

In time-recursive averaging algorithms, the noipectrum is estimated as a weighted
average of past noise estimates and the presesy speech spectrum. The weights are
updated adaptively based on either on the effe@M& of each frequency bin or on the
speech-presence probability. The algorithm repoitedudes SNR-dependent recursive
averaging [23], weighted spectral averaging [24] amnima-controlled recursive averaging
[25].

In the method reported by Lat al.[23], the noisy speech is decomposed in sub-band
signals based on auditory critical bandwidths [T8le noisy signal power in each subband is
smoothened, and the noise is estimated adaptiVel smoothing parameter is a function of
the estimated signal-to-noise ratio (SNR). Thegremince was tested using a sentence with
additive noise from the Noisex92 database at 2.5S#HR. Comparison of estimatex
posteriori SNR with ideala posterioriSNR resulted in a frame-by-frame average estimated
error of 4.85%. Testing with pink noise, F16 noeed car noise gave satisfactory results for
the SNR'’s from -5 to 15 dB. The algorithm needsitmithl computations for calculating
SNR in each sub-band.

Hirsch and Ehrlicher [24] reported a noise estioratlgorithm based on 400 ms past
noisy speech segments. In this method, the noigt ile each sub-band is estimated as a first
order recursive weighted average of past spectejnitude values which are below an
adaptive threshold. The method has a low computatonplexity.

Cohen [25] proposed noise estimation using an irgaaninima-controlled recursive
averaging (IMCRA) using a smoothing parameter.his tnethod, the smoothing parameter
is frequency-dependent and is dynamically adjubtethe signal presence probability. The
speech presence probability is controlled by theimm values of smoothed periodogram.
Algorithm comprises two iterations of smoothing anthimum tracking. In first iteration,
rough voice activity detection is provided in edodguency band. In the second iteration,
smoothing excludes relatively strong speech commisnewhich makes the minimum
tracking robust during speech activity. Performawees evaluated for white Gaussian noise
(WGN), car noise, and F16 cockpit noise from No@edatabase and speech signal obtained

by concatenating six sentences (three male, tlemal€) from TIMIT database. The noises



were added with SNR's from -5 dB to 15 dB. The psmgl method was found to track the
actual noise better than the minimum statisticshotkt The segmental relative estimator for
various types of noises at different SNR's was wated and the new method had
significantly lower estimator error than the minimstatistics. The noise estimators were
combined with optimally-modified log-spectral antpte estimator and evaluated
objectively using the improvement in segmental SNiRasure and subjectively using
informal listening. The new method resulted in lghegmental SNR improvement than the

minimum statistics consistently in all environmémanditions.

2.2.3 Histogram-based techniques

In histogram-based techniques [24], [27] noisessneated based on the histogram of the
power spectra of the past frames. For each incornarge, a histogram for past frames is
updated, and the value corresponding to the maximutre histogram at each frequency bin
is considered as an estimate of noise spectrumcofpppate bin width for histogram at each
frequency needs to be used. Too narrow a bin wigkhlts in a high variability while too

wide a bin width leads to very coarse estimation.

Hirsch and Ehrlicher [24] used a noise estimatitgordthm based on histogram
obtained for noisy speech over past 400 ms duratiorthis method, the noise level is
estimated as maximum of the distribution in eadb-lsand. To avoid spikes, the estimated
values are smoothed along time index. The perfocenanf the algorithm was evaluated and
compared with the weighted spectral average mefBd{l using an objective evaluation
based on relative error, calculated as the ratinedn square error between average of added
noise and average of estimated noise to the masresgf average of added noise. Relative
error was low for histogram method than that fa wWeighted spectral average method. Both
the techniques were combined with non-linear specubtraction method and informal
listening showed noise to have been well suppresdecbgnition experiment was carried for
evaluating both the techniques using the isolateddss of Noisex92 and ten digits spoken
100 times separately for training and testing. mbise was added at different SNRs. With an

HMM based word recognizer the enhanced signalsgusieighted average noise estimate
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had slightly higher recognition rate than the ermeansignal using histogram based noise

estimate.

2.2.4 Quantile-based noise estimation

Quantile-based noise estimation (QBNE) [26] is bHase the observation that the speech
signal energy in a particular band is very low iostof the frames and high in only 10-20%
of the frames containing voiced speech segmentsteidre it may be possible to estimate
the noise spectrum by selecting a certain quawgilee from the previous frames of the noisy
speech spectrum. Several frequency and SNR-depemgtinods for quantile selection have
been used, but a median based noise estimation @JIBls been reported to work well and
in a robust manner [26]. The QBNE was compared Wi noise estimation based on
recursive averaging in pause detection. The matesed in the experiments consisted of
6034 utterances of German digits and digit strihgs770 speakers in 10 different cars.
QBNE gave significantly higher pause detection esdghan the other methods. The method
is unsuitable for real-time operation, becauseirsprof the past frames is computation

intensive and also has a large memory requirement.

2.2.5 Cascaded-median based noise estimation

A cascaded-median [28], [29] can be used as anoamppation to median, with a
significantly reduced computation and memory regmuient. In g-frameg-stage cascaded-
median, as shown in Fig. 2.2, each stage hastarfifsst-out buffer holdingp magnitude
spectra. The first stage receives the input-frapeetsum. After every inputs, an ensemble
median is calculated and given as input to the sege. The same process is followed in all
the stages and the output of the last stage isitakean approximation of the ensemble
median of the spectra ovpt past frames. Let us compare the number of sodpegations
and storage per frequency bin, assuming that tise spectrum is estimated evéfyframes
from the previousM frames. True-median requirdd-sample array for buffering anil-
sample array for sorting. For arranging the samplesscending order, it requires a total of
M(M-1)/2 sorting operations, i.eM¢1)/2 operations per frame. Wit = p°, the cascaded-

median requireg] p-sample arrays. It results in a storage saving rafti2Vl/(pg), andq =
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MAG.SP.-1 MED;-1 MEDg.;-1
MAG.SP.-2 MEeD,-2 MEDy.;-2
MEDIAN 1 MEDIAN 2 MEDIAN Q@

Fig. 2.2 A p-pointg-stage cascad-median based noise estimai [29]

In(M) gives the highest saving. For uniformity in thember of computational operations
across frames, median is calculated in only ongesé each frame position, giving priority
to the higher stage. In this method, some framesad@ontribute to the median calculation,
but this fact does not significantly affect the seiestimation. In this casg(p-1)/2 sorting
operations are needed per frame. Thus the sauilogfoa sorting operation per frame isl{
1)/p(p-1). A lowerp results in lesser computation apa 3 simplifies the programming for

sorting operations.

2.3 Comparison of enhancement techniques

A comparison of 19 speech enhancement techniquesaraed out using implementations
available on CD accompanying [10]. The techniquedorgy to spectral-subtractive,
statistical-model, and subspace based algorithmssplectral-subtractive algorithm the
estimate of clean signal is obtained by subtractingestimate of noise spectrum from the
noisy speech spectrum. In statistical-model basgorithms, a non-linear estimator of the
parameter of interest needs to be found using thengset of measurements. For noise
suppression, the measurements are the noisy sppectia and the parameters of interest are
the estimates of clean speech spectra. Subspamélailygs are based on the assumption that
the clean signal is confined to a subspace of tbisynEuclidean space. For noise
suppression, the noisy speech signal is decompimgedsubspaces which are primarily
occupied by clean signal and noise. The clean kignae-synthesized after the noise

subspace in noisy vectors is nullified.
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The evaluation involved using informal listeningdaan objective evaluation using
perceptual evaluation of speech quality (PESQ) oreaglO], [30]. Investigations were
carried out on speech materials taken from the NEQIE database [31], consisting of 30
IEEE sentences recorded from 3 male and 3 femaaksps with 25 kHz sampling and
down-sampled to 8 kHz. For testing, six sentenoa® the database were concatenated and
up sampled to 10 kHz. The concatenated materialhe birch canoe slid on the smooth
planks. He knew the skill of the great young actréter purse was full of useless trash. Read
verse out loud for pleasure. Wipe the grease dcffdnity face. Men strive but seldom get
rich". Informal listening showed that quality dedasion is generally more noticeable during
vowel segments while intelligibility degradation more noticeable during consonantal
segments. For a quick comparison of effects obdiffit processing steps and parameters, we
have used speech material recorded in our lab. Miaeerial consisted of three isolated
vowels, a Hindi sentence, and an English senterfiaé/i{-/u/— "aayiye aap kaa naam kyaa
hai?" — "Where were you a year ago?") from a mpéaker. It was recorded with sampling
frequency of 11.025 kHz and converted to 10 kHzorger test sequence was generated by
speech-speech-silence-speech concatenation ofetwedmg. This material is referred to
"vowel, Hindi sentence, English sentence" or "VHSERe test materials NOIZEUS and
VHSES are of 14 s and 25 s duration respectivelgil@MNOIZEUS is rich in consonants,
VHSES is dominated by vowels and vowel-like segme8peech was mixed with different
types of noises at different SNR values and prazkby the speech enhancement techniques.

PESQ scores were obtained for the processed ousjuy unprocessed clean speech
as reference. The scores for SNR of 0 dB are givérable 2.1 and Table 2.2 for VHSES
and NOIZEUS speech materials. For NOIZEUS, the acgssed speech has scores of 1.55 —
2.05. In terms of decreasing the scores for ungsezkspeech, the noises are ranked as train
(2.05), street (1.83), babble (1.73), car (1.78k{1.60), and white (1.55) for NOIZEUS.
The scores for noisy VHSES followed the same ramkamd were slightly smaller, by 0.01 —
0.05. In comparison with other noises, processirgpeech corrupted by white noise showed
maximum improvement. The observation is valid fasstof the processing methods. As
expected, the improvements are lowest for babbisen&ffectiveness of the techniques in

improving the scores is different across noises aad for the two speech materials. The
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Table 2.1 PESQ scores for enhani speech using various algorithms. Speech materidiSES,
SNR: 0 dB. Improvements over the scores for unmsee noisy speech are given in brackets.

Enhancement Noise type

method White Babble Street Pink Train Car

un proc. 1.54 1.73 1.78 1.59 2.00 1.67
specsub 1.78 (0.24) 1.74(0.01) 1.85(0.07) 20042) 2.33(0.33) 1.91(0.24)
mband 1.43(-0.11) 1.88(0.15) 2.06(0.28) 1.723p 2.61(0.61) 2.09 (0.42)
ga 1.82(0.28) 2.05(0.32) 2.42(0.64) 2.11(0.522.67 (0.67) 2.26 (0.59)
wiener _iter 1.96 (0.42)  1.71(-0.02) 1.56 (-0.221.80 (0.21) 1.78 (-0.22) 1.81 (0.14)
wiener_as 1.81(0.27) 1.82(0.09) 1.93(0.15) 2m023) 2.57(0.57) 2.07 (0.40)
wiener_wt 1.73(0.19)  1.69(-0.04) 1.73 (-0.05) 841(0.25) 2.18 (0.18) 1.67 (0)
mt_mask 1.36(0.18)  1.39(-0.34) 1.87(0.09) 1-B405) 2.11(0.11) 1.52(-0.15)
audnoise 1.88(0.34)  1.64(-0.09) 1.74(-0.04) 410715) 2.32(0.32) 1.69 (0.02)
mmse 1.95(0.41) 1.86(0.13) 1.99(0.21) 2.2230.6 2.69 (0.69) 2.24 (0.57)
logmmse 1.98(0.44) 1.85(0.12) 2.02(0.24) 2@8F) 2.72(0.72) 2.30(0.63)
logmmse_spul 1.94 (0.40) 1.92 (0.19) 1.97 (0.19).16 20.57) 2.58 (0.58) 2.15(0.48)
logmmse_spu2 1.90 (0.36) 1.90 (0.17) 1.95(0.17).1420.55) 2.55(0.55) 2.13(0.46)
logmmse_spu3 2.11(0.57) 1.93(0.20) 1.94 (0.16).25P0.66) 2.62 (0.62) 2.16 (0.49)
logmmse_spu4 1.71(0.17) 1.80 (0.07) 1.81 (0.03).8710.28) 2.46 (0.46) 1.88(0.21)
stsa_weuclid 2.01(0.47) 1.85(0.12) 1.99(0.21) .2620.67) 2.67 (0.67) 2.24 (0.57)
stsa_wcosh 2.11(0.57) 1.90(0.17) 2.20(0.42) 1@372) 2.65(0.65) 2.14 (0.47)
stsa_mis 1.75(0.21) 1.81(0.08) 1.89(0.11) {0987) 2.23(0.23) 1.86 (0.19)
kit 2.19(0.65) 1.84(0.11) 2.00(0.22) 2.38(0.792.60 (0.60) 2.07 (0.40)
pkit 251(0.97) 1.89(0.16) 1.84(0.06) 2.278).6 2.32(0.32) 1.91(0.24)

improvements are generally highest with stsa_wo@syesian measure based on cosh
distortion measure) [19], logmmse (log MMSE aldumi [22], mmse (MMSE algorithm
with speech presence uncertainty) [17], ga (geamepproach to spectral subtraction) [13],
stsa_weuclid (Bayesian measure based on Euclidesarttbn measure) [19], and log
MMSE algorithm incorporating speech presence uac#st (logmmse_spu3) [18].

Figures 2.3 — 2.14 show the PESQ score versus SIHRop unprocessed and

processed signals for different noises and proegsgiith the best six techniques. SNR
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advantage was calculated using PESQ score vs. $N&fpr all the enhancement methods
at a PESQ score of 2.0, which is generally consttlas lowest score for acceptable speech.
Table 2.3 shows the SNR advantages of differenamedment techniques for different

noises. The results can be summarized in termsngfes of SNR advantage as the following

stsa_wecosh: 4 — 13 dB for VHSES, 2 — 9 dB for NQUEE=
logmmse: 3 —-11 dB for VHSES, 2 — 7.5 dB for NOIZEU
mmse: 3 - 11 dB for VHSES, 3 - 6.5 dB for NOIZEUS
ga: 6 —10.5 dB for VHSES, 1 — 5.5 dB for NOIZEUS

stsa_weuclid: 3-11dB for VHSES, 1.5 - 7 dB f@IKEUS
logmmse_spu3: 2.5-13.5 dB for VHSES, 0.5 — 7@B\NOIZEUS
In all the cases, the improvements were generagjiidst for white noise and lowest for

babble and street noise.

15



Table 2.z PESQ scores for enhani speech using yious algorithms. Speech material: NOIZEL
SNR: 0 dB. Improvements over the scores for ungsee noisy speech are given in brackets.

Enhancement Noise type

method White Babble Street Pink Train Car

un proc. 1.55 1.75 1.83 1.60 2.05 1.72
specsub 1.63(0.08) 1.58(-0.17) 1.81(-0.02) {078B8) 2.04(-0.01) 1.77 (0.05)
mband 1.59 (0.04)  1.84(0.09) 2.02(0.19) 1.733D. 2.30(0.25) 1.91(0.19)
ga 1.61(0.06) 1.82(0.07) 2.07(0.24) 1.86(0.262.35(0.3)  1.96 (0.24)
wiener _iter 1.56 (0.01)  1.29 (-0.46) 1.17 (-0.66)1.31 (-0.29) 1.31(-0.74) 1.36 (-0.36)
wiener_as 1.77 (0.22)  1.80(0.05) 1.98(0.15) {09B0) 2.34(0.29) 1.92 (0.20)
wiener_wt 1.61(0.06)  1.41(-0.34) 1.68(-0.15) 611(0.01) 1.93(-0.12) 1.36 (-0.36)
mt_mask 1.16 (-0.39) 1.12(-0.63) 1.65(-0.18) 8%:D.32) 2.05 (0) 1.43 (-0.29)
audnoise 1.58 (0.03)  1.19 (-0.56) 1.44(-0.39) 61:0.14) 1.86(-0.19) 1.28 (-0.44)
mmse 1.82(0.27) 1.78(0.03)  2.02(0.19)  2.011(0.4 2.43 (0.38)  1.99 (0.27)
logmmse 1.80(0.25) 1.81(0.06) 2.04(0.21) 2MOQF) 2.46 (0.41) 2.02(0.3)
logmmse_spul 1.68 (0.13) 1.58 (-0.17) 1.86 (0.031.84 (0.24) 2.24(0.19) 1.79(0.07)
logmmse_spu2 1.69 (0.14) 1.53 (-0.22) 1.85(0.021.85 (0.25) 2.19(0.14) 1.79(0.07)
logmmse_spu3 1.80 (0.25)  1.66(-0.09) 1.91 (0.08)L.99 (0.39) 2.35(0.30) 1.92 (0.20)
logmmse_spu4 1.34(-0.21) 1.44(-0.31) 1.62(-0.211.53 (-0.07) 1.93 (-0.12) 1.51(-0.21)
stsa_weuclid 1.78 (0.23)  1.81(0.06)  1.99 (0.16) .9610.36)  2.40 (0.35)  1.98 (0.26)
stsa_wcosh 1.95(0.34) 1.81(0.06) 2.04(0.21) 7M7) 2.41(0.36) 1.91(0.19)
stsa_mis 1.78(0.23) 1.78(0.03) 1.81(-0.02) {©80) 2.15(0.10) 1.82(0.10)
kit 1.89 (0.34) 1.71(-0.04) 1.87(0.04) 1.97 0.3 2.07 (0.02) 1.78(0.06)
pkit 1.78(0.23) 150 (-0.25) 1.62(-0.21) 1.701() 1.71(-0.34) 1.44 (-0.28)
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Table 2.2 SNR advantage (in dB) obtainesing six technique

Enhancemer
technique

stsa_wcos

logmmst

mmse

ge

stsa_weucli

logmmse_sptL

Noise typt  SNR advantage (dE

SNR advantage (dE

for VHSES for NOIZEUS
White 13.C 9.0
Babble 4.0 2.C
Stree 5.t 3.C
Pink 12.C 8.0
Train 10.0 6.C
Ca 7.5 4.C
White 11.C 7.5
Babble 3.C 2.C
Stree 3.C 3.C
Pink 11.C 7.C
Train 11.C 7.C
Ca 10.5 5.t
White 10.C 8.C
Babble 3.C 1.t
Stree 3.C 3.C
Pink 11.C 7.C
Train 10.C 6.5
Ca 11.C 5.E
White 8.C 5.C
Babble 6.C 1.C
Stree 9.C 4.5
Pink 10.5 5.t
Train 9.C 5.C
Cal 8.5 5.C
White 11.C 7.C
Babble 3.C 1.t
Stree 3.C 3.C
Pink 10.C 6.C
Train 9.C 5.t
Ca 9.C 5.t
White 13.t 7.C
Babble 3.t 0.t
Stree 2.5 2.0
Pink 13.C 7.C
Train 10.C 5.C
Ca 10.C 4.C
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2.4 Proposed investigation

For implementing using a low-power processor ineassry aid, the noise suppression
technique should have low computational compleaitg signal delay (sum of algorithmic
delays, computational delay, and 1/O related de&hguld be acceptable for face-to-face
communication. On the basis of these consideratigeiseralized spectral subtraction along
with cascaded-median based noise estimation istsdldor real-time processing using a
fixed-point processor. To select the optimal sestaps and parameters in the processing,
detailed investigations are carried out using é&liprocessing as presented in the next
chapter. Based on these results obtained, impletiemtfor real-time processing is carried

out, as presented in the fourth chapter.
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Chapter 3

INVESTIGATIONS USING OFFLINE PROCESSING

Detailed investigations were carried out usingiodflprocessing to select the optimal set of
steps and parameters for real-time noise suppresdibe processing steps in speech
enhancement as shown in Fig. 2.1 are windowing, F@&lculation, noise spectrum
estimation, magnitude spectral subtraction, comgfgctrum calculation with noisy phase,
and re-synthesis using IFFT with overlap-add. Im@atation using 50% and 75% overlap
resulted in similar enhanced output and hence 5@8ap was selected for investigations. It
was observed that for different noises and SNReslappropriate selection of subtraction
factor a and floor factorg resulted in almost similar results for magnitudétsaction
(exponent factop = 1) and power subtractiop € 2). The results of magnitude subtraction
showed higher tolerances to variation in the valoles and, and hence only magnitude
subtraction was used. Investigations involved snglyhe effect of (a) noise estimation, (b)
analysis window length and noise estimation durat{o) parameters of generalized spectral
subtraction, (d) phase estimation. Finally the ganance of the method selected for real-
time processing was compared with some of the ndsthheported in the literature. The
evaluation method used and the investigations segepted in the subsequent sections. The
results are discussed in the last section.

3.1 Evaluation method

Implementation of signal processing for speech eo&ment was carried out using Matlab
for investigating the effects of various steps aadameters. The evaluation involved using
informal listening and an objective evaluation gsperceptual evaluation of speech quality
(PESQ) measure [10], [30]. This objective meassra prediction of the subjective mean
opinion score (MOS) of the degraded speech andl@ilated from the difference between

the loudness spectra of level-equalized and tinignedl original and degraded signals.
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Investigations were carried on speech materialsntgkom the NOIZEUS and VHSES as
described earlier in section 2.3. Noisy speech geerated by adding white, babble, street,
pink, car and train noises at SNR of 18, 15, 14,9, 0, -3, and -6 dB. The babble, street,
train, and car noises were taken from AURORA datahaz].

For SNR calculation during noise addition RMS vabfestrong speech (vowel or
vowel like) segments of the speech material wasidened. The speech signal segmented
using 20 ms rectangular window with 75% overlape&jn energy in all frames was
calculated to find the peak enerfy. A threshold value&, was selected to be 20 dB below
Ep. The speech segments with energy in the raBgeEf] were used to calculate the RMS.
Same method was used to calculate the RMS valubkeohoise. Based on the calculated
speech and noise RMS values a scaling factor fisengas determined to get an appropriate
SNR. The scaled noise was then added to cleantsgegtl to get the desired noisy speech
signal. Then the peak RMS of the generated noisgd@psignal is normalized to 0.25.

3.2 Investigation on noise estimation

Investigations were carried out to examine therithstion of magnitude spectrum of noise,
speech, and noisy speech and to compare the nsiiseagons using mean, median and
minimum statistics. Figure 3.1 and Figure 3.2 shbw scatter plot of magnitude spectra
superimposed with median for speech, noise andyrspgech, for two types of speech
material and different noises. Plots were obtaiftedhe magnitude of initial frames 20 to
101. Processing was carried with window length @i, 50% overlap and 512-point FFT.
It is seen in Figure 3.1 (a) and Figure 3.2 (a} tha spectral magnitude of clean speech is
high only for a few frames and hence the medianesé very low. For the noisy speech
signal, the medians increase because of added iGuater plots of the magnitude spectrum
of noisy speech signals with different noises aiitth different SNR's are given in Appendix
A, and these plots show the same pattern. In atdith the median, mean and minimum
were also calculated and plotted. From Figure 8.3, seen that median and minimum of
noisy speech track the noise median and minimupestively at almost all the frequencies,
while mean of noisy speech tracks the noise medmngher frequencies and clean speech

mean at lower frequencies. More plots of scattexam median, and minimum of different
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noises with 0 dB SNR are given in Appendix A andsth show the same pattern. Although
minimum tracks the noise, the minimum needs to b#iplied by a factor to get the correct

noise magnitude. Errors in estimating the factoy ead to over-subtraction and killing of

speech in weaker segments. Figure 3.4 shows thiveeRMS error. It is calculated as a dB
value of the RMS spectral samples of the estimatioor with reference to the RMS of the

spectral samples of the noise, i.e.

>[D(k) - D(K)]?

3.1
Y[D(K)I? Gy

¢gs =10log

where D(K) is the estimate from the noise spectrum é{d) is the estimation obtained from
the noisy speech. The RMS error in dB decreasdabhea$SNR decreases for both the test
materials. At 0 dB SNR, the values of RMS erroestimating the noise from noisy speech
were -18.4, -12.8, -18.2, -18.4, -22.1, and -19B, despectively, for VHSES. The
corresponding values for NOIZEUS were -17.4, -1216,1, -15.9, -18.4, and -16.4 dB. As
these errors are small, median of the noisy spewghbe considered as a suitable estimate of

noise.
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3.3 Effect of window length and noise estimation dation

Investigations were carried out to study the effexftnoise estimation duration and window
length on noise suppression. Analysis was carrigdusing rectangular window with 50%
overlap and MBNE as noise estimate. Figure 3.5FRgdre 3.6 show the PESQ score for the
enhanced speech as function of window length, fiberént types of noises at SNR 0 dB.
The plots are shown for noise estimation over 27,182, and 243 frames. The PESQ score
was high in most of the cases for the noise esitmaising 81 past frames and window
length of 20 — 40 ms. Hence further investigatiarescarried out using 30 ms window length
and noise is estimated using 81 past frames. fesponds to noise estimation duration of
approximately 1.2 s. Since MBNE has large memogyirement and sorting of past frames
is computation intensive, an alternative methowiving 3-frame 4-stage cascaded median
as an approximation to median (described in se@i@rb) is used for estimating the noise
[28], [29]. Informal listening showed that the enbad speech signals using spectral
subtraction with MBNE and CMBNE for various noigpés sounded almost the same. Table
3.1 and Table 3.2 show the PESQ scores of enhapeseth using spectral subtraction with
median based noise estimate and cascaded-mediad baise estimate for the two speech
materials. The PESQ scores for the QBNE and CMBNE amost the same, with a
maximum difference of 0.06. Based on the resultsay be concluded that CMBNE method

can be used as computationally efficient substiuté/BNE.
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3.4

Table 3.1Comparison of enhanced speech signal using MBNECAMBENE using
PESQ score. Speech: VHSES, SNR: 04B,2.5 (white, pink) & 2 (babble, street,
train, car),f = 0.001, ang = 1.

PESQ scce with clean speech as refere

Noise type Unproc  Proc. using MBNI  Proc. using CMBN
White 1.54 2.19 2.13
Babble 1.73 1.87 1.91
Stree 1.78 2.20 2.14
Pink 1.59 2.34 2.30
Train 2.00 2.61 2.62
Cal 1.67 2.18 2.14

Table 3.2 Comparison of enhanced speech signal using MBNECARBNE using
PESQ score. Speech: NOIZEUS, SNR: 04B,1.6 (white, pink, train, car) & 1.2
(babble, street}} = 0.01, ang = 1.

PESQ scce with clean speech as refere

Noise type - -
Un proc  Proc. using MBNI  Proc. using CMBN

White 1.55 1.84 1.84
Babble 1.75 1.80 1.81
Stree 1.83 2.08 2.04
Pink 1.60 2.00 1.98
Train 2.05 2.40 2.35
Cal 1.72 1.95 1.89

Effect of spectral subtraction parameters

Investigations were carried out for studying thie&tfof varying the values af andg in the

generalized spectral subtraction as given by [With y = 1. Analysis was carried out using

50% overlap, rectangular window of length 30 ms &Agoint 4-stage cascaded-median

based noise estimation over 81 frames i.e. fomadibn duration of 1.215 s. Table 3.3 and

Table 3.4 show the PESQ score for the enhancedspeing different sets ef andg. For
speech material VHSES, the best PESQ scores aametitfora as 2 — 2.5 an@ = 0.01. For
speech material NOIZEUS, the scores were besufas 1.2 — 1.6 ang = 0.01. The

processed output had perceptible amount of musicele. To further improve the quality

and intelligibility of the processed output, invgations need to be carried out with multi-

band spectral subtraction [12] and geometric apggrd@ spectral subtraction [13].
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Table 3.2 PESQ scot for the enhnced speech using spectral subtray, for different type:
of noise. Material: VHSES, SNR: 0 dB= 1, noise estimation: CMBNE.

(a) Noise: white

(b) Noise: pink

a a 'B

0 0.001 o0.01 0.1 0 0.001 0.01 0.1
0 1.54 1.54 1.54 1.54 0 1.59 1.59 1.59 1.59
1.0 1.74 1.74 1.74 1.74 1.0 1.91 1.91 1.91 1.88
1.5 2.01 2.01 2.01 1.94 1.5 2.22 2.22 2.22 2.18
2.0 2.12 2.12 2.14 2.07 2.0 2.30 2.29 2.31 2.22
2.5 211 211 2.13 2.02 2.5 2.27 2.28 2.31 2.22
3.0 2.04 2.04 1.97 1.96 3.0 2.21 2.23 2.18 2.10
3.5 2.02 2.03 1.80 1.91 3.5 2.17 2.20 2.04 2.03
(c) Noise: strex (d) Noise: babble
a a ﬂ

0 0.001 o0.01 0.1 0 0.001 0.01 0.1
0 1.77 1.77 1.77 1.77 0 1.73 1.73 1.73 1.73
1.0 2.10 2.10 2.11 2.13 1.0 1.87 1.87 1.87 1.88
1.5 2.15 2.15 2.17 2.23 1.5 1.91 191 1.91 1.95
2.0 2.14 2.14 2.18 2.27 2.0 1.91 1.91 1.93 2.01
2.5 2.09 211 2.16 2.29 2.5 1.86 1.86 1.92 2.04
3.0 2.06 2.08 2.12 2.28 3.0 1.80 1.81 1.89 2.06
3.5 2.03 2.05 2.09 2.27 3.5 1.71 1.73 1.84 2.07
(e) Noise: train (f) Noise: car
a a 'B

0 0.001 o0.01 0.1 0 0.001 0.01 0.1
0 2.00 2.00 2.00 2.00 0 1.67 1.67 1.67 1.67
1.0 2.54 2.54 2.54 2.52 1.0 1.96 1.96 1.96 1.94
1.5 2.63 2.63 2.63 2.62 1.5 2.13 2.13 2.14 2.13
2.0 2.62 2.62 2.63 2.63 2.0 2.13 2.13 2.15 2.18
2.5 2.54 2.55 2.58 2.58 2.5 2.05 2.06 2.11 2.14
3.0 2.51 2.52 2.52 2.52 3.0 1.99 2.00 2.03 2.11
3.5 2.46 2.49 2.45 2.48 35 1.93 1.95 1.95 2.08
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Table 3.2 PESQ scot for the enhanced speech using spectral subtr;, for different type:
of noise. Material: NOIZEUS, SNR: 0 dB= 1, noise estimation: CMBNE.

(a) Noise: white

(b) Noise: pink

a a 'B

0 0.001 o0.01 0.1 0 0.001 0.01 0.1
0 1.55 1.55 1.55 1.55 0 1.60 1.60 1.60 1.60
1.0 1.76 1.76 1.76 1.75 1.0 1.85 1.85 1.85 1.84
1.2 1.80 1.80 1.80 1.79 1.2 1.90 1.90 1.90 1.89
1.4 1.83 1.83 1.83 1.83 1.4 1.95 1.95 1.95 1.93
1.6 1.82 1.82 1.83 1.84 1.6 1.97 1.97 1.98 1.96
1.8 1.79 1.80 1.81 1.85 1.8 1.96 1.96 1.98 1.97
2.0 1.75 1.75 1.78 1.84 2.0 1.94 1.94 1.97 1.96
(c) Noise: strex (d) Noise: babble
a a ﬂ

0 0.001 o0.01 0.1 0 0.001 0.01 0.1
0 1.83 1.83 1.83 1.83 0 1.75 1.75 1.75 1.75
1.0 2.01 2.01 2.02 2.04 1.0 1.82 1.82 1.82 1.85
1.2 2.02 2.02 2.04 2.06 1.2 1.80 1.80 1.81 1.85
14 2.01 2.01 2.03 2.07 14 1.78 1.78 1.79 1.86
1.6 1.99 1.99 2.02 2.08 1.6 1.75 1.75 1.76 1.86
1.8 1.94 1.95 1.99 2.08 1.8 1.72 1.72 1.73 1.86
2.0 191 1.92 1.97 2.07 2.0 1.68 1.68 1.70 1.86
(e) Noise: train (f) Noise: car
a a 'B

0 0.001 o0.01 0.1 0 0.001 0.01 0.1
0 2.05 2.05 2.05 2.05 0 1.72 1.72 1.72 1.72
1.0 2.29 2.29 2.29 2.29 1.0 1.89 1.89 1.89 1.90
1.2 2.31 2.31 2.31 2.33 1.2 1.89 1.89 1.90 1.93
14 2.33 2.33 2.33 2.35 14 1.89 1.89 1.90 1.95
1.6 2.33 2.33 2.34 2.37 1.6 1.88 1.88 1.89 1.96
1.8 2.33 2.33 2.34 2.37 1.8 1.85 1.85 1.88 1.96
2.0 2.31 2.32 2.34 2.37 2.0 1.82 1.82 1.86 1.95
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3.5 Phase estimation for spectral subtraction

The magnitude spectrum of the noisy speech anegtimated magnitude spectrum of the
noise are used to get the clean magnitude speaiging (2.1). The resulting magnitude
spectrumYy(k)| was combined with the original noisy phase totige complex spectrum to
be used for estimation of the enhanced speechlsigma IFFT of the complex spectrum was
used with overlap-add for signal resynthesis. Iy ha expected that quality will improve if
the phase spectrum was also noise free. Severdlodwethave been proposed for phase
reconstruction with a minimum phase assumptiomatiiee method of signal estimation from
its magnitude spectrum [33], [34] and non-iteratiwethods using cepstral analysis [35]. The
minimum phase assumption may be considered to Ik foa speech signal produced with
non-time varying vocal tract configuration and tabexcitation. However, this assumption
may not be valid for signal segments produced tiitie-varying vocal tract configuration or

when the source of excitation is present withinubeal tract.

3.5.1 Phase estimation methods
For minimum phase sequence, Quatieri and Oppenf8dhreported an iterative algorithm,
for estimating the phase spectrum of a sequence flee magnitude spectrum and one
known sample. The method can be used for spectalcnlated usindN-point DFT withN
greater than twice the sequence length. The afgoritegins with the magnitude spectrum
[Y(K)| and initial phase estimati®(k) to estimate the desired phase spectdk). Let the
phase spectrum aftgth iteration begj(k). This is associated with the original magnitude
spectrum to obtain the complex spectrum
Y; k) =]y (e (2.4)

and the sequence is estimated as

y;(n) = IDFTY; (K)] (2.5)
For next iteration, the sequenge, (n) is calculated by imposing causality condition émei

first known samplg(0).
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y(0), n=0
yj+1(n) =1Yi (n), 1<n<N
0 N/2+1<n

2 (2.6)

The modified sequence is used to calculate comgpertrum

¥ja(k) = DFT[§,y(m)] (2.7)
The revised phase spectrum is obtained as
01:1(K) = 0Y}19(K) (2.8)

If the mean square error betwegy, )| and ¥(k)| is less than a threshold then the iteration

will be haltedandd;+1(K) is taken as the desired phase specti(kn Otherwise, the iteration
is repeated. For reconstruction of signal from stsort-time magnitude spectra with
overlapped frames, the first sample from each freamaken from the corresponding sample
of the previous frame.

Nawab et al. proposed an iterative technique [34], for extrapol a finite-length
signal from its first knowrM samples and short-time magnitude spectra of tyeaki The
algorithm begins with an initial estimate of unknosamples as the following

Yo(n)=y(), forO<sns<M -1 2.9)
0 otherwist
This initial signal estimate and the magnitude sp@c [Y(k)| are used to estimate the signal
using an iterative process. Let the signal gtterteration bey;(n). We calculate the complex

spectrum as
Y,(k) = DFT [y, (n)] (2.10)
Its phase spectrum is associated witk)|, to get the next iteration complex spectrum

Y. (k) =Y k)e

BY;(

(2.11)
and is used to calculate
Yia(n) = |DFT[\7;+1(k)] (2.12)

Signal estimatey;+1(n) is updated as
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y(n), O<nsM -1
Yj+(N) =1Yju), M<n<L-1 (2.13)
0 L<n<N-1

If the mean square error betwegy), k)jand ¥(k)| is less than a threshold then the iteration is

haltedandy;:1(n) is taken as the estimated signal. Otherwisejtdration is repeated. If the
known sequence samples are equal to or greateh#ifthe length of the sequence, then the
sequence can be uniquely reconstructed. The methiode used for reconstructing a long
sequence from its overlapped short-time magnitpeetsa by taking the initid¥l samples in
each frame from the corresponding samples of teeggling overlapped frame.

Phase reconstruction for the minimum phase sequieocethe magnitude has been
described by Rabiner and Schafer [35]. For mininphrase signals, the complex cepstrum
can be obtained from the log of the magnitude efdiscrete Fourier transform. Cepstrum

coefficients are calculated from the magnitude spatas

o(n) = IDFT|log( Y (k)| ) (2.14)
For a minimum phase sequence, the complex cepsipefficients can be calculated as
c(0), n=0
y(n) =4 2c(n), 1<sn<N/2 (2.15)
0 N/2+1<n<N-1

From the complex cepstrum, complex spectrum isutatied as

Y (k) = exdDFT[$(n))]) (2.16)
Cepstrum computation using DFT suffers from circalBasing, and to reduce these errors,
the DFT sizeN should be much longer than the expected lengtthefcepstrum. We
generally us&\ ~ 3L whereL was the sequence length [35]. We have also in\astiguse of

non-iterative method to find an initial guess floe iterative method.

3.5.2 Results of different methods of phase estimanh

Investigations were carried for resynthesis uszegp phase, phase estimating by Quatieri
and Oppenheim iterative method, Nawethal. iterative method, and cepstrum based non-

iterative method. Analysis-synthesis was carrigdgigéa) 50% overlap rectangular window,
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and (b) 75% overlap rectangular window, and (c)fffarLim method [36] of signal
estimation from modified short-time Fourier tramsfio(STFT). Griffin-Lim method [36] is
based on least square error estimation (LSEE),nmieimizing the mean squared error
between the STFT of the estimated signal and thdifrad STFT. The output signal is
resynthesized by overlap-add of the segments aduta@s IDFT of the modified complex
spectra after multiplication with the analysis womd The window used should meet the

requirement that sum of the squares of all the avslis unity, i.e.

iwz(ms— n) =1 (3.1)

m=—o0
For window lengthL and window shiftS = L/A4 corresponding to 75% overlap, this

requirement is met by modified Hamming windawn) with lengthL andw(n) is given as

w(n) = [1/(4 p? +29?) 0'5] [p+qcog2n(n+05)/L)] (3.2)
where,p = 0.54 andj = — 0.46. Except for multiplication by the modifiecadming window
and 75% overlap-add, the method does not involyeoéimer computational complexities and
hence it is suitable for real-time implementation.

Effect of phase estimation was first investigatadctean speech. Table 3.5 shows the
PESQ score for the synthesized speech using vapioase estimation methods with clean
magnitude spectrum. For zero phase, it has beamnauksthat reconstructed speech was poor
in quality with 50% and 75% overlap using rectaagwindow. Use of Griffin-Lim method
resulted in an increase in the quality. For theattee method of Quatieri and Oppenheim
[33], zero phase is assumed as the initial phaseas and the first sample is obtained from
the previous overlapped frame. After 20 iteratitimsre was no significant improvement in
the signal reconstruction. The reconstructed sigeabetter in quality as compared to
reconstructed signal with zero phase. Nawéalal. [34] have proposed a similar iterative
method to [33] by increasing the number of knowmglas. This method is implemented
assuming the initial frame as zero valued samphesaverlapped samples are assumed as
known samples. The reconstructed signal does nptowe much in quality compared to
reconstructed signal using Quatieri and Oppenhegthad. Using non-iterative method [35]

investigations were carried. It has been found thiaimum FFT length to be used for non-
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Table 3.5 PESQ score for different phase estimation techsidoieclean magnituc

spectrum.
(A) Speech material: VHSES

Signal estimation

Phase estimation Rect. win. Griffin-Lim
50% overlap 75% overlap method
Original phase 4.50 4.50 4.50
Zero phase 2.16 2.15 2.74
Cepstrum method 2.76 2.62 2.97
Quatieri-Oppenheim, zero
initial phase 2.77 2.57 2.98
Nawabet al. 2.76 2.93 2.79
Quatieri-Oppenheim,
cepstrum initial phase 2.77 265 2.98
(B) Speech materiaNOIZEUS
Signal estimation
Phase estimation Rect. win. Griffin-Lim
50% overlap 75% overlap method
Original phase 4.50 4.50 4.50
Zero phase 1.90 1.90 2.44
Cepstrum method 2.50 2.31 2.70
Quatieri-Oppenheim, zero
initial phase 2.49 2.37 2.66
Nawabet al. 2.55 2.81 241
uatieri-Oppenheim,
Q PP 2.52 2.40 2.68

cepstrum initial phase

zero phase as initial phase.

iterative method should be greater than the twfogindow length to avoid circular aliasing
effect. Using non-iterative method, the phase waisined and given as the initial phase
estimate to the iterative method of Quatieri ang@yheim[33]. The reconstructed signal

was perceptually similar and has similar PESQ storthat of reconstructed signal using

Next effect of phase estimation was investigatednduspeech enhancement by
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methods with enhanced magnitude spectrum are showiable 3.6. Enhanced magnitude



Table 3.¢ PESQ score for different phase estimation techsidoieenhance
magnitude spectrum.

(A) Speech material: VHSES, noise: white, SNR: Q@B 2,5 =0.01, ang =1

Signal estimation

Phase estimation Rect. win. Griffin-Lim
50% overlap 75% overlap method
Original phase 2.14 211 1.96
Zero phase 2.05 2.01 1.85
Cepstrum method 2.13 2.10 1.79
Quatieri-Oppenheim, zero
initial phase 2.12 2.04 1.82
Nawabet al. 2.12 2.01 1.76
Quatieri-Oppenheim, 213 206 182

cepstrum initial phase

(B) Speech materiaNOIZEUS, noise: white, SNR: 0 dka = 1.4, =0.01, any =1

Signal estimation

Phase estimation Rect. win. Griffin-Lim
50% overlap 75% overlap method

Original phase 1.83 1.83 1.74

Zero phase 1.68 1.67 1.60

Cepstrum method 1.77 1.73 1.56

Quatieri-Oppenheim, zero

initial phase 1.74 1.73 151

Nawabet al. 1.65 1.72 1.54

uatieri-Oppenheim,
Q PP 1.74 1.66 1.57

cepstrum initial phase

spectrum was obtained using spectral subtractioth wascaded-median based noise
estimation. Subtraction parametg¢ds= 0.01 ando = 2 for "VHSES" ando = 1.4 for "
NOIZEUS " were used. Signal estimation is done gisiifferent phase estimation techniques
as discussed in earlier section. The results shawadphase estimation by the different
methods did not result in an improvement over dssoy phase, although all of them gave
better scores than use of zero phase. As the praigration methods involve additional
computing, it may be concluded that use of noisgsghas used conventionally is the most

suitable method for real-time processing.
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Table 3.7SNR advantage obtained using spectral subtractittn3-point 4-stage cascade
median based noise estimatianas given belows = 0.01,y = 1.

_ Material: VHSE( Material: NOIZEUS
Noise type SNR advantag Optimala SNR advantag Optimala
White 13.C 2.C 7.C 1.4
Babble 4.C 2.C 1kt 1.2
Stree 5.C 2.t 3.t 1.4
Pink 12.t 2.C 6.5 1.4
Train 8.C 2.C 4.C 14
Cal 9.C 2.C 4.C 1.4

3.6 Discussion

Processing was carried out with sampling frequesic$0 kHz and 30 ms frames (frame
lengthL = 300 samples). As the processed outputs withlBRGthN = 512 and higher were
indistinguishableN = 512 has been used in real-time processing. rrdbtistening showed
that the processing significantly enhanced the @péar all noises with different SNR's and
there was no audible roughness. While spectralr ffaotor # = 0.01 was found to be
appropriate in all cases, most appropriate valugubfraction factow varied over 2 — 2.5 for
"VHSES" and 1.2 — 1.4 for "NOIZEUS". An objectiveaduation was carried out using
PESQ measure for different types of noise and Sbhiilitions. Figure 3.7 and Figure 3.8
show the PESQ score vs. SNR plot of unprocessecardssed signals for noisy speech
signals. For unprocessed speech, the score dedrpesgressively with decrease in SNR.
While processing of noise-free speech decreaseddbie from 4.5 to 3.7. SNR advantage
was calculated using PESQ score vs. SNR plots stoae of 2.0, which is generally
considered as lowest score for acceptable speetdiie B.7 shows the SNR advantage for
different types of noises and the optimal used. It resulted in SNR advantage of
approximately 4 — 13 dB for "VSHES" and 1.5 — 7fdB"NOIZEUS" speech material. Thus
the results show that the SNR advantage obtain#dtiaeé proposed method is comparable to
the best enhancement methods as evaluated earsiection 2.3.
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Chapter 4

IMPLEMENTATION FOR REAL-TIME PROCESSING

In order to use it in sensory aids for the heanmpaired [1], [3], the noise suppression and
spectral subtraction technique was implemented @8R board “Spectrum Digital eZdsp
USB Stick” [37], based on 16-bit fixed point proses "TI TMS320C5515" [38] for real-
time operation. The block diagram of the DSP Baarghown in Fig. 4.1. The board has
embedded JTAG emulator XDS100 for source level dgimg and 4 MB flash for user
program. Line in, and headphone out connectorsherbbard may be used to give stereo
input and recording the stereo output. The board Ipaogrammable codec "TI
TLV320AIC3204" [39] with stereo ADC and DAC with H8)/24/32-bit quantization and 8 —
192 kHz sampling. The program was written in CngsiTl CCStudio, ver. 4.0" as the
development environment. Internal bus structurehef processor supports one 32-bit data
read bus, two 16-bit data read buses, two 16-b# daite buses, one program bus, and
peripheral DMA buses with capability of handling t@pfour 16-bit data reads and two 16-bit
data writes in a cycl&he processor has a unified memory space of 16 MiB 320 KB on-
chip RAM (including 64 KB dual access RAM), 128 KiB-chip ROM. It also has four 4-
channel DMA controllers, three 32-bit timers, tightoupled FFT hardware accelerator for
efficiently computing 8-1024-point FFT. A complexmber is stored as 4-byte word, with
16-bit real and 16-bit imaginary parts. The prooessn be operated at a clock frequency of
up to 120 MHz.

4.1 Implementation

The implementation uses one channel of the codéb, 18-bit quantization and 12 kHz
sampling. A block diagram of the spectral subt@ctfior noisy speech in real-time is shown
in Fig. 4.2. At the set sampling frequency, DMA wchal-2 reads the ADC values into the

input cyclic buffer and channel-0 writes the outpwtlic buffer values to DAC. The input

52



8
]
3 5 <
& | TMS320(EMF | & | *
C5515 | &
—
JTAG = =
@ || Embedd E
mi H
B[ xos10041AG [ sD :
0ooo FCBus |
LEDs :
96 x 16 pixel ; AlC
OLED Display 3204
SW1  SW2
—
MicroSD c =
ooy (O] [O] | weso) |2
= 2
S
Figure 1-3, C5515 eZdsp USB Stick Block Diagram

Fig. 4.1Block diagram of TMS320C5515 eZdsp USB S{[37]
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Fig. 4.2lmplementation of spectral subtraction on the DS&t[29]

samples, spectral values, and the processed saanple stored as 4-byte words with 16-bit
real and 16-bit imaginary parts, in order to redtioe conversion overheads. The input,
output, data transfer, and buffering operationsdengsed for an efficient realization of the
processing with 50% overlap and zero padding. Asvshin Fig. 4.3, the input samples are
acquired using a 3-block input cyclic buffer ané firocessed samples are output using a 2-
block cyclic buffer, withSword blocks and = L/2. Pointers with cyclic values (.., 1, 2, 3, 1,
..) are used to track the current input and jukefiinput blocks. They are initialized to 1 and
3, respectively. The current output and write-tdpati blocks are tracked by pointers with
toggling values of 1 and 2, and initialized as H &) respectively. A DMA interrupt is
generated when the current input block gets filksll.pointers are incremented cyclically.
The DMA-mediated reading from ADC and writing to BAare continued. The samples of

the just-filled and the previous blocks are copethe input data buffer, and are padded with
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Fig. 4.z Data transfer and buffering operatioS = L/2) [29]

N-L zero-valued samples to serve as input4aoint FFT. The processing for noise estima-
tion, spectral subtraction, and re-synthesis opuwtusignal were implemented as discussed
earlier with due care to avoid overflows.

The time domain segment is obtained as the lfirsamples of the real part of the
point IFFT of the modified complex spectrum andatioin the output data buffer. A buffer
of Ssamples is used for overlap-add operations. TeeSisamples of the output data buffer
are added to the fir& samples of the overlap buffer containing the paresults from the
previous operation. The resultiggamples are written to the write-to output blotke last
Ssamples of the output data buffer are copiedeamtrerlap buffer.

Based on the offline investigations, real-time @ssing was implemented using
magnitude spectral subtraction with 3-point 4-stegscaded-median based noise estimation,
analysis-synthesis using 30 ms window with 50% layerand synthesis using phase
spectrum of the noisy speech signal along withetitfganced magnitude spectrum. For testing
of the program, value ¢f is kept a90.01. The optimum value of is selected as obtained
from offline processing and given in Table 3.7.idt1.2 — 1.4 for speech material with
consonant-rich sentences (NOIZEUS) asd2 — 2.5 for vowels and voiced consonant rich

material (VHSES). In real-time processing code,ttixe factors are defined as macros, with
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names "ALPHA" for subtraction factar and "BETA" for spectral floor factof. They
should be assigned the values as ALPHA = rounjl BETA = 1/5.

4.2 Results

The real-time processing was carried out with samgdtequency of 10 kH4, = 300, andN

= 512. Speech enhancement with real-time procesgagytested for speech signals mixed
with different noises at different SNRs. For théssts, the noise added signal from the PC
sound card was given to the codec input of the B&#d and the output from its codec was
acquired through the sound card. As an exampleaafgssing, the noise-free speech, noisy
speech with white noise at 3 dB SNR, noise adde®i @B SNR, estimated noise using 3-
point 4-stage cascaded-median, output from offpngcessing, and output from real-time
processing are shown in Figure 4.4. Informal listgrshowed that the processed output from
the DSP board was perceptually similar to the spweding output from the offline
implementation.

For an objective evaluation, PESQ score for thegssed output with the noise-free
speech as the reference signal was calculatedsddres were calculated for (a) unprocessed
noisy speech (Unproc.), (b) offline processed aufpuoc. Matlab), (c) unprocessed DSP
output (Unproc. real-time), and (d) real-time prsssd DSP output (Proc. real-time). The
plots of PESQ score vs. SNR are shown Figure 4 Fgure 4.6 for the two speech
materials. For noise-free speech, passing the bpmgoal without any processing decreases
the score from 4.5 to 3.3. This score serves asfaence for examining the scores after
speech enhancement. Application of the processingoise-free speech decreases the score
from 4.5 to 3.7 for offline processing and from 3@ 2.9 for real-time processing. For
unprocessed speech, decrease in SNR lowers PE$€) som 2.5 at 18 dB to 1.5 at -6 dB,
and the scores are almost similar for the two nagerAlso for SNR of 18 dB and below,
passing the signal through the DSP board doesanttiloute to any significant degradation
of score. For both materials, both types of praogssesult in increase in scores. The offline

processing introduces an improvement in the saafrapproximately 0.57 — 0.80 for VHSES
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Fig. 4.4 Processing o(-/ai-/i/-/ul- "aayiye aap kaa naam kyaa he- "Where were you a ye:i
ago?, from a male peaker, with white noise at 3 dB S.
and 0.28 — 0.44 for NOIZEUS, for SNR from 18 dBOtdB. Real-time processing results in
a slightly less improvement: 0.39 — 0.71 for VHS# 8 0.22 — 0.32 for NOIZEUS.

The processor has maximum clock frequency of 120zMihd the speech
enhancement was found to be satisfactory for akcloequency down to 16.4 MHz,
indicating that the technique needed approximaidl% of the processing capacity at the
clock frequency of 120 MHz and the rest could bedus implementing other processing as
needed for a sensory aid. A comparison of input aotput using a DSO showed a
processing delay of 48 ms and it was found to Hependent of the clock speed. The speech
enhancement method has 1.5 frame algorithmic défmnce the frame size of 30 ms

accounts for delay of 45 ms. The processing cordigon does not contribute any additional
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and real-time processing. Speech: NOIZEUS, noibétew

computation delay beyond the algorithmic delay. &tiditional delay of 3 ms may be due to

the DMA mediated I/O operations.
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Chapter 5

SUMMARY AND CONCLUSIONS

Noisy environments have an adverse effect on sppecteption by normal as well as
hearing impaired person. Presence of noise incsethge hearing threshold, and increases
spectral masking, leading to degraded speech p@woepFurther, for persons with
sensorineural hearing loss with associated widemeditory filters, and elevated hearing
thresholds, speech perception becomes very difficuioisy environment. For enhancement
of noisy speech, a spectral subtraction algorithes inplemented for offline processing and
investigations were performed with different tyesl SNRs of noise. Processing techniques
were evaluated using informal listening and objexgvaluation using PESQ score.

The investigations were carried out to compare nhese estimation using mean,
median and minimum statistics. It was found thatlie@-based noise estimation tracks the
noise spectrum well at all the frequencies withfedé@nt noises at different SNR values.
Investigations were also carried out with differemhdow lengths and noise estimation
durations. It was found that window length of 280-ms and noise estimation using the past
81 frames (corresponding to approximately 1.2 s3tbms window length) resulted in good
PESQ score. Median-based noise estimation (MBNEpmputationally expensive and has
large memory requirement. Hence a cascaded-medmsaumnoise estimation (CMBNE), was
used to get an approximate median, as it involveshntess computation and memory. The
enhanced noisy speech obtained using MBNE and r&-pdistage CMBNE were
perceptually similar and have no significant difiece in PESQ score. Further, investigations
were carried out for studying the effect of thecip® subtraction parameters. The PESQ
score was high witlx in the range 2 — 2.5 aniti= 0.01 for speech materials rich in vowels
and voiced sounds and within the range 1.2 — 1.4 amgi= 0.01 for sentences rich in
consonants. To test the hypothesis that the PESf@ scay improve if the phase spectrum

used for resynthesis is noise free, investigatiese carried out using different phase
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estimation methods. It was found that use of plessienated from the enhanced magnitude
spectrum did not improve scores as compared wibsetlobtained with the use of noisy
phase.

Based on the above investigations, magnitude spestibtraction with 3-point 4-
stage cascaded-median based noise estimationsemsyythesis using 30 ms window with
50% overlap, and synthesis using phase spectruimeafioisy speech signal along with the
enhanced magnitude spectrum was used. Speech enfamtowith our proposed method for
noisy speech of 6 dB SNR with different types otlidde stationary and non-stationary
noises and speech material from NOIZEUS databasdted in improvement of 0.11 — 0.43
in PESQ scores. An examination of the improvemantthe scores for noisy speech with
SNR of 18 dB down to -6 dB showed that the processesulted in SNR advantage of 1.5 —
7 dB. The SNR advantage was comparable to or b#twr those obtained using the
enhancement methods available in [10] and testetth@same speech material and types of
noise.

For real-time operation, the processing technigas imnplemented on a DSP board
based on 16-bit fixed point processor TMS320C55ith wn-chip FFT hardware. The data
transfer and buffering operations were devisedafoefficient realization with 50% overlap.
Informal listening showed that the processed outparh the DSP board was perceptually
similar to the corresponding output from the o#limplementation. The technique used
about one-seventh of computing capacity of the ggsar and resulted in a signal delay of
approximately 48 ms.

For further improving the performance of the praggbsethod, use of subtraction and
spectral floor factors dependent on frequency angbsteriori SNR estimate need to be
examined. Also its feasibility for real-time prosgsy needs to be checked. The proposed
speech enhancement technique may be combined idr signal processing techniques
used in the sensory aids and may be tested forowimgy perception of different speech
materials by the hearing-impaired listeners. Thpl@mentation using other processors may
also be investigated. Subjective evaluation oflligibility and quality of enhanced speech
needs to be carried out. For subjective evaluatibrintelligibility test a GUI has been

developed using Matlab and instructions for thé @es given in Appendix B.
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Appendix A

INVESTIGATION ON NOISE ESTIMATION
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Fig. A.1 Scattemplots of magnitude spectra of noisy speech sigsaksech material: VHSES.
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Fig. A.4 Median of magnitude spectra of clean speech signal, nois@aisgl speechSNR: 0 dB),
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Fig. A.5 Minimum of magnitude spectra of clean speech signal, nois@aisgt speeckrSNR: 0 dB),

speech material: VHSES
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Fig. A.6 Meanof magnitude spectra of clean speech signal, noiseaisgl speechSNR: 0 dB),

speech material: NOIZEUS
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Fig. A.7 Medianof magnitude spectra of clean speech signal, nois@aisgl speechSNR: 0 dB),
speech material: NOIZEUS
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Appendix B

INTELLIGIBILITY TEST

This is a listening test involving presentationspieech sounds. For each sound presented,
you need to identify the corresponding word froristiof six words. You will be seated in
front of a computer monitor and the test will bendocted by presenting the sounds and
recording your responses. The sounds will be ptedensing a speaker or a pair of
headphones, with the volume level of the soundsséeljl to the most comfortable level for
you. The test starts with opening of a window oa skreen. Once the window is open, you
will be able to access the ‘Test id’ pop-up merlistening test’, ‘Practice’ and ‘Close’
buttons.

Practice session is to familiarize you to the wartlthe test. Clicking on ‘Close’ will
terminate the practice session. On clicking 'Pcattithe screen will show 30 words in a
panel, a vertical scrollbar and a ‘Close’ buttosing scrollbar you can see all the words. On
clicking on any word you will be able to listen it.

The experiment consists of a set of six tests. dehetest, there will be 25
presentations. Before starting the test you neesliect the test id from the ‘“Test id’ pop-up
menu in MRT window. On clicking ‘Listening testegt will be started. During the test, the
screen shows the current presentation numberpthertumber of presentations and test id.
There are nine buttons marked as ‘Play’, ‘Nextx ssponse buttons and ‘Close’ button.
After ‘Play’ is clicked, “Would you write <test wdp”, sentence will be played. You need to
select the most appropriate word from the six wastewn in the panel. The response
buttons appear inactive until the sounds have pessented. You can indicate your response
by clicking on one of the six responses dependimgvbich one is perceived to be more
appropriate, or you may listen to the sound aggiwclizcking on ‘Play’. After the response,
‘Next’ and ‘Close’ buttons become active. Once yare sure of your response, click on

‘Next’ for the next presentation. Clicking on ‘Cedswill terminate the test. The sequence of
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presentations will be continued until the displapw “Test <test_id> is over”. Next test can
be continued by selecting test id in MRT windowickihg on ‘Listening test’, will start the

test.
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