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ABSTRACT 
 

Spectral subtraction for speech enhancement has been widely investigated, using analysis and 

synthesis based on discrete Fourier transform and is reported to perform well for suppression 

of stationary noises. This thesis presents investigations on implementation of spectral 

subtraction using the discrete cosine transform (DCT) and its real-time implementation. DCT 

is considered suitable for this application because of its superior energy compaction and 

binary phase representation. The noise is estimated using a 3-frame 4-stage cascaded-median 

without involving a voice activity detector. The qualitative results are compared to that of the 

same technique used with DFT. Real-time implementation is done on a DSP board with the 

16-bit fixed point processor TMS320C5515. The on-board codec is used to continuously 

acquire the input signal and output the processed signal at a sampling rate of 10kHz. DMA is 

used to facilitate the input and output buffering. A fast cosine transform implementation of 

DCT is realized and the on-chip FFT hardware is used for performing forward and inverse 

transformations. The real-time processing is implemented with a 300-point analysis-synthesis 

window and 512-point FFT. The implementation uses about 1/6th of the computing capacity, 

and the processing delay is approximately 49 ms, making it acceptable for hearing aid 

applications.  
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Chapter 1 

 

INTRODUCTION 
 

 

1.1 Problem overview  

 Presence of noise in the input speech deteriorates the performance of speech 

recognition algorithms and the effectiveness of hearing aids. Several noise suppression 

techniques have been developed for enhancement of speech corrupted with noise for use in 

hearing aids, cochlear prosthesis or sensory aids. In most of these applications, a single 

channel input is available and use of additional microphone for providing a reference input 

for adaptive noise cancellation is not practical. Also, for real-time operation in hearing aids, 

the algorithm used must have low complexity and memory requirement. Spectral subtraction 

algorithm [1], [2] is a single input enhancement method and is computationally efficient. It 

works on an additive model of noise, which has to be estimated from the noisy signal. A 

dynamic estimation of noise is required as it is generally non-stationary. Some of the methods 

developed for noise estimation are minimal tracking algorithms, time-recursive averaging 

algorithms, histogram based techniques and quantile-based ones [3]−[5]. They differ in 

computational complexity and memory requirement, which affect their suitability for real-

time implementation. Voice activity detection based methods may not work satisfactorily in 

low SNR conditions and may not correctly track the noise spectrum during long speech 

segments. So methods not requiring it are preferable. Methods based on order statistics are 

reported to work well [3]−[5], but they involve sorting operations which increase their 

complexity and memory requirements.  

 Choice of the transform used for processing is an important consideration. It is 

desirable that the coefficients generated are uncorrelated, and the transform is invertible and 

computationally less intensive [6]. Commonly used transforms are Karhunen-Loeve 

transform (KLT), discrete Fourier transform (DFT), discrete cosine transform (DCT), and 

discrete wavelet transform (DWT). KLT is optimal in terms of energy compaction, but 

depends on input statistics. The main advantage of DWT is its fast implementation because of 

complexity of order N, but it offers less number of frequency bands, which may lead to 

insufficient separability of speech and noise. DFT is the most established transform in speech 

processing and many fast Fourier transform (FFT) algorithms are available for its efficient 

computation. However, DFT produces complex coefficients and spectral subtraction involves 
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modifications of the magnitude spectra only. Using the original phase for reconstruction of 

the enhanced signal limits the enhancement that can be obtained. DCT is well established 

transform in image processing and compression algorithms, owing to its excellent energy 

compaction and simpler phase representation. Hence, its application in the field of speech 

processing is worth investigating.  

1.2 Project objective 

 The objective of this project is to compare performance of DCT with DFT for speech 

enhancement using spectral subtraction and to verify whether it is suitable for real-time 

applications. The performance evaluation is carried out through offline implementation using 

Matlab. This is followed by implementation of DCT-based spectral subtraction on a 16-bit 

fixed point DSP processor, with an on-chip FFT hardware and thus devising methods for 

efficient DCT implementation to computations. 

1.3 Dissertation outline 

 Chapter 2 contains the basics of DCT and a comparison between DCT and DFT. 

Chapter 3 presents a discussion on spectral subtraction and noise estimation. Chapter 4 

describes the investigations on Matlab based offline implementation. The real-time 

implementation aspects using 16-bit fixed point processor TMS320C5515 are described in 

Chapter 5. The last chapter provides summary and conclusion of the work. 
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Chapter 2 

 

DCT BASICS 
 

 

2.1 Introduction 

 The DCT of a sequence expresses it in terms of sum of cosine functions at different 

frequencies. Mathematically, DCT is equivalent to the DFT of even extensions of the signal. 

Fig. 2.1 shows an example of even extensions of a N-sample sequence, wherein Fig. 2.1(b) 

shows an even periodic extension of x(n) given in Fig. 2.1(a) and Fig. 2.1(c) shows y(n) as 

2N-point even extension of x(n). Depending upon the type of extension, there are eight 

standard DCT variants [7], out of which four are commonly used. For a sequence abcd, even 

extensions abcdcba, abcddcba, dcbabcd, and dcbaabcd can form a basis for DCT. DCT-II 

and DCT-III correspond to the extension abcddcba. These transforms satisfy the property of 

being inverses of each other and are used as the forward and inverse transforms in this thesis, 

respectively. These are given as the following : 

                
 

 
   

 

 
      

                  (1) 

       
 

 
               

 

 
   

 

 
      

                 (2) 

2.2 Fast cosine transform 

 The direct application of DCT and IDCT formulae for N-sample sequence would 

require O(N
2
) operations, but by factorizing the computation similarly to the fast Fourier 

transform (FFT), it is possible to reduce the complexity. Such reduced O(N log N) methods to 

compute DCTs are known as fast cosine transform (FCT) algorithms. Though there are 

algorithms that directly specialize in optimizing DCT, calculation of the transform in terms of 

DFT is useful for implementation on a DSP platform with FFT hardware.  

 DCT of an N-sample sequence x(n) can be computed by taking the 2N-point DFT of 

y(n) shown in Fig. 2.1(c) and multiplying it by    
   

, where the complex exponential 

  
    

      

 . Alternatively, it can be computed by taking 2N-point DFT of the original 

sequence with N zeros padded to it, multiplying it by    
   

 and then taking twice the real part 

[8]. Similarly IDCT can be calculated by using a 2N-point IDFT.  

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
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Makhoul [8] proposed an algorithm that can be used to obtain an N-point DCT via 

an N-point DFT. This algorithm is of interest owing to the reduced complexity it offers for a 

real-time implementation of DCT. It involves dividing the extension of the signal, i.e. y(n) 

into N-point even and odd sequences, v(n) and w(n) as shown in Fig. 2.1(d) and is given as 

                                       (3) 

Applying the properties of signal periodicity and symmetry, sequence v(n) can be expressed 

in terms of x(n) as 

        
                                        

   

 
 

            
   

 
          

   (4) 

where     stands for the integral part of p. The N- point DFT of this sequence v(n) is 

calculated as V(k), 0 ≤ k ≤ N-1. It is multiplied by 2 
    

   and the real part, gives the DCT 

      of x(n) :  

               
         

     
                       (5) 

For computing x(n) as IDCT of a given forward transform               , 

V(k) is computed as the following 

          
 

 
    

                                 (6) 

(b)  

Figure 2.1. Example of even extensions of a sequence: (a) Original sequence x(n), 0 ≤ n ≤ N−1, (b) 

Periodic 2N- sample even extension of x(n), (c) y(n), A 2N- sample even extension of x(n), (d) 

Division of y(n) into its v(n) and w(n). 

 

 

 

  

(a)  

(c)  (d)  
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with   (N) = 0. IDFT of V(k) results in a real sequence      and is used to get x(n), using the 

relation in (4). With use of FFT, the complexity of this algorithm for computing DCT is 

brought down from O(N
2
) to O(NlogN) with O(N) pre- and post-processing steps involving 

multiplications. 

2.3 Comparison of DCT and DFT 

 The suitability of DCT and DFT for spectral subtraction is compared on the basis of 

phase, energy compaction, and some miscellaneous factors. 

Phase: Noise addition disturbs both magnitude and phase spectra of the signal. Most 

of the speech enhancement operations enhance the magnitude spectrum. The phase spectrum 

of the noisy speech is taken as the best estimate of phase spectrum of the clean signal, and it 

is used to reconstruct the enhanced speech spectrum after modification of the magnitude 

spectrum [9]. If the phase spectrum is set to zero and speech is resynthesized, the speech 

sounds voiced with a constant pitch. If it is replaced by a random phase between −π to +π, the 

resynthesized speech sounds unvoiced. Vary [10] has reported that random phase deviation 

upto a threshold of π/8 can be acceptable and that the speech sounds rough after that. The 

DCT coefficients have binary phase of 0 and π. In regions with significant amount of signal 

energy, i.e. the high SNR blocks, noise will be weak to change the sign on the coefficient, so 

its effect would be confined to magnitude. If the noise dominates so much that it changes the 

sign resulting in an erroneous phase, the subtraction algorithm will counteract it with highly 

modifying the magnitude, thus significantly reducing the effect of erroneous phase. Thus 

DCT is expected to give a better phase performance [6]. 

 Energy Compaction: The efficiency of a transform is highly gauged by the energy 

compaction it offers. If the information is present in fewer coefficients, the other components 

can be discarded or attenuated. As shown in [11], energy compaction provided by DCT is 

nearly as much as that of the optimal KLT and is definitely higher than DFT. A demonstration 

has been given in [6]. A clean speech is divided into frames using a rectangular window with 

50% overlap and the transforms are performed. The magnitude of resulting coefficients are 

arranged in decreasing order and l lowest valued coefficients are set to zero. The magnitude 

and phase of the resulting coefficients are used to reconstruct the speech using weighted 

overlap-add technique. A plot of square error vs l, given in Fig. 2.2., shows that DCT 

provides better energy compaction. Thus, use of DCT is justified for spectral subtraction as 

noise suppression is achieved by attenuating the transform coefficients. 

Resolution and edge effect: For N-sample sequence, DCT has N independent spectral 

coefficients whereas DFT has N/2+1 independent coefficients (for an even N) due to the 

property of conjugate symmetry. Further, the boundary effects (effects due to block 
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discontinuities) in DCT are less predominant than in DFT because of the smooth transitions at 

the edges generated as a result of even extension [11].  

Based on these considerations, we can expect DCT to perform better than DFT for 

spectral subtraction.  
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Chapter 3 

 

  SPECTRAL SUBTRACTION FOR  

 SPEECH ENHANCEMENT 
 

 

3.1 Spectral subtraction 

 Spectral subtraction is based on the additive model of speech and noise, along with 

the assumption that input signal and noise are uncorrelated, which is valid only in a quasi-

statistical sense. The estimate of clean speech is obtained by the subtraction of estimated 

noise from the input noisy signal. Thus, the processing requires noise estimation, which can 

be done by using a voice activity detector or using statistical methods. 

 A block diagram of the spectral subtraction in transform domain is shown in Fig. 3.1, 

where DFT or DCT is used for spectrum calculation and corresponding inverse transform is 

used for resynthesis. The input signal is segmented by overlapping windows and the spectrum 

is calculated for each windowed segment. This is followed by magnitude and phase 

calculation. The phase will be in the range of [0, 2π] in case of DFT, whereas the binary value 

of 0 or π for DCT. Noise magnitude spectrum Dn (k) is estimated using the statistics of the 

magnitude spectra of previous frames and it is subtracted from the magnitude value of the 

transform of the noise corrupted signal |Xn(k)| to obtain the enhanced signal |Yn(k)|. In case of 

DCT, the magnitude is the absolute value of the transformation of the noisy signal. The 

enhanced signal magnitude is then combined with the phase of noisy speech to get the 

spectrum for re-synthesizing speech. Time domain waveform segment is calculated from the 

speech by applying inverse transform (IDFT or IDCT). An overlap-add is carried out at the 

output to mask the discontinuities created due to the dissociation of magnitude and phase 

made in the short-time spectrum of the original signal.  

 A large number of variations of the basic technique have been developed for use in 

audio codecs and speech recognition. Berouti et al. developed a generalized spectral 

subtraction algorithm [1] in which the effects of musical noise are mitigated by employing an 

over-subtraction factor α and a spectral flooring factor β. It is given as 

           
                                     

                                       
   (9) 
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where α > 1, 0 < β << 1, and γ is the exponent. It results in magnitude subtraction if γ = 1 and 

power subtraction if γ = 2. The purpose of   is to compensate for the underestimation of noise 

and to remove broadband spectral peaks, thus reducing the musical noise. The remnants of 

this operation are narrow spectral valleys, which are masked by using a flooring factor. 

Higher values of α may create distortions in speech. The retrieved magnitude spectrum is 

used to synthesize the cleaned speech signal.  

 In generalized spectral subtraction [1], it is assumed that noise affects the entire 

spectrum uniformly, which is generally not valid given the dynamic nature of noise. To 

overcome this, adaptive algorithms [1], with the parameter α varying with estimated SNR 

have been proposed. Kamath [14] proposed a multi-band approach to power spectral 

subtraction by using a band specific over-subtraction factor αi and a tweaking factor δi. The 

estimated magnitude in the ith band is given as 

           
                             

         

                                          
   (10) 

where αi for band i varies with the segmental SNR (in dB) of the corresponding band and is 

computed as  

     

                    

  
 

  
                 

                      

    (11) 

The band SNRi (in dB) is estimated as 

                        
  
  

           
  
  

    (12) 

The tweaking factor δi provides an additional degree of control that can be utilized to specify 

a frequency specific subtraction factor beside αi which controls noise subtraction level based 

on the band SNR. The values are empirically determined in [14] as 

Figure 3.1. Spectral subtraction using DFT or DCT, adapted from [13] 
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  (13) 

where fi is the upper frequency of the ith band and Fs is the sampling frequency. The 

experiments were conducted by dividing the speech into 1 to 8 bands. Four linearly spaced 

frequency bands were found to be adequate in obtaining good speech quality. Similar 

approach can be followed for multi-band spectral subtraction in DCT domain. 

3.2 Noise estimation 

 Noise spectrum needs to be dynamically estimated because of its non-stationary 

nature. The time corresponding to the number of past frames using which noise of the current 

frame is estimated is called the noise estimation duration. In the spectral subtraction 

algorithm, an under-estimation results in residual noise while an over-estimation results in 

distortion leading to degraded quality and possibly a low intelligibility. By using a voice 

activity detector or a speech/non-speech classifier, noise estimation is carried out as a moving 

average over several overlapping windows during silence intervals under the assumption that 

noise remains stationary during speech segments[15]. This method may not work 

satisfactorily under low SNR conditions and it may not track the variation in noise spectrum 

during long speech segments. Hence, it is desirable to have a method that does not depend on 

voice activity detection. Several statistical techniques for dynamically estimating the noise 

spectrum without involving voice activity detection have been reported, e.g. minimal-tracking 

algorithms, time-recursive averaging algorithms, histogram based algorithms, and quantile-

based algorithms some of which are discussed below. 

3.2.1 Histogram-based techniques 

 In histogram-based methods [18], noise is estimated based on the histogram of each 

frequency bin of power spectrum. The value corresponding to the maximum of the histogram 

distribution over the past frames is considered as estimate of the noise spectrum in the current 

frame. Appropriate bin width for histogram at each frequency needs to be used to maintain a 

low variability yet a fine estimation of noise spectrum. Though this method was reported to 

perform well, it has a high computational complexity which makes it unsuitable for 

implementation on low-power processor.   

3.2.2 Quantile-based noise estimation (QBNE) 

 Not all frequency bands are occupied by speech even during speech segments of the 

input signal and energy in each frequency band is at noise level for a significant fraction of 

time. Quantile-based noise estimation [16] is based on the observation that the signal energy 
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in a particular frequency bin is high due to the contribution by speech signal and occurs in 

only 10−20% of the frames. Therefore in this approach, noise spectrum is estimated by 

selecting a certain quantile from the previous frames of the noisy speech spectrum. The 

method is unsuitable for real-time operation as it involves sorting of past frames which is 

computation intensive and also has a large memory requirement.  

3.2.3 Cascaded-median based noise estimation (CMBNE) 

 Out of the many statistics based noise estimation methods for single channel speech 

enhancement, a median based estimation has been reported to work in a robust manner [16]. 

As sorting operations for true median require a large amount of memory and time, it is not 

suitable for real time implementation. An approximation to the moving median with 

satisfactory saving in memory and computation is given by cascaded median [13]. In this 

method, the entire block of input is passed in small size frames and a local median is 

estimated, which is passed onto the next stage. So, in a p-frame q-stage cascaded median, an 

ensemble median is calculated once all the p-frames in a stage are filled and is output to the 

next stage. A block diagram of cascaded median is shown in Fig. 3.2. Thus an approximated 

median is obtained at the output after every M = p
q
 input frames. Let us compare the 

computational complexities of true median and cascaded median, for noise estimated in each 

frequency bin every M-frames from the previous M-frames. For a true median based 

algorithm, a buffer of M-samples is required for sorting and the number of sorting operations 

are M(M-1)/2 i.e. (M-1)/2 per frame. The cascaded median requires q p-sample buffers i.e. a 

buffer of qp samples and p(p-1)/2 sorting operations per frame per frequency bin, as the 

median is calculated at only one stage at each frame position. Therefore, the saving ratios for 

storage and sorting are M/(pq) and M/p. 

3.2.4 Dynamic quantile tracking based noise estimation (DQTBNE) 

Tiwari and Pandey [17] proposed a dynamic tracking algorithm to estimate the noise 

spectrum as a quantile of the input noisy spectrum. The algorithm does not involve storage 

and sorting of past samples. In this method, noise spectral sample in each frame is estimated 

by applying an increment or a decrement on the previous estimate. Real-time implementation 

using 0.25-quantile as the noise estimate gave satisfactory results in DFT domain.  

Figure 3.2. A p-point q-stage cascaded-median based noise estimation, from [13] 

|Xn(k)| Dn(k)

MAG.SP.-1

MEDIAN 1

MAG.SP.-2

MAG.SP.-P

MED1-1

MEDIAN 2

MED1-2

MED1-P

MEDQ-1-1

MEDIAN Q

MEDQ-1-2

MEDQ-1-P



 

11 

 

 

Chapter 4 

 

INVESTIGATIONS USING OFFLINE 

IMPLEMENTATION 
 

 

4.1 Introduction 

 Real-time implementation using a low-power processor in a sensory aid requires a 

technique with low computational complexity. Generalized spectral subtraction with noise 

estimation based on cascaded-median was chosen for the same. Investigations were carried 

out to study the effect of processing methods and associated parameters on noise suppression. 

The investigations that were carried out for each of the processing steps during speech 

enhancement given in Fig. 3.1 are shown in Table 4.1. Processing was carried out for signal 

sampling frequency of 10 kHz. All implementations for investigations using offline 

processing were carried out using MATLAB. 

Table 4.1. Processing steps and investigations 

Processing step  Investigations carried out 

Windowing 

  Window type : rectangular, Hamming, Hanning, 

Griffin-Lim 

 Window overlap : 50%, 75% (as applicable with 

the window) 

 Window length : 10−50 ms 

Transform calculation   Transform type : DFT/ IDFT, DCT/ IDCT  

Noise estimation 

  Noise estimation methods : mean based noise 

estimation, CMBNE, DQTBNE 

 Noise estimation duration : past 27, 81, 161, 243 

frames 

Magnitude spectral subtraction 
  Effect of parameters of generalized spectral 

subtraction. (γ= 1 throughout the report)  

Spectrum calculation with phase    Importance of phase in enhancing speech quality 

  

Along with median, performance of other quantiles for noise tracking was also tested. The 

test materials and evaluation method used, and investigations are presented in the subsequent 

sections. Results are discussed in the last section. 

4.2 Test materials and evaluation method 

 The speech material used for investigation is as follows -  



 

12 

 

 a) Sentences taken from NOIZEUS database - This database [20] consists of 30 IEEE 

sentences recorded from 3 male and 3 female speakers which were originally sampled at 25 

kHz and made available at 8 kHz. For testing, 7 sentences from the database (5 male and 2 

female speakers) are concatenated and up-sampled to 10 kHz. The material is as the following 

"The birch canoe slid on the smooth planks. He knew the skill of the great young 

actress. Her purse was full of useless trash. Read verse out loud for pleasure. Wipe 

the grease off his dirty face. The clothes dried on a thin wooden rack. He wrote down 

a long list of items."  

The total duration is 17 s and this material is rich in consonants. Hereafter this test 

material is referred to as NOIZEUS. 

 b) Lab recording - For a fast qualitative comparison, we have used speech material 

recorded in our lab. It consisted of a sequence of three isolated vowels, a Hindi sentence, and 

an English sentence as the following 

"-/a/-/i/-/u/ - aayiye aapka naam kya hai? - Where were you a year ago?"  

from a male speaker which was recorded with sampling frequency of 11.025 kHz. For 

informal listening test the signal length is increased by concatenating the recording four times 

one after the other to make it to ~25 s. The sampling rate is converted to 10 kHz before 

processing. This material is referred to as "vowel, Hindi sentence, English sentence" or 

VHSES.  

 c) Noise - Babble, car, street and train noises are taken from AURORA database [21] and 

have been concatenated repeatedly to match the length of the speech signals. Pink and white 

noises are generated using Matlab.  

 Test inputs to the code i.e. records of noisy speech were generated by adding the 

noises mentioned in (c) at SNRs (based on RMS values of signals) of 18, 15, 12, 9, 6, 3, 0, -3 

and -6 dB. Implementation of the algorithms was carried out using Matlab for investigating 

the effects of various steps and parameters. 

 The outputs are qualitatively evaluated through informal listening. An objective 

assessment was carried out using PESQ score (scale : 0 – 4.5) [19], which is reported to have 

a reasonably good correlation with subjective assessment of speech quality and distortion. It 

is calculated from the difference between the loudness spectra of level-equalized and time 

aligned noise-free reference and test signals.  

4.3 Investigations on noise estimation 

Investigations were carried out to compare the noise estimation methods and 

determine the one that could best approximate noise spectrum in DCT domain similar to that 

reported in [22] for DFT. Mean, median (0.5-quantile), 0.25-quantile and minimum (0-

quantile) statistics are used to observe and understand the trends in the magnitude distribution 

of the clean speech signal, noise signal and noisy speech signal with different noises and at 
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various SNRs. Processing was carried out using a rectangular window of length 30 ms, 50% 

overlap and 512-point DCT. From Figure 4.1, it can be seen that mean of the noisy speech 

poorly tracks the noise mean as against median, 0.25-quantile and minimum statistics of the 

noisy signal which relatively track the respective quantities of noise signal quite well at 

almost all frequencies. Although minimum tracks the noise it needs to be multiplied by a high 

factor to get the actual noise magnitude, errors in estimating which may lead to loss of speech 

related information from the noisy speech signal along with noise. Other noises also show 

similar trends and the plots are given in Appendix A.  

 Further investigation to examine the quantile suitable for spectral subtraction using 

DCT is carried out. The dynamic quantile tracking algorithm [17], as discussed in 3.2.4, is 

used for noise estimation with the quantiles 0, 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9 and 1. Since 

the estimation depends on the time characteristics of the noisy signal, it is assumed that the 

optimal values of parameters to be passed as inputs to the algorithm are similar for DFT and 

DCT. Spectrograms of noises estimated as various quantiles of the noisy speech material bit 

"aayiye aapka naam kya hai?" added with babble noise at 0 dB are shown in Figure 4.2. It is 

seen that noise is under-estimated in the lower quantiles and it increases for higher quantiles. 

The spectral subtraction factor α can be adjusted according to the quantile to attain the desired 

subtraction. We desire that an α value chosen with a given quantile provide us with decent 

enhancement over almost all kinds of broadband noises and over a wide range of SNRs. To 

identify the optimal alpha, the spectral subtraction algorithm is iterated with values of α 

ranging from 0 to 65 in steps of 0.1. Table 4.2−4.7 give the best PESQ scores that can be 

attained by a given quantile coupled with a suitable α value (optimal α values are also given 

in the tables) and β set to zero at SNRs of -6, -3, 0, 3 and 6 dB for various noises with the 

speech material VHSES.  

 It can be observed that all the quantiles track the noise spectrum considerably well 

and using appropriate over-subtraction factors result in similar enhancements. However, 

lower quantiles 0, 0.1 require extremely high values of α and its miscalculation results in sub-

optimal enhanced signal quality. Higher quantiles pick-up speech and often require α < 1 to 

compensate for the over-estimated noise magnitude. Error in calculation of α in this case will 

cause severe distortions and kills speech in low SNR frames.  
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Figure 4.1. Mean, median, 0.25-quantile and minimum of magnitude spectra of clean speech signal, 

noise and noisy speech (babble, 0 dB) 

(a) VHSES (b) NOIZEUS 
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Figure 4.2. Spectrograms of noises estimated as various quantiles of the noisy speech material bit 

"aayiye aapka naam kya hai?" (babble, 0 dB) 

 

(a) Clean 

signal 

(b) Babble 

0 dB 

(c) Noisy 

signal 

(d)  

0-quantile 

(e)  

0.1-quantile 

(f)  

0.25-quantile 
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Figure 4.2. Spectrograms of noises estimated as various quantiles of the noisy speech material bit 

"aayiye aapka naam kya hai?" (babble, 0 dB) 

 

(k)  
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(l)  

1-quantile 

(g)  

0.4-quantile 

(h)  

0.5-quantile 
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0.6-quantile 

(j)  

0.75-quantile 



 

17 

 

Table 4.2 (a) Optimal values of α for a given quantile that result in highest PESQ scores by DQTBNE and 

spectral subtraction (β = 0, γ = 1), Speech material : VHSES, Noise : Babble 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  25.8  11.5  3.8  2.6  2.2  1.7  1.0  0.3  0.3 

-3  35.5  11.6  3.8  3.3  2.4  1.3  0.7  0.8  0.4 

0  29.7  14.1  5.7  1.5  2.3  1.7  1.2  1.1  0.5 

3  25.2  13.2  5.1  3.1  2.5  2.0  1.3  0.8  0.5 

6  30.5  11.9  4.5  2.7  2.4  1.7  1.1  0.6  0.4 

Table 4.2 (b) PESQ scores for optimal values of α for a given quantile by DQTBNE and spectral subtraction 

(β = 0, γ = 1), Speech material : VHSES, Noise : Babble 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  1.68  1.71  1.72  1.70  1.69  1.71  1.71  1.69  1.78 

-3  1.86  1.83  1.90  1.86  1.89  1.90  1.89  1.88  1.83 

0  2.09  2.07  2.06  2.06  2.06  2.06  2.04  2.09  2.04 

3  2.32  2.30  2.30  2.30  2.30  2.30  2.29  2.29  2.27 

6  2.50  2.50  2.49  2.49  2.48  2.49  2.50  2.49  2.44 

Table 4.3 (a) Optimal values of α for a given quantile that result in highest PESQ scores by DQTBNE and 

spectral subtraction (β = 0, γ = 1), Speech material : VHSES, Noise : Car 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  31.5  15.4  5.6  3.4  2.7  2.2  1.8  0.9  0.6 

-3  34.8  15.2  5.5  3.3  2.7  2.3  1.8  0.8  0.6 

0  32.1  14.9  5.9  3.7  3.3  2.6  1.4  0.8  0.4 

3  34.5  14.8  6.1  3.8  2.9  2.0  1.7  0.9  0.5 

6  29.7  15.5  5.9  3.6  2.8  2.1  1.3  0.9  0.4 

Table 4.3 (b) PESQ scores for optimal values of α for a given quantile by DQTBNE and spectral subtraction 

(β = 0, γ = 1), Speech material : VHSES, Noise : Car 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  1.72  1.73  1.74  1.73  1.73  1.72  1.70  1.66  1.67 

-3  1.96  1.96  1.94  1.95  1.94  1.95  1.91  1.90  1.91 

0  2.24  2.20  2.23  2.34  2.20  2.20  2.18  2.17  2.15 

3  2.39  2.37  2.39  2.37  2.38  2.39  2.36  2.33  2.30 

6  2.58  2.59  2.61  2.61  2.62  2.61  2.58  2.53  2.46 
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Table 4.4 (a) Optimal values of α for a given quantile that result in highest PESQ scores by DQTBNE and 

spectral subtraction (β = 0, γ = 1), Speech material : VHSES, Noise : Pink 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  53.9  17.8  6.9  4.0  3.0  2.5  1.9  1.3  0.8 

-3  54.3  19.3  7.0  4.2  3.3  2.8  1.8  1.3  0.8 

0  50.8  18.9  7.0  4.3  4.6  2.7  1.9  1.2  0.8 

3  34.4  20.5  7.1  4.4  4.2  3.3  2.4  1.6  0.6 

6  33.3  21.2  8.3  4.9  3.6  2.9  2.1  1.3  0.5 

Table 4.4 (b) PESQ scores for optimal values of α for a given quantile by DQTBNE and spectral subtraction 

(β = 0, γ = 1), Speech material : VHSES, Noise : Pink 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  1.81  1.84  1.84  1.84  1.85  1.82  1.80  1.77  1.71 

-3  1.98  2.10  2.07  2.05  2.06  2.05  2.02  1.98  1.86 

0  2.16  2.26  2.28  2.27  2.23  2.58  2.24  2.19  2.04 

3  2.37  2.47  2.50  2.50  2.49  2.48  2.45  2.37  2.21 

6  2.55  2.66  2.73  2.73  2.72  2.70  2.64  2.55  2.40 

Table 4.5 (a) Optimal values of α for a given quantile that result in highest PESQ scores by DQTBNE and 

spectral subtraction (β = 0, γ = 1), Speech material : VHSES, Noise : Street 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  28.4  9.4  2.6  2.9  1.2  0.9  0.6  0.8  0.2 

-3  30.3  11.2  4.0  2.7  2.1  1.3  1.3  0.7  0.4 

0  22.5  12.3  4.4  2.6  2.3  1.7  1.1  0.6  0.4 

3  26.4  11.9  4.8  2.8  2.2  1.6  1.4  0.6  0.3 

6  21.2  11.5  5.0  2.7  1.9  1.9  0.9  0.5  0.3 

Table 4.5 (b) PESQ scores for optimal values of α for a given quantile by DQTBNE and spectral subtraction 

(β = 0, γ = 1), Speech material : VHSES, Noise : Street 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  1.66  1.66  1.65  1.64  1.65  1.64  1.61  1.61  1.59 

-3  1.85  1.83  1.83  1.84  1.83  1.82  1.81  1.81  1.80 

0  2.02  2.03  2.03  2.03  2.04  2.04  2.02  2.01  1.99 

3  2.27  2.26  2.27  2.27  2.26  2.26  2.25  2.25  2.23 

6  2.50  2.52  2.52  2.52  2.51  2.50  2.51  2.48  2.43 
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Table 4.6 (a) Optimal values of α for a given quantile that result in highest PESQ scores by DQTBNE and 

spectral subtraction (β = 0, γ = 1), Speech material : VHSES, Noise : Train 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  37.1  16.2  5.9  4.1  2.6  2.6  1.9  1.1  0.7 

-3  32.0  14.7  5.3  3.5  2.7  2.0  1.7  1.1  0.5 

0  27.3  15.3  5.4  2.9  2.4  2.3  1.4  0.8  0.3 

3  22.0  13.5  5.9  3.3  2.8  2.2  1.2  0.7  0.3 

6  17.4  13.1  5.8  4.4  3.3  1.9  1.0  0.6  0.2 

Table 4.6 (b) PESQ scores for optimal values of α for a given quantile by DQTBNE and spectral subtraction (β = 

0, γ = 1), Speech material : VHSES, Noise : Train 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  2.25  2.26  2.28  2.29  2.28  2.27  2.24  2.20  2.14 

-3  2.45  2.43  2.46  2.45  2.45  2.45  2.43  2.4  2.34 

0  2.64  2.66  2.68  2.67  2.68  2.64  2.64  2.58  2.50 

3  2.80  2.84  2.87  2.87  2.88  2.86  2.83  2.78  2.68 

6  2.97  3.01  3.04  3.05  3.04  3.03  3.00  2.94  2.89 

Table 4.7 (a) Optimal values of α for a given quantile that result in highest PESQ scores by DQTBNE and 

spectral subtraction (β = 0, γ = 1), Speech material : VHSES, Noise : White 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  55.1  17.0  6.1  3.9  2.6  2.4  1.8  1.2  0.7 

-3  58.4  16.5  6.1  4.7  2.9  2.3  2.2  1.4  0.8 

0  65.9  30.9  9.4  5.8  4.4  3.6  2.5  1.7  0.9 

3  59.6  17.5  9.7  5.8  4.5  3.6  2.5  1.7  0.9 

6  58.7  22.6  8.1  6.1  4.3  3.3  2.3  1.6  0.8 

Table 4.7 (b) PESQ scores for optimal values of α for a given quantile by DQTBNE and spectral subtraction (β = 

0, γ = 1), Speech material : VHSES, Noise : White 

SNR 

(dB) 

 Quantile 

 0  0.1  0.25  0.4  0.5  0.6  0.75  0.9  1 

-6  1.54  1.65  1.64  1.64  1.62  1.64  1.62  1.57  1.56 

-3  1.67  1.84  1.78  1.79  1.82  1.81  1.77  1.73  1.64 

0  1.86  2.06  2.07  2.07  2.07  2.06  2.03  1.95  1.78 

3  2.08  2.23  2.36  2.37  2.35  2.33  2.27  2.16  1.93 

6  2.32  2.48  2.51  2.54  2.54  2.51  2.43  2.31  2.08 
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Table 4.8 PESQ scores obtained using spectral subtraction and DQTBNE. α = 2, β = 0 and γ = 1, Speech 

material : VHSES with various noises. 
 

(a) Babble noise 

SNR 

(dB) 

 Quantile 

 0.25  0.4  0.5  0.6 

-6  1.66  1.65  1.64  1.64 

-3  1.78  1.82  1.82  1.82 

0  1.97  2.04  2.04  2.04 

3  2.18  2.25  2.29  2.30 

6  2.39  2.44  2.47  2.47 

 
 

(b) Car noise 

SNR 

(dB) 

 Quantile 

 0.25  0.4  0.5  0.6 

-6  1.51  1.64  1.64  1.68 

-3  1.70  1.84  1.86  1.90 

0  2.02  2.13  2.16  2.17 

3  2.15  2.24  2.27  2.39 

6  2.37  2.49  2.57  2.61 
 

(c) Pink noise 

SNR 

(dB) 

 Quantile 

 0.25  0.4  0.5  0.6 

-6  1.44  1.54  1.67  1.75 

-3  1.60  1.76  1.89  1.97 

0  1.80  2.00  2.08  2.20 

3  2.06  2.20  2.30  2.39 

6  2.27  2.42  2.52  2.62 

 
 

(d) Street noise 

SNR 

(dB) 

 Quantile 

 0.25  0.4  0.5  0.6 

-6  1.64  1.59  1.61  1.59 

-3  1.79  1.82  1.83  1.79 

0  1.96  2.00  2.03  2.00 

3  2.18  2.24  2.26  2.25 

6  2.39  2.50  2.51  2.49 
 

(e) Train noise 

SNR 

(dB) 

 Quantile 

 0.25  0.4  0.5  0.6 

-6  1.94  2.12  2.19  2.23 

-3  2.21  2.37  2.39  2.45 

0  2.44  2.55  2.63  2.66 

3  2.61  2.78  2.84  2.85 

6  2.83  2.98  3.03  3.02 

 
 

(f) White noise 

SNR 

(dB) 

 Quantile 

 0.25  0.4  0.5  0.6 

-6  1.41  1.47  1.53  1.60 

-3  1.52  1.61  1.70  1.75 

0  1.65  1.79  1.87  1.92 

3  1.79  1.99  2.05  2.13 

6  2.02  2.16  2.25  2.32 

 

Hence 0, 0.1, 0.75, 0.9 and 1 quantiles were not considered for noise estimation. In the 

quantile range of 0.25−0.6, 0.4-quantile and 0.5-quantile exhibit almost constant α values 

over different SNRs for various noises. Henceforth, investigations were carried out using 

CMBNE as described in 3.2.3 for tracking noise as 0.5-quantile (median) of the input noisy 

speech spectrum. Additionally, performance of the quantiles 0.25−0.6 for α = 2 are given in 

Table 4.8. 
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4.4 Effect of noise estimation duration and window lengths 

 Investigations were carried out to examine the effects of noise estimation duration 

and window length on speech enhancement. Processing was carried out using a rectangular 

window of length varying from 10 ms to 50 ms, with 50% overlap and 512-point DCT. Noise 

is estimated for the past 27, 81, 162 and 243 frames using the sample quantiles. Figure 4.3 

and Figure 4.4 show how the PESQ scores vary with changing window lengths and how they 

differ across the mentioned noise estimation durations for the speech materials VHSES and 

NOIZEUS. Window length of 25−40 ms provide good scores with noise estimated over past 

81, 162 and 243 frames. Hence, further investigations were carried out using window of 

length 30ms. Since use of 81, 162, and 243 frames resulted in almost similar tracking of noise 

spectrum, an estimation over past 81 frames is chosen which corresponds to a duration of 

1.215 s. Since MBNE is computation intensive due to the sorting operations and memory 

requirement, the CMBNE described in 3.2.3 is used which involves a 3-frame 4-stage 

cascaded median as an approximation to the median over past 81 frames. In this approach, for 

each frequency bin, 12 memory locations are required for storage and the number of sorting 

operations are 1.48 per frame as compared to that of 81 and 40 in case of a true median based 

approach. 

4.5 Effect of window type and overlap amount 

 Fixed-frame processing results in discontinuities at the frame edges, to mitigate 

which an overlap-add is used. These artifacts effect the enhancement that can be obtained and 

vary depending on the length of the window, shift amount and its smoothening nature, i.e. the 

windowing function. 

 Investigations using rectangular window, Hamming window, Hanning window and 

the modified Hamming window proposed by Griffin-Lim [23] are carried out. In standard 

overlap-add method, a window should satisfy the requirement that sum of all the overlapping 

windows is unity. For Griffin-Lim window, sum of squares of overlapping windows should 

also sum to one. This requirement is met by the modified Hamming window only for 75% 

overlap. So comparisons are made between 50% and 75% of rectangular, Hamming and 

Hanning windows and 75% of Griffin-Lim window and results are given in Table 4.9 and 

Table 4.10. The PESQ scores obtained using rectangular window with 50% overlap were the 

best. Other windows and shift durations showed slight decrement ~0.01−0.02 in the scores. 

These results as against the expected better performance that might be obtained using 

Hamming or related modified windows can be attributed to the calculation of the objective 

measure itself. Some other quality methods and extensive listening tests are to be performed 

to establish the superior performance of a particular window type and overlap amount.  
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Figure 4.3. PESQ scores for the enhanced noisy speech using sample quantile and spectral subtraction, 

β = 0.001, γ = 1 at optimum values of α. Speech material : VHSES with babble, car, train, pink, white, 

and street noises at 0 dB SNR.  

(a) Babble noise (α = 3) 

(c) Pink noise (α = 3.5) 

(e) Train noise (α = 2.5) (f) White noise (α = 3.5) 

(d) Street noise (α = 2) 

(b) Car noise (α = 2.5) 
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Figure 4.4. PESQ scores for the enhanced noisy speech using sample quantile and spectral subtraction, 

β = 0.001, γ = 1 at optimum values of α. Speech material : NOIZEUS with babble, car, train, pink, 

white, and street noises at 0 dB SNR. 

 

(a) Babble noise (α = 1.5) (b) Car noise (α = 2.5) 

(c) Pink noise (α = 1.5) (d) Street noise (α = 2.5) 

(e) Train noise (α = 1.5) (f) White noise (α = 2.5) 
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 Table 4.9 PESQ scores for enhanced speech using CMBNE and spectral subtraction with different 

types of windowing functions. γ = 1; β = 0.01, α given in brackets corresponding to the scores. Speech 

material : VHSES with various noises at 0 dB.  

(a)Babble noise 
 

(b)Car noise 

Window 
 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.07 2.08 

 (3.0) (1.5) 

Hamming 

 
2.02 2.00 

 (2.0) (1.5) 

Hanning 

 
2.02 2.00 

 (1.5) (1.5) 

Griffin-Lim 

 

NA 
2.00 

 (1.0) 
 

 
Window 

 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.3 2.22 

 (2.5) (3.0) 

Hamming 

 
2.17 2.13 

 (2.5) (2.5) 

Hanning 

 
2.17 2.11 

 (2.5) (2.5) 

Griffin-Lim 

 

NA 
2.09 

 (2.5) 
 

(c)Pink noise 
 

(d)Street noise 

Window 
 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.33 2.34 

 (4.0) (4.0) 

Hamming 

 
2.25 2.24 

 (4.0) (4.0) 

Hanning 

 
2.22 2.21 

 (4.0) (4.0) 

Griffin-Lim 

 

NA 
2.11 

 (3.0) 
 

 
Window 

 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.03 2.03 

 (2.0) (2.0) 

Hamming 

 
1.96 1.96 

 (1.5) (2.0) 

Hanning 

 
1.97 1.94 

 (1.5) (1.5) 

Griffin-Lim 

 

NA 
1.95 

 (1.5) 
 

(e)Train noise 
 

(f)White noise 

Window 
 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.66 2.66 

 (2.5) (2.5) 

Hamming 

 
2.58 2.57 

 (2.5) (2.5) 

Hanning 

 
2.58 2.55 

 (2.5) (2.5) 

Griffin-Lim 

 

NA 
2.51 

 (2.0) 
 

 
Window 

 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.18 2.14 

 (4.0) (4.0) 

Hamming 

 
2.05 2.07 

 (4.0) (4.0) 

Hanning 

 
2.03 2.03 

 (4.0) (4.0) 

Griffin-Lim 

 

NA 
1.94 

 (4.0) 
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Table 4.10 PESQ scores for enhanced speech using CMBNE and spectral subtraction with different 

types of windowing functions. γ = 1; β = 0.001, α given in brackets corresponding to the scores. Speech 

material : NOIZEUS with various noises at 0 dB. 

(a)Babble noise 
 

(b)Car noise 

Window 
 Overlap (α value) 

 50% 75% 

Rectangular 

 
1.91 1.91 

 (2.0) (2.0) 

Hamming 

 
1.87 1.88 

 (1.5) (1.5) 

Hanning 

 
1.87 1.87 

 (1.5) (1.5) 

Griffin-Lim 

 

NA 
1.88 

 (1.5) 
 

 
Window 

 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.01 2.07 

 (2.5) (2.5) 

Hamming 

 
1.97 2.04 

 (3.0) (2.0) 

Hanning 

 
1.99 2.02 

 (2.0) (2.0) 

Griffin-Lim 

 

NA 
2.04 

 (2.0) 
 

(c)Pink noise 
 

(d)Street noise 

Window 
 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.13 2.15 

 (3.0) (3.0) 

Hamming 

 
2.07 2.10 

 (3.0) (2.5) 

Hanning 

 
2.04 2.08 

 (2.5) (2.5) 

Griffin-Lim 

 

NA 
2.10 

 (2.5) 
 

 
Window 

 Overlap (α value) 

 50% 75% 

Rectangular 

 
1.96 1.95 

 (1.5) (1.5) 

Hamming 

 
1.92 1.92 

 (2.0) (1.0) 

Hanning 

 
1.93 1.92 

 (1.5) (1.0) 

Griffin-Lim 

 

NA 
1.93 

 (1.0) 
 

(e)Train noise 
 

(f)White noise 

Window 
 Overlap (α value) 

 50% 75% 

Rectangular 

 
2.45 2.50 

 (2.5) (3.0) 

Hamming 

 
2.42 2.48 

 (1.5) (3.0) 

Hanning 

 
2.44 2.46 

 (2.0) (3.0) 

Griffin-Lim 

 

NA 
2.48 

 (3.0) 
 

 
Window 

 Overlap (α value) 

 50% 75% 

Rectangular 

 
1.93 1.95 

 (3.0) (3.0) 

Hamming 

 
1.88 1.90 

 (2.5) (3.0) 

Hanning 

 
1.86 1.88 

 (2.5) (3.0) 

Griffin-Lim 

 

NA 
1.90 

 (3.0) 
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4.6 Effect of over-subtraction factor 

 The over-subtraction factor α is the most important of all the parameters which 

affects the residual noise and distortion and this affects intelligibility and quality of the 

processed output. Investigations were carried out by varying α in the range of 0 − 4 with the 

floor factor β taking values 0, 0.001, 0.01 and 0.1. Analysis was carried out using rectangular 

window of duration 30 ms with 50% overlap and a 3-point 4-stage CMBNE. Table 4.11 and 

Table 4.12 show the PESQ scores of speech enhanced from the input speech materials 

VHSES and NOIZEUS respectively, which are added with various noises at 0 dB, using 

different sets of α and β. For VHSES, α values of 2.5 − 3.0 are found to be optimal for babble, 

car, street, and train noises and 3.5 − 4.0 for pink, white noises. For NOIZEUS, the scores 

were best for α as 2 for car, babble, street, and train noises and 2.5−3 for pink, white noises. 

Floor factor β = 0.01 for VHSES and β = 0.001 for NOIZEUS are found to be optimal. 

Investigations need to be carried out to see the scope of further improvement that can be 

obtained in the quality when SNR-dependent α or frequency-dependent α is used.  

4.7 Phase estimation for spectral subtraction 

 The estimated magnitude spectrum of noise subtracted from the magnitude spectrum 

of noisy speech gives us the magnitude spectrum of enhanced speech signal. This resulting 

magnitude is recombined with the original phase i.e. phase of the input noisy signal which is 

followed by applying an inverse transformation and overlap-add for resynthesis. It may be 

expected that quality will improve if the phase spectrum is also corrected. To understand the 

enhancement that phase can provide in the signal quality, a set of simulations were carried out 

by using combinations of clean magnitude (CM), clean phase (CP), noisy magnitude (NM), 

noisy phase (NP), and modified magnitude (MM) using CMBNE and spectral subtraction. 

Results are given in Table 4.13. Clean magnitude and clean phase correspond to the clean 

signal whose PESQ score is 4.5. It can be seen from the table that an improvement of upto 0.2 

in the scores can be obtained by cleaning the phase, whereas a cleaner estimate of magnitude 

can bring about much higher improvement.  

 The human ear may be relatively insensitive to phase, but a phase discontinuity may 

significantly degrade the perceptual quality especially when the discontinuities occur during 

voiced segments. Investigations were carried out regarding impact of phase changes at 

different magnitude levels on the quality of speech material VHSES and are given in 

Appendix B. It can be observed that, phase is important in the voiced segments of high energy 

and thus an attempt to mitigate the phase discontinuity in such frames is made which is 

presented in Appendix B. Mowlaee [28] proposed a method based on minimum mean square 

error (MMSE) for phase estimation in DFT domain. This method was adapted to DCT, 

resulting in an approach similar to the one described in Appendix B. Both, the methods were 



 

27 

 

found to introduce a monotonic voice to the speech signal and hence were considered to be 

unsuitable for speech enhancement. 

4.8 Comparison between DCT and DFT 

 A comparison in made by applying the enhancement algorithm in DCT and DFT 

domains for signals with different types of noise and with SNR of 18, 15, 12, 9, 6, 3, 0, −3 

and −6 dB. Plots of PESQ scores vs input SNR are given in Figure 4.5 and Figure 4.6 for 

VHSES and NOIZEUS. The PESQ scores increased progressively as SNR increases and both 

the transforms proved to improve the quality of the noisy signal as their scores remained 

above that of the unprocessed while processing of noise-free speech decreased the score to 

around 3.5 ± 0.2 depending on the α value. The scores obtained from both the transforms are 

comparable with DCT slightly better than DFT for street and train noises for the material 

VHSES. Table 4.14 shows the SNR advantage for different types of noises and optimal α 

used for DFT and DCT, which are again similar. For VHSES, an advantage of 4 − 13 dB in 

SNR is obtained using DFT while DCT resulted in an advantage of 4 − 12.5 dB. For 

NOIZEUS, the advantage was 2 − 8 dB with DFT while it was 2.5 − 8 dB with DCT. 

4.9 Conclusion 

 Optimal parameters for real-time implementation are obtained through these 

investigations. Processing was carried out with sampling frequency of 10 kHz keeping the 

FFT/FCT length at 512. Window length of 30 ms i.e. 300 samples for a noise estimation 

duration over past 81 frames was chosen. Magnitude spectral subtraction (γ = 1) was carried 

out throughout. Good scores were obtained with α in the range of 2 − 3.5 and β = 0.01 was 

suitable for all the cases. Median of the noisy input speech was found to be a good 

approximate of noise spectrum and its approximation, the cascaded-median was used for 

noise estimation. Processing significantly enhanced the speech for all noises with different 

SNRs. Also, the enhancement provided by DCT based method is comparable to that of 

existing DFT-based spectral subtraction. PESQ scores did not show any difference in the 

results obtained by the two methods. 
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Table 4.11 PESQ score for enhanced speech using CMBNE and spectral subtraction, α and β varying, γ 

= 1. Speech material : VHSES with different types of noise at 0 dB SNR. 

(a)Babble noise 
 

(b)Car noise 

α 
   β  

 0 0.001 0.01 0.1 

0  1.82 1.82 1.82 1.82 

1  1.97 1.97 1.97 1.97 

1.5  2.04 2.04 2.04 2.05 

2  2.06 2.06 2.07 2.09 

2.5  2.09 2.09 2.09 2.13 

3  2.07 2.07 2.08 2.14 

3.5  2.05 2.05 2.07 2.15 

4  2.01 2.01 2.04 2.16 
 

 
α 

   β  

 0 0.001 0.01 0.1 

0  1.78 1.78 1.78 1.77 

1  2.03 2.03 2.03 2.03 

1.5  2.13 2.13 2.13 2.13 

2  2.20 2.20 2.20 2.20 

2.5  2.22 2.22 2.23 2.24 

3  2.23 2.23 2.24 2.25 

3.5  2.21 2.21 2.22 2.23 

4  2.17 2.18 2.19 2.21 
 

(c)Pink noise 

 

(d)Street noise 

α 
   β  

 0 0.001 0.01 0.1 

0  1.61 1.61 1.61 1.61 

1  1.92 1.92 1.92 1.91 

1.5  2.09 2.09 2.09 2.07 

2  2.15 2.15 2.15 2.13 

2.5  2.24 2.24 2.24 2.2 

3  2.30 2.30 2.31 2.23 

3.5  2.32 2.32 2.35 2.24 

4  2.33 2.34 2.36 2.24 
 

 
α 

   β  

 0 0.001 0.01 0.1 

0  1.93 1.93 1.93 1.93 

1  2.15 2.15 2.16 2.16 

1.5  2.23 2.23 2.23 2.25 

2  2.27 2.27 2.28 2.29 

2.5  2.28 2.28 2.29 2.32 

3  2.25 2.26 2.28 2.33 

3.5  2.28 2.29 2.31 2.32 

4  2.21 2.22 2.25 2.33 
 

(e)Train noise 

 

(f)White noise 

α 
   β  

 0 0.001 0.01 0.1 

0  2.12 2.12 2.12 2.12 

1  2.48 2.48 2.48 2.47 

1.5  2.57 2.57 2.57 2.56 

2  2.64 2.64 2.64 2.64 

2.5  2.67 2.67 2.68 2.68 

3  2.67 2.67 2.68 2.68 

3.5  2.64 2.64 2.65 2.67 

4  2.61 2.61 2.63 2.63 
 

 
α 

   β  

 0 0.001 0.01 0.1 

0  1.47 1.47 1.47 1.47 

1  1.65 1.65 1.65 1.65 

1.5  1.79 1.79 1.78 1.77 

2  1.93 1.93 1.93 1.89 

2.5  1.97 1.97 2.00 1.99 

3  2.10 2.09 2.1 2.04 

3.5  2.14 2.14 2.15 2.00 

4  2.13 2.13 2.16 2.03 
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Table 4.12 PESQ score for enhanced speech using CMBNE and spectral subtraction, α and β varying 

and γ = 1. Speech material : NOIZEUS with different types of noise at 0 dB SNR. 

(a)Babble noise 
 

(b)Car noise 

α 
   β  

 0 0.001 0.01 0.1 

0  1.74 1.74 1.74 1.74 

1  1.87 1.87 1.87 1.87 

1.5  1.91 1.91 1.91 1.92 

2  1.91 1.91 1.91 1.94 

2.5  1.90 1.91 1.9 1.96 

3  1.88 1.90 1.88 1.97 

3.5  1.85 1.88 1.86 1.97 

4  1.82 1.85 1.82 1.97 
 

 
α 

   β  

 0 0.001 0.01 0.1 

0  1.75 1.75 1.75 1.75 

1  1.93 1.93 1.93 1.92 

1.5  1.98 1.98 1.98 1.98 

2  2.01 2.02 2.01 2.02 

2.5  2.01 2.02 2.01 2.04 

3  2.00 2.02 2.00 2.05 

3.5  1.96 2.00 1.96 2.04 

4  1.88 1.95 1.89 2.02 
 

(c)Pink noise 

 

(d)Street noise 

α 
   β  

 0 0.001 0.01 0.1 

0  1.66 1.66 1.66 1.66 

1  1.88 1.87 1.88 1.87 

1.5  1.98 1.98 1.98 1.96 

2  2.06 2.05 2.06 2.04 

2.5  2.12 2.12 2.12 2.08 

3  2.13 2.15 2.13 2.11 

3.5  2.09 2.13 2.09 2.11 

4  2.03 2.09 2.03 2.09 
 

 
α 

   β  

 0 0.001 0.01 0.1 

0  1.82 1.82 1.82 1.82 

1  1.94 1.94 1.94 1.94 

1.5  1.96 1.96 1.96 1.96 

2  1.94 1.94 1.94 1.96 

2.5  1.90 1.91 1.90 1.94 

3  1.84 1.86 1.84 1.91 

3.5  1.77 1.80 1.77 1.89 

4  1.71 1.75 1.72 1.86 
 

(e)Train noise 

 

(f)White noise 

α 
   β  

 0 0.001 0.01 0.1 

0  2.14 2.14 2.14 2.14 

1  2.34 2.34 2.34 2.34 

1.5  2.41 2.41 2.41 2.41 

2  2.45 2.45 2.45 2.46 

2.5  2.45 2.46 2.45 2.49 

3  2.44 2.46 2.44 2.49 

3.5  2.40 2.45 2.40 2.47 

4  2.36 2.43 2.37 2.43 
 

 
α 

   β  

 0 0.001 0.01 0.1 

0  1.53 1.53 1.53 1.53 

1  1.70 1.70 1.70 1.70 

1.5  1.78 1.78 1.78 1.77 

2  1.85 1.85 1.85 1.84 

2.5  1.90 1.90 1.90 1.89 

3  1.93 1.94 1.93 1.92 

3.5  1.90 1.93 1.90 1.92 

4  1.81 1.88 1.82 1.90 
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Table 4.13 PESQ scores of combinations of magnitude and phase for the speech bit "Where were you a year 

ago?" from speech material VHSES.  

(a) Babble noise 

SNR   NM + NP   NM + CP  CM + NP  MM + NP  MM + CP 

-3 dB  1.53  1.88  2.83  1.47  1.62 

0 dB   1.68  2.04  2.95  1.77  1.90 

3 dB   1.86  2.20  3.06  1.99  2.14 
 

(b) Car noise 

SNR   NM + NP   NM + CP  CM + NP  MM + NP  MM + CP 

-3 dB  1.45  1.91  2.87  1.65  1.75 

0 dB  1.62   2.06  2.99   1.73  1.92  

3 dB  1.80   2.22   3.11   2.18  2.33 
 

(c) Pink noise 

SNR   NM + NP   NM + CP  CM + NP  MM + NP  MM + CP 

-3 dB  1.24  1.70  2.79  1.63  1.71 

0 dB  1.41   1.85  2.94   2.02  2.10 

3 dB  1.59   2.02   3.10   2.28  2.33 
 

(d) Street noise 

SNR   NM + NP   NM + CP  CM + NP  MM + NP  MM + CP 

-3 dB  1.24  1.70  2.79  1.63  1.71 

0 dB  1.41   1.85  2.94   2.02  2.10 

3 dB  1.59   2.02   3.10   2.28  2.33 
 

(e) Train noise 

SNR   NM + NP  NM + CP  CM + NP  MM + NP  MM + CP 

-3 dB  1.84  2.19  2.88  2.30  2.37 

0 dB  2.04  2.37  3.04  2.48  2.49 

3 dB  2.24  2.56  3.15  2.81  2.87 
 

(f) White noise 

SNR   NM + NP   NM + CP  CM + NP  MM + NP  MM + CP 

-3 dB  1.17  1.56  2.88  1.53  1.59 

0 dB  1.27  1.66  2.97  1.75  1.81 

3 dB  1.40  1.79  3.10  2.04  2.11 
 

*Magnitude modified using CMBNE and spectral subtraction, β = 0, γ = 1, α = 2.5 for babble, street, train 

and α = 3 for car, pink, white noises. 
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Figure 4.5. PESQ scores for the enhanced noisy speech, DCT (β=0.01, γ=1), DFT (β=0.01, γ=1) at 

optimal values of α. Speech material : VHSES with babble, car, pink, street, train and white noises at 

various SNRs. 

(c) Pink noise (d) Street noise 

(e) Train noise (f) White noise 

(b) Car noise (a) Babble noise 
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Figure 4.6. PESQ scores for the enhanced noisy speech, DCT (β = 0.001, γ = 1), DFT (β = 0.01, γ = 1) 

at optimal values of α. Speech material : NOIZEUS with babble, car, pink, street, train and white noises 

at various SNRs.  

(c) Pink noise (d) Street noise 

(e) Train noise (f) White noise 

(b) Car noise (a) Babble noise 
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Table 4.14 (a) SNR advantage obtained using 3-point 4-stage CMBNE and spectral subtraction using 

DCT and DFT using optimal value of α, and β = 0.01 and γ = 1, Speech material : VHSES with 

various noises. 

Noise 
 Optimal α 

 
SNR advantage 

 DFT 
 

DCT 
 

DFT 
 

DCT 

Babble  2.0  3.0   4.0  4.0 

Car  2.5  2.5  7.0  7.0 

Pink  2.5  4.0  13.0  12.5 

Street  2.5  2.0  2.0  4.0 

Train  2.5  3.0  6.0  6.5 

White  2.5  4.0  12.0  11.5 

Table 4.14 (b) SNR advantage obtained using 3-point 4-stage CMBNE and spectral subtraction using 

DCT and DFT against optimal value of α, and for DCT β = 0.001, for DFT β = 0.01, γ = 1, Speech 

material : NOIZEUS with various noises. 

Noise 
 Optimal α 

 
SNR advantage 

 DFT 
 

DCT 
 

DFT 
 

DCT 

Babble  1.5  2.0  3.0  3.0 

Car  1.5  2.5  4.0  4.0 

Pink  1.5  3.0  7.0  7.0 

Street  1.5  1.5  2.0  2.5 

Train  1.5  2.5  5.0  5.0 

White  1.5  3.0  8.0  8.0 
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Chapter 5 

 

REAL-TIME IMPLEMENTATION 
 

 

5.1 Introduction 

 The DCT-based spectral subtraction technique is implemented for real-time 

processing on DSP Board, “Spectrum Digital eZdsp USB stick” [24] with 16-bit fixed point 

processor TI-TMS320C5515 [25] and a maximum clock frequency of 120 MHz. The 

processor has a unified memory space of 16 MB with 320 KB on-chip RAM (including 64 

KB dual access RAM), 128 KB on-chip ROM. The DSP-board has 4MB flash memory for 

user program. The hardware includes an audio codec TLV320AIC3204 [26] with stereo ADC 

and DAC supporting 16/20/24/32-bit quantization and sampling frequency of 8−192 kHz. It 

also has four 4-channel DMA controllers, three 32-bit timers, tightly coupled FFT hardware 

accelerator for efficient computation of 8−1024 point FFT. The block diagram of the DSP 

board is shown in Figure 5.1.  

5.2 Implementation Details 

 The program was written in C, using TI's 'Code Composer Studio, ver. 4.0 as the 

integrated development environment. For reducing conversion overheads, the input samples, 

spectral values, and the processed samples are all stored as 4-byte words, with 16-bit real and 

16-bit imaginary parts. The imaginary part of input sample is set to zero. 

 A block diagram of implementation of DCT based spectral subtraction on the DSP 

board with L-sample window and N-point FFT (L = 300, N = 512) is shown in the Figure. 5.2. 

Codec and DMA are used to continuously acquire and output the speech signal. The data 

transfer and buffering operations are shown in Figure 5.3. At a sampling frequency of 10 kHz, 

DMA channel 2 is programmed to acquire the ADC values into an input cyclic buffer which 

is divided into 3 memory blocks of size S = L/2 to facilitate input windowing with 50% 

overlap. Samples from the just-filled and previous input blocks which together form the 

desired window of length L, are copied to the input data buffer. The input buffer is of the size 

N, with the remaining N−L words set to zero. Pointers initialized as (..1,2,3,1..) are used and 

cyclically updated to monitor the just-filled and the current-input blocks. A DMA interrupt is 

generated when a block gets filled. A 2 memory block cyclic buffer is employed to write the 

processed output to the DAC. The current output and write-to output blocks are tracked by 
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pointers with toggling values of 1 and 2. These are devised for an efficient realization of 

analysis-synthesis with 50% overlap. The resynthesis is done using overlap-add.  

 FFT-based DCT described in section 2.2 is implemented by making use of the 

hardware FFT accelerator on chip. The input buffer serves as the input to N-point FCT. All 

the twiddle factors to be multiplied for computing a DCT and IDCT are generated using 

Matlab and are stored in arrays in the program memory, keeping the number of 

multiplications needed to be done in real time as low as possible. The code is optimized by 

exploiting the conjugate symmetry property of FFT and avoiding extra multiplications in 

DCT computation. The operations are performed with numbers in Q15 format owing to the 

fixed-point processor and intrinsic assembly functions of the processor provided by the 

manual [25] like saturate multiply, saturate add, saturate subtract are employed as essential to 

handle overflow. Processed values are scaled up/down to prevent overflows and underflows at 

potential points in the code. 

Figure 5.1. Block diagram of TMS320C5515 eZdsp USB Stick [24]. 

 

Figure 5.2. Implementation level diagram of spectral subtraction on DSP board, adapted from [22]. 
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 Based on the offline investigations, real-time processing was implemented using 

magnitude spectral subtraction with 3-point 4-stage cascaded-median based noise estimation, 

analysis-synthesis using 30 ms rectangular window with 50% overlap at a sampling frequency 

of 10 kHz, L = 300, and N = 512. Noisy phase is used for the reconstruction of the spectrum. 

For the experiment, α is kept at 2.5 and β at 0.01 and in real-time processing code, these two 

factors are defined as macros, assigned with values as ALPHA = round (8α), BETA = 1/β. 

5.3 Test results 

 For testing the implementation on the DSP board, the input signal for processing was 

generated from a PC sound card and given to the DSP board through one channel of its 

stereo-in audio connector. The processed output signal from one channel of stereo-out audio 

connector was acquired through a notebook PC sound card (not connected to AC mains) as 

shown in Figure 5.4. The DSP board is powered through its USB port connected to the 

desktop PC. Use of two PCs whose grounds are not connected avoids formation of ground 

loop and associated noise. 

 An example showing the clean, noisy and processed signals and corresponding 

spectrograms processed using CMBNE and DCT based spectral subtraction through offline 

and real-time implementations are shown in Figure 5.5 for comparison. Real-time processed 

output was found to be similar to the corresponding offline processed output and there was no 

perceptible difference in processed outputs obtained using DFT and DCT. Measurements 

using a DSO showed that real-time processing introduced a signal delay of 49 ms. Out of this 

delay, the processing delay (algorithmic delay of one frame and computational delay of 0.5 

frame) contributed 45 ms and the remaining delay is attributed to audio input-output latency 
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Figure 5.3. Working Of DMA for Buffering and Data Transfer Operations (S=L/2), adapted from 

[22]. 
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of the DSP-board hardware. The algorithm is satisfactorily implemented for a clock frequency 

down to 20 MHz. Hence it is informed that the implementation needs 1/6th of the available 

processing capacity providing scope for integrating other signal processing steps like dynamic 

range compression etc in hearing aids and other audio communication devices. 

Figure 5.4. Setup for giving input and recording output from DSP board. 

Figure 5.5. Signals and spectrograms: Processing of "Where were you a year ago?," from a male 

speaker, with white noise at 3 dB SNR. 

(a)  

Clean 

signal 

(b) 

 Noisy 

signal 

(d)  

Real-time 

proc. signal 

(c) 

 Matlab 

proc. signal 
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Chapter 6 

 

SUMMARY AND CONCLUSION 

 

 The feasibility of using DCT for real-time implementation was investigated through 

the algorithm of speech enhancement using cascaded median based spectral subtraction and a 

comparison has been made with DFT-based processing. Offline investigations on DQTNE are 

carried out to identify the best suitable quantile for noise estimation. A major drawback with 

DCT as reported in [27] is that the processing is highly dependent on window position. A 

pitch synchronous implementation can address this issue, but such an implementation is 

unsuited for real-time processing in hearing aids. The performances with a fixed shift but 

different noise estimation techniques and quantiles are explored. It was found that median-

based noise estimation tracks the noise spectrum well at different SNR values. Hence an 

approximation of the median which is the cascaded-median is used for noise estimation. 

Investigations were carried out to find out the optimum window length and noise estimation 

duration. Window of length 30 ms and noise estimation using a 3-point 4-stage cascaded 

median were chosen for the processing. Investigations showed that use of clean phase 

provided up to 0.2 improvement in PESQ scores. However, phase enhancement methods 

which are compatible with real-time processing were not successful in improving speech 

quality. Future work may be carried out on minimizing phase discontinuities.  

Further improvement may be achieved by using an adaptive over-subtraction factor 

in the spectral subtraction algorithm to use SNR-dependent and frequency-dependent factors. 

Processing the noisy speech in the SNR range of -6 dB to 18 dB resulted in an SNR 

advantage of 3−13 dB. An improvement of 0.24−0.7 and 0.13−0.47 in PESQ scores was 

achieved using different noises at 0 dB for speech materials VHSES and NOIZEUS 

respectively.  

 For real-time operation, the method was implemented on a 16-bit fixed point 

processor TMS320C5515 using the DSP board. Codec and DMA were used at a sampling rate 

of 10 kHz for continuous acquisition of the input signal and outputting of the processed 

signal. Use of FCT algorithm facilitated the application of hardware accelerator for the real-

time processing. The data transfer and buffering operations were devised for an efficient 

realization of analysis-synthesis with 50 % overlap. The real-time processing with analysis 

window length of 30 ms and 512-point FFT was implemented, using about one-sixth of the 
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computing capacity of the processor, with a processing delay 49 ms, making it suitable for 

hearing aid applications. Informal listening tests showed that the processed output from the 

DSP board was perceptually similar to the corresponding output from the offline 

implementation for speech as well as other audio signals.  
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Appendix A 

 

INVESTIGATIONS ON NOISE ESTIMATION  

Figure A.1. Mean, median, 0.25-quantile and minimum of magnitude spectra of clean speech signal, 

noise and noisy speech (car, 0 dB) 

(a) VHSES (b) NOIZEUS 
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Figure A.2. Mean, median, 0.25-quantile and minimum of magnitude spectra of clean speech signal, 

noise and noisy speech (pink, 0 dB) 

(a) VHSES (b) NOIZEUS 
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Figure A.3. Mean, median, 0.25-quantile and minimum of magnitude spectra of clean speech signal, 

noise and noisy speech (street, 0 dB) 

(a) VHSES (b) NOIZEUS 



 

45 

 

Figure A.4. Mean, median, 0.25-quantile and minimum of magnitude spectra of clean speech signal, 

noise and noisy speech (train, 0 dB) 

(a) VHSES (b) NOIZEUS 
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Figure A.5. Mean, median, 0.25-quantile and minimum of magnitude spectra of clean speech signal, 

noise and noisy speech (white, 0 dB) 

(a) VHSES (b) NOIZEUS 
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 Appendix B 

 

ROBUSTNESS OF DCT TO PHASE INVERSIONS 

 

 To understand the sensitivity of DCT to phase changes and its impact on the PESQ 

scores, an experiment was conducted. Random phase inversions were introduced in the 

transform domain of the clean speech material and the resultant phase was used for 

resynthesis of the signal. Processing was carried out with rectangular window of 30 ms and 

512-point DCT with 50% and 75% overlaps. Effect of these modifications depending on the 

percentages of samples modified per frame are given in Table B.1.  

 Yet another experiment was conducted to see the effect of phase changes with respect 

to the magnitude of the signal. Here, the phase inversions were concentrated in coefficients 

with higher magnitudes and the PESQ scores were noted. For example, Out of the overall 

samples in a window (number = 300), effect of inverting top 10% of all the samples (number 

= 30) and 20% of the top 150 samples (number = 30) were compared. As can be expected, 

modifications of phase made to higher magnitudes degraded the scores more than the changes 

distributed over all magnitudes. Results related to the same are shown in Table B.2. The 

experiment was also performed on a piece of music material and it was observed that the 

effects were adverse. The resultant PESQ scores were ~1.1 lower than the corresponding 

scores obtained with the VHSES material.  

 A method was devised to reduce the noise-related phase discontinuities in DCT-based 

analysis-synthesis. The processing steps are as the following :  

1) Sort the enhanced magnitude coefficients of the current window in descending order.  

2) Mark the co-efficient values and frequencies of first 10% of them.  

3) If any of these frequencies occurred in the previous frame, assign the sign of that particular 

coefficient in the previous frame to the corresponding coefficient in the current frame. For all 

other frequency components, retain the phase. For the first frame noisy phase is retained.  

 

The similarity of phase estimated by the proposed method and the noisy phase to the original 

phase are compared and the number of phase inversions are noted. Phase inversions are the 

number of times the phases differ between the spectra of the signals under comparison. Table 

B.3 gives the phase inversions for frequencies in auditory critical bands 7 and 8 which 

correspond to frequency range 0.63 − 0.92 kHz [29] where there was considerable speech 

energy for most of the time frames i.e. frequency components 27 − 39 of the 512 length 

transform. It is evident that the noisy phase is closer to the original phase than the phase 

modified using proposed method.  
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Table B.2 PESQ scores showing sensitivity of DCT-based analysis-synthesis to phase changes with 

respect to magnitude as percentage of inversions per frame. Speech material : VHSES, window : 

Rect., 50% overlap 

No. of 

samples 

inverted 

 

PESQ scores 

Top 10% 

samples  

Top 25% 

samples  

Top 50% 

samples  

Top 100% 

samples 

0  4.49  4.49  4.49  4.49 

15  2.31  2.99  3.43  4.15 

30  1.83  2.47  3.01  3.20 

60  -  1.91  2.50  2.78 

75  -  1.80  2.27  2.66 

120  -  -  1.90  2.37 

150  -  -  1.82  2.30 

300  -  -  -  4.49 

  

 

Table. B.1 PESQ scores showing sensitivity of DCT-based analysis-synthesis to phase changes as 

percentage of inversions per frame. Speech material : VHSES 

Percentage of 

inversions/ 

frame 

 PESQ scores ( 0 − 4.5 ) 

 
Rect., 

50% overlap 
 Rect., 

75% overlap 

 Hamming, 

50% overlap 
 Hamming, 

75% overlap 

0  4.49  4.49 
 

4.48  3.04 

10  3.2  3.07 
 

3.11  2.79 

20  2.78  2.62 
 

2.79  2.55 

25  2.66  2.47 
 

2.68  2.48 

40  2.37  2.18 
 

2.46  2.24 

50  2.3  2.14 
 

2.42  2.21 

60  2.35  2.19 
 

2.44  2.26 

75  2.64  2.49 
 

2.69  2.45 

80  2.79  2.6 
 

2.79  2.53 

90  3.17  3.02 
 

3.19  2.8 

100  4.49  4.49 
 

4.48  3.04 
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Table B.3 Number of phase inversions occurring as compared to that of the clean speech segment 

"Where were you a year ago?" from material VHSES, for a particular frequency component in the range 

27−39. (Out of total number of frames - 1668) 

  
No of phase inversions 

Frequency 

component 

 
3 dB  0 dB  -3 dB 

 

NM 

+ 

NP  

CM 

+ 

MP  

MM 

+  

MP  

NM 

+  

NP  

CM 

+ 

MP  

MM 

+ 

MP  

NM 

+ 

NP  

CM 

+ 

MP  

MM 

+ 

MP 

27  421 
 

408 
 

586  482 
 

476 
 

604  502 
 

518 
 

605 

28  457 
 

467 
 

553  504 
 

502 
 

558  565 
 

569 
 

635 

29  546 
 

547 
 

571  588 
 

592 
 

600  627 
 

647 
 

649 

30  603 
 

630 
 

635  655 
 

670 
 

672  693 
 

700 
 

719 

31  582 
 

578 
 

618  638 
 

643 
 

665  702 
 

704 
 

740 

32  596 
 

589 
 

622  653 
 

651 
 

669  658 
 

659 
 

689 

33  622 
 

640 
 

627  679 
 

676 
 

684  692 
 

691 
 

702 

34  603 
 

604 
 

623  654 
 

657 
 

685  691 
 

691 
 

714 

35  528 
 

541 
 

571  619 
 

624 
 

644  642 
 

644 
 

676 

36  507 
 

504 
 

567  548 
 

549 
 

603  608 
 

616 
 

640 

37  471 
 

493 
 

581  487 
 

513 
 

588  580 
 

584 
 

650 

38  481 
 

487 
 

593  527 
 

522 
 

623  577 
 

583 
 

663 

39  509 
 

513 
 

637  552 
 

556 
 

657  604 
 

591 
 

673 

 
 To explicate the results, the continuity of phase in clean signal has been observed. 

Out of a total of 1668 frames that corresponded to the input clean speech segment, there are a 

total of 1002 inversions in the frequency component 29 and a similar trend is carried in the 

other frequency components. Thus our approach of smoothening the phase did not have 

positive results.  
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