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ABSTRACT 
 

Electrocardiogram (ECG) is a non-stationary biological signal which is useful in diagnosis of 

cardiac problems. It gets corrupted by several disturbances like electromyogram (EMG) 

noise, baseline wander, and motion artifact, particularly during ambulatory recordings. 

Removal of EMG noise is difficult due to significant spectral overlap between ECG and EMG 

noise. Wavelet-based thresholding has been reported to be effective for denoising ECG 

corrupted with EMG noise. It involves non-linear modification of wavelet coefficients at 

different levels after multilevel wavelet decomposition of the noisy ECG. For this purpose, 

use of quantile-based estimation of time-varying thresholds is investigated. It is evaluated by 

denoising the noisy signals with different SNR values, generated using ECG and EMG noise 

records from MIT-BIH database. SNR improvement and wavelet-weighted percentage root 

mean square difference (WWPRD) are used as performance indices. Errors in the clinically 

important features are also examined. Comparing the contributions of 1D  removal and 

thresholding, with thresholds obtained by 90th percentile, it is seen that thresholding results in 

additional SNR improvement of 3.86 dB, 3.10 dB, and 1.54 dB for input SNR of -10 dB, -5 

dB, and 0 dB, respectively. Visual inspections show that median followed by mean 

combination estimates the EMG noise envelope more effectively. High performance is shown 

by choosing 90-percentile in time-varying threshold for input SNR from -20 dB to 5 dB, 

while 75-percentile gives better results for input SNR from 5 dB to 15 dB. Results with 50-

percentile are relatively low unless the input SNR itself is very high. The WWPRD values of 

19.95, 22.07, and 22.92 for 90, 75, and 50 percentiles, respectively, for −10 dB input SNR 

also indicate the suitability of threshold estimation. The proposed denoising method also 

improves the estimation of clinically important features of P-wave amplitude, T-wave 

amplitude, and PR interval. 
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Chapter 1 

 

INTRODUCTION 
 

 

1.1. Problem overview  

 Electrocardiogram (ECG) is a non-stationary biological signal associated with 

electrical activity of the heart and is measured using electrodes placed on specific locations of 

the body surface. Fig. 1.1 shows a typical ECG over a cardiac cycle with three characteristic 

segments P wave, QRS complex, and T wave associated with atrial depolarization, ventricular 

depolarization, and ventricular repolarization, respectively. The amplitudes, timing 

relationships, and shapes of these segments are useful in diagnosis of cardiac disorders. 

Ambulatory ECG are recorded while the patient is performing normal day-to-day activities 

like walking, stair climbing, sitting etc. These records are useful to detect certain disorders 

which may not get detected in recordings taken under rest or stress test. Ambulatory 

recordings are susceptible to noise and artifacts due to body movement and electrode 

movement, which make it difficult to get the diagnostic information. 

 The frequency spectrums of different components of ECG are spread over the range 

0.05 – 150 Hz, with a 100 Hz bandwidth essential for diagnosis [2]. Ambulatory ECG is 

usually corrupted by artifacts like electromyogram (EMG), baseline wander, and motion 

artifact (MA). EMG is a bio-potential generated due to muscular activity. Baseline wander in 

the ECG signal is generally due to respiration or movement related to slow motion of 

electrodes. Electrode motion at the skin-electrode interface causes a change in half-cell 

potential and results in irregular baseline wander known as motion artifact. EMG, baseline 

wander, and motion artifact extend over 5 – 500 Hz, 0.01 – 1 Hz, and 1 – 10 Hz, respectively 

[2]. Fig. 1.2 indicates relative power spectra of ECG and its QRS complex, P and T waves, 

EMG noise, and motion artifact. Due to significant spectral overlap of artifacts and interfering 

noise with ECG, use of linear filters is not appropriate for suppression of interfering noise and 

motion artifacts. 
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Figure 1.1 Typical ECG over a cardiac cycle [1]. 

Figure 1.2 Relative power spectra of ECG and its QRS complex, P and T waves, 

muscle noise and motion artifacts based on average of 150 beats [2]. 
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1.2. Objective 

 Several techniques for suppression of EMG noise in ambulatory recordings have been 

reported. The aim of the project is to investigate wavelet-based denoising of ECG 

signals for suppression of EMG noise. Level-dependent thresholding technique with 

quantile-based dynamic threshold estimation is investigated. Also the short-time 

estimate of EMG noise envelope from noisy ECG is investigated. The reported 

threshold estimation technique is validated on simulated noisy ECG signals using 

weighted wavelet percentage root mean square difference (WWPRD) and distortion 

in the clinically important features like P-wave amplitude, R-wave amplitude, T-wave 

amplitude, PR-interval, RR-interval, and QT-interval as qualitative evaluation measure. The 

technique is also validated using signal-to-noise (SNR) improvement as quantitative 

evaluation measure. 

1.3. Outline of the dissertation 

 The ECG denoising techniques for suppression of noise and artifacts are reviewed in 

Chapter 2. The proposed wavelet-based denoising technique using quantile-based dynamic 

threshold estimation is presented in Chapter 3. Chapter 4 describes the method indices used 

for evaluation of the proposed technique and presents the test results. The last chapter 

provides summary and conclusion. 
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Chapter 2 

 

ECG DENOISING TECHNIQUES 
 

 

2.1 Introduction 

 ECG recordings generally get corrupted by like EMG noise, baseline wander, and 

motion artifacts. Presence of these noise and artifacts cause errors in the detection of the 

clinically important features of the ECG signals. Due to spectral overlap between ECG and 

noise as shown in Fig.1.2, linear filters cannot be effective in denoisng. Several ECG 

denoising techniques have been reported based on digital and adaptive filtering, independent 

component analysis, empirical mode decomposition [3]–[6], and discrete wavelet transform 

(DWT) [7]–[15]. Some of these techniques are reviewed in this chapter. 

2.2 Digital and adaptive filtering 

 Alste and Schilder [3] designed a digital filter with reduced number of filter 

coefficients for the removal of baseline wander and powerline interference. Effectiveness of 

the technique was verified by visual inspection. It was reported that the technique failed when 

the period of baseline wander cycle was close to the period of R-R interval. Rahman et al. [4] 

proposed normalized signed regressor least mean square (NSRLMS) based adaptive filter for 

baseline wander, power-line interference, EMG noise, and motion artifact cancellation. The 

proposed alogorithm was tested on noisy ECG recordings obtained by adding noise-free ECG 

recordings from MIT-BIH arrhythmia database with real noise from MIT-BIH Normal Sinus 

Rhythm Database (NSTDB) for validating suppression of different artifacts. SNR 

improvements of 7.80, 8.45, 8.50 dB were obtained for input SNR of 1.25 dB for baseline 

wander suppression, muscle artifact suppression, and motion artifact suppression, 

respectively.  

 2.3 Independent component analysis 

 Barros et al. [5] proposed use of independent component analysis for suppression of 

artifacts due to electrode movement, muscle   movement, and respiration from noisy ECG. To 

estimate mixing parameters in real time, a self-adaptive step-size and two-layer neural 

network was used. Validation was carried out on simulated noisy ECG signals generated by 
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mixing noise-free ECG with artifact taken from MIT-BIH noise stress test database. Visual 

inspection showed that two-layer ICA network performed better than digital filtering 

techniques. Foresta et al. [6] proposed an ECG denoising technique which combined the 

properties of wavelets with ICA. The technique was tested on multichannel ECG signals and 

a correlation coefficient of 0.9 was obtained between the artifact-free and denoised ECG. 

2.4 Denoising using empirical mode decomposition 

 Velasco et al. [7] used empirical mode decomposition (EMD) to suppress baseline 

wander and EMG noise. The technique was validated on noisy ECG signals generated by 

adding artifact-free ECG from MIT-BIH arrhythmia database (records 100, 103, 105, 119, 

and 213) with signal-free artifact (records ‘em’ and ‘ma’) from MIT-BIH noise stress test. For 

input SNR of 6, 10, and 14 dB, the average output SNR of records were 10.24, 13.08, and 

15.80 dB respectively. 

2.5 Wavelet based denoising techniques 

 Zhang [8] proposed a technique for reducing the baseline wander and high-frequency 

noise using discrete wavelet transform (DWT). Two approaches were proposed for baseline 

wander correction. The first approach involved visual selection of approximation coefficients 

of a level matching the baseline wander among all approximation coefficients plotted for all 

possible levels. The second approach was to associate scaling and wavelet functions with half 

band low-pass and high-pass filters. The level of approximation coefficients where the 

frequency band has components below 1 Hz is approximated as baseline wander. Both the 

approaches were applied on simulated noisy ECG signal generated by adding ECG record 118 

of MIT-BIH arrhythmia database with baseline wander record ‘bw’ from MIT-BIH noise 

stress test. Due to its similarity with QRS complex, sym10 was used as mother wavelet. It was 

reported that approximation A8 captures frequencies below 1 Hz, which is a good estimate of 

baseline wander. Suppression of high-frequency noise using wavelet shrinkage was based on 

sparsity property of wavelet transform. It removes noise effectively without affecting the 

sharp features of ECG signal. For suppressing high-frequency noise, translation-invariant 

wavelet transform (TIWT) with empirical Bayes posterior median threshold was used. Using 

sym8 as wavelet basis, 6-level wavelet decomposition, level-thresholding and TIWT were 

used for implementing the denoising technique. It has been reported that visual inspection of 

the processed waveform showed good results. 

 Kania et al. [9] studied the influence of mother wavelet selection and choice of 

decomposition level on denoising multi-lead high resolution ECG signals. Effectiveness of 

Daubechies (db2, db3, db4, db5, db6, db7, db8), Symlet wavelets (sym2, sym3, sym4, sym5, 

sym6, sym7, sym8), and biorthogonal wavelets (bior3.3, bio4.4, bio6.8) with different levels 
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of decomposition was studied, with soft thresholding at each level and universal thresholds. 

The wavelets sym3 and sym8 for 4th decomposition level and the wavelet db1 for 4th and 

higher decomposition levels were found to preserve signal morphology. 

 Singh and Tiwari [10] reported that db8 was most appropriate wavelet function 

among Daubechies (order 4, 6, 8, 10, 12), Symmlet (order 4, 5, 6, 7, 8), Coiflet (order 1, 2, 3, 

4, 5), and Battle–Lemarie (order 1, 3, 5) for denoising while preserving peaks of the ECG 

signal. It was reported that SURE shrink thresholding method with ‘db8’ as base wavelet had 

low root mean square error (RMSE). 

 Tikkanen [11] investigated wavelet based nonlinear denoising and wavelet packet 

based approach by applying soft and hard thresholding comparing the performance of four 

different thresholds: SURE, heuristic SURE, fixthresh, and minimax. Fifty simulated noisy 

ECG records with SNR 5 dB were created by adding Guassian, uniformly distributed white 

noise, and non-white noise to noise-free ECG. The results showed that wavelet denoisng 

approaches had better denoising performance than wavelet packet approaches in all cases 

except for heuristic SURE rule when using hard thresholding for white noises. 

 Sawant and Patil [12] analysed various threshold estimation techniques like universal, 

minimax, rigrsure/SURE shrink, and hybrid thresholds and reported that rigrsure has best 

SNR performance. ECG records 100, 102, 103 from MIT-BIH arrhythmia database was used 

for investigation. The techniques were evaluated by calculating SNR of denoised signal. 

Using Db5 wavelet and soft thresholding the average output SNR obtained were 6.9, 12.3, 

11.8, and 13.1 dB for universal, minimax, hybrid, and rigrsure thresholds, respectively. 

 Poornachandra [13] proposed S-median threshold which is subband adaptive 

procedure for denoising white gaussian noise from the signal and its performance was 

compared with universal and minimax thresholds. Fifty signals from MIT-BIH arrhythmia 

database were used for investigation. For 0 dB input SNR, the output SNR of 20, 17, and 15 

dB were obtained for S-median, minimax, and universal thresholds respectively indicating 

better performance of S-median threshold. It was observed that universal threshold tends to 

over smoothen the signal by killing significant coefficients which is not the case with S-

median threshold due to its local adaptive nature and it has different threshold for each scale 

and thus results in less distortion and better denoising. 

 Mithun and Pandey [18] investigated wavelet based denoising using level-dependent 

thresholding for suppressing EMG noise in ECG signals. Threshold estimation was carried 

out based on level of noise in the signal for each scale. Test signals were taken from MIT-

BIH database with SNR improvement and R-peak detection as performance indices. For input 

SNR of -10, -5, 0 dB, SNR improvements of 12.1, 8.8, and 5.1 dB, respectively were 

reported. False R-peak detection rate decreased from 14.5 % to 2.2 %. It was also reported 
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that the values of L2 norm and maxmin based improvement indices were close to one 

indicating efficient denoising. 

 Pranava [15] carried out further investigations using the denoising technique reported 

in [14] and with discrete Meyer wavelet for EMG and motion artfifact suppression. Stationary 

wavelet transform (SWT) and TIWT were investigated to suppress pseudo-Gibbs oscillations 

introduced during denoising using DWT. The improvement was evaluated by using SNR 

improvement, percentage RMS difference, L2 norm and maxmin based improvement indices 

and R-peak detection efficiency as performance indices. Artifact-free ECG signals from MIT-

BIH arrhythmia database and ECG-free artifacts from MIT-BIH noise stress test were used to 

generate noisy signals. For input SNR of −10 dB, SNR improvements of 14.5, 15.0, 14.7 dB 

were obtained for DWT, TIWT, and SWT, respectively. Denoising resulted in improvement 

of QRS detection efficiency from 94.4% to 99.3% and the false peak detection was reduced 

from 21.2% to 14.4%. The denoising techniques were also validated for ambulatory ECG 

signals where QRS detection efficiency improved from 63.2% to 90.6% and false R-peak 

detection percentage reduced from 0.1% to 0.05%. 
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Chapter 3 

 

WAVELET-BASED ECG DENOISING FOR 

SUPPRESSOIN OF EMG NOISE 

 

 
3.1 Introduction  

 The chapter presents a wavelet-based denoising technique for suppressing EMG noise 

in noisy ECG. It involves decomposition of noisy ECG into wavelet coefficients using 

discrete wavelet transform followed by nonlinear modification of wavelet coefficients using 

thresholding for suppression of noise. The nonlinear modification is carried out with respect 

to level-dependent thresholds which are usually calculated from input noisy signal itself using 

certain models of the signal and noise components in the input.  

3.2 Discrete Wavelet Transform 

 The wavelet transform decomposes the signal using dilated and translated versions 

of the wavelet function. It provides high time resolution and low frequency resolution in case 

of high frequencies and high frequency resolution and low time resolution in case of low 

frequencies, whereas in STFT time resolution is uniform for all frequencies [16].  

 The wavelet transform of a signal )(tx  with respect to the mother wavelet function 

)(t  is defined as 

 dt
nt

txniT
i

i

i
 

2

2 
 )(

2

1
),( *

















 
   (3.1) 

The wavelet coefficients for discrete time input is denoted as )(nDi  and detail for a given scale 

i denoted as iD . For effective denoising, the mother wavelet should match the signal or the 

noise component at specific scales and locations. As the noise and artifacts in ECG do not 

have a specific shape, the mother wavelet function should match the shape of the ECG signal. 

3.3 Thresholding 

 Thresholding is carried out for modifying the wavelet coefficients in order to reduce 

the noise. Wavelet coefficients )(nDi  at scale i are modified to get )(ˆ niD  using threshold θ. 

Modification using hard thresholding is carried out using  
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












 |)(|     ),(

 |)(|               ,0
)(ˆ

nDnD

nD
nD

ii

i
i  (3.2) 

An alternative approach is soft thresholding given by 

 













|)(|   ),|)())(|(sgn(

|)(|                                       ,0
)(ˆ

nDnDnD

nD
nD

iii

i
i  (3.3) 

 Hard thresholding introduces discontinuities in the coefficient values and may lead to 

distortions in the form of ringing in the output. Soft thresholding may lead to attenuation of 

signal components. To avoid disadvantages of these thresholding functions, mixed or 

improved thresholding may be used as given below: 

 
















bii

iii

ai

i

DnD

DnDfnD

nD

nD







 |(n)|                         ,)(

|(n)|        |),)((|))(sgn(

 |)(|                                         ,0

)(ˆ
ba  (3.4) 

where |))((| nDf i is smooth transition between thresholds a  and b .  Sebastian [17] 

investigated several transition functions and reported that improved thresholding gave better 

performance than hard and soft thresholding. There were no significant differences between 

the SNR improvements obtained using different smooth transition functions. The following 

improved thresholding function with smooth transition given in [17] for ECG denoising is 

used in the denoising method proposed in the next section. 

 










































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i
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




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 (3.5) 

where   )],1/()1(5.01)[()(  aar
i eennf   (3.6) 

 )2//())(|)((| iii SnnDr   (3.7) 

 )],1/()1(5.05.0)[()(   aar
i eenng   (3.8) 

 )2//()2/)(|)((| iiii SSnnDr    (3.9) 

The factor a  controls the transition between hard thresholding and soft thresholding. Setting 

3a  and the transition span, iS  is given as 

 )(|)(|  ], |)(| [ 95p 750 nnDnD.S iiii   (3.10) 

and the time-varying threshold is given as 
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 |])([|p90 )()( nDnn ii    (3.11) 

3.4 The denoising method 

 For ECG signals acquired with sampling frequency 360 Hz, 8-level wavelet 

decomposition is carried out using discrete Meyer wavelet to obtain detail coefficients 

81 DD   and approximate coefficients 8A . In noisy ECG corrupted with EMG noise, the 

wavelet coefficients of noise are of lower amplitude when compared to wavelet coefficinets 

of ECG which makes thresholding a better choice for removal of EMG noise. Suppression of 

EMG noise is carried out in two steps. First step is threshold estimation, followed by 

thresholding using improved thresholding function given in (3.5). Computation of appropriate 

thresholds is a critical problem in wavelet-based ECG denoising. Time-varying quantile-

based dynamic threshold estimation has been proposed. 

 EMG noise is represented significantly in first four detail coefficients, 1D – 4D . It is 

further observed that 1D contains only noise components and 2D  contains high frequency 

noise and negligible signal components. Hence 1D  combined with upsampled 2D can be used 

for dynamically estimating the level of EMG noise. As 1D captures significant amount of 

noise, significant amount of denoising of noisy ECG signal can be done by removing only 1D  

during reconstruction of signal from wavelet coefficients. Investigation is carried out to 

quantify the SNR improvement due to thresholding on 42 DD   whose results are presented 

in next chapter. 

 Time-varying threshold i for scale i is dynamically calculated from the wavelet 

coefficients as the following 

 |])([|pφ )()( nDnn ii    (3.12) 

where  is EMG denoising control parameter (may be set as 0.8), )(n is dynamically 

estimated scaling factor and |])([|pφ nDi  represents -φ percentile. The thresholds calculated 

are resampled at each scale to match the number of samples. 

3.4.1 Short-time estimate of EMG noise 

 The scaling factor )(n  in the time-varying threshold is calculated as the following: 

 






















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Lavg

DnD

DnDD
DD

DnD

DnD

n

)(                                 ,1

)(       ,
)(

)(                                 ,0

)(
 (3.13) 
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where )(nDavg  is short-time estimate of EMG noise, moving average of 1D  combined with 

upsampled 2D , LD  is 5th percentile of )(avg nD  and HD  is half of 95-percentile of )(nDavg . 

 The short-time estimate of EMG noise is calculated using symmetrically placed 

averaging window of different lengths on the combination of 1D  and upsampled 2D . 

Investigation is done on using mean, median and combinations of mean and median for 

averaging. A non-linear smoother using a combination of running median and linear smoother 

mean can have desired properties like retention of transitions and filtering out large errors. It 

is seen that median followed by mean combination estimates the EMG noise envelope more 

effectively because using median first removes the spikes and the mean used next smoothens 

the ripples. Investigation is also done on use of different window lengths. A high window 

length for mean results in residual noise. A low window length for mean introduces signal 

distortion as it captures the fluctuations of both noise and signal in )(n . So an intermediate 

window length is chosen. The results are given in next chapter. 

3.4.2 Quantile-based dynamic threshold estimation 

 The time-varying threshold is estimated as |])([|Pφ nDi  which represents -φ percentile 

of iφ . Investigation showed that choosing percentile based on noise level results in better 

denoising. If the noise affecting the ECG signal is high, then higher thresholds are set, by 

taking higher percentiles. Choosing high thresholds even when the noise is low results in 

distortion of signal. Hence, fixing the 90-percentile in time-varying threshold is not proper for 

all levels of noise. The following method is proposed for changing -φ percentile dynamically 

without apriori knowledge of noise level in the input noisy signal. As detail coefficients 1D  

captures only EMG noise components, based on the percent of energy present in 1D  of total 

energy in all the detail coefficients 81 DD  , the percentile in time-varying threshold can be 

estimated. Higher the energy present in 1D , higher percentile is chosen. This method did not 

show any consistent results for different records of ECG. 
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Chapter 4 

TESTS AND RESULTS 
 

4.1 Introduction 

 The proposed technique of threshold estimation is evaluated by applying it on 

simulated noisy ECG signals with known levels of EMG noise. The performance of the 

denoising technique is evaluated using quantitative and qualitative evaluation measures like 

improvement in SNR due to denoising and change in WWPRD. Also distortion in ECG 

features like P-wave amplitude, R-wave amplitude, T-wave amplitude, PR-interval, RR-

interval, and QT-interval, which are useful in clinical diagnosis are examined. The 

implementation of denoising method is carried out in MATALB. The details of ECG and 

artifact records used for evaluation of the technique are described in Section 4.2. Evaluation 

measures used are explained in Section 4.3. The results of investigations are presented in 

Section 4.4. 

4.2 Records used for validation 

 The denoising technique was validated on 20 records of simulated noisy ECG signals 

generated by adding noise-free ECG with signal-free EMG noise. Ten artifact-free records 

from MIT-BIH arrhythmia database (records 100, 101, 103, 105, 106, 112, 116, 118, 119, and 

123) were added with two muscle artifacts (record ‘ma’) from MIT-BIH noise stress test 

database. Sampling frequency used in these records is 360 Hz. 

 At given SNR simulated noisy EG signals x(n)  are generated by adding pure ECG 

s(n)  with EMG noise )(ne  

 α e(n)s(n)x(n)   (4.1) 

where inSNR  is given as 

 log20SNRin   (4.2) 

Combinations of two records of EMG noise added to 10 records of noise-free ECG resulted in 

20 records of simulated noisy ECG signals. All noise-free ECG and EMG noise records are 

scaled to have same RMS value. 
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4.3 Evaluation measures 

4.3.1 Visual inspection of feature distortion 

 The quality of ECG signals for clinical diagnosis is evaluated by visual inspection of 

ECG features like P-wave amplitude, R-wave amplitude, T-wave amplitude, PR-interval, RR-

interval, and QT-interval. After processing of the noisy ECG signal in order to remove noise 

and artifacts, these are the features inspected in time domain by the doctor to find cardiac 

disorders. However, this method does not provide an objective assessment.  

3.2 Signal-to-Noise Ratio (SNR) 

 Improvement in SNR is a common quantitative evaluation measure [4], [15], and 

[16]. Noise-free signal )(is  is required for this measure. Input inSNR is the SNR of noisy 

input whereas output outSNR  is the SNR of denoised output, given as 
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where )(is  is the noise-free reference signal, )(ix is the noisy input signal and )(iy  is the 

denoised signal. Improvement in SNR, imprSNR  is inout SNRSNR   and is given as, 
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4.3.3 Wavelet-Weighted Percentage Root Mean Square Difference 

 Al-Fahoum [19] proposed WWPRD as objective diagnostic distortion measure. The 

WWPRD is defined as, 

 



L

i
iiw 

1

WPRDWWPRD  (4.6) 
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where L  corresponds to number of decomposition levels, iw  is the weight for level i  .

iWPRD  is the percentage root mean square difference of the wavelet coefficients in level i  

which is defined as  
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where )(nDi  and )(
~

nDi  are the wavelet coefficients of original and processed ECG signals. 

The weight iw  for level i  is calculated as  
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Higher value of WWPRD is an indicator of higher diagnostic distortion. 

4.3.3 Distortion in clinically important features 

 Distortion in clinical features like amplitudes of P-wave, R-wave, and T-wave, and 

timing intervals like PR-interval, RR-interval, and QT-interval, are measured. Time error and 

amplitude error of noisy ECG and denoised ECG are compared with clean ECG. Time error is 

the difference between the time instants of feature occurrences and amplitude error is the 

percentage of amplitude difference between clean ECG and noisy or denoised of clean ECG 

amplitude. 

 

4.4 Test results 

  The denoising technique was validated on 20 records of simulated noisy ECG signals 

of input SNR of the range −20 dB to 20 dB. ECG records of sampling frequency 360 Hz were 

used, 8-level wavelet decomposition is carried out using discrete Meyer wavelet to obtain 

detail coefficients 81 DD   and approximate coefficients 8A . An example of 8-level wavelet 

decomposition of clean ECG and noisy ECG is shown in Fig. 4.1 and 4.2 respectively. These 

figures show that EMG noise is present mostly in detail coefficients 1D – 4D  where 1D  of 

noisy ECG contains only noise components and 2D – 4D  contains both noise and signal 

components. Hence denoising technique involves removal of 1D  and thresholding in 2D –

4D . 
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 The results of denoising for comparing the contributions of 1D  removal and 

thresholding (using thresholds obtained by 90
th
 percentile) are summarized in Table 4.1. It is 

seen that thresholding results in additional SNR improvement of 3.86 dB, 3.10 dB, and 1.54 

dB for input SNR of -10 dB, -5 dB, and 0 dB, respectively. 

 The estimation of EMG noise envelope )(avg nD  is done by taking moving average on 

the combination of 1D with upsampled 2D . Variation in moving average such as mean, 

median and combinations of mean and median as shown in Fig. 4.3 to get better noise 

envelope. It can be seen that median followed by mean combination estimates the EMG noise 

envelope more effectively because using median first removes the spikes and the mean used 

next smoothens the ripples. 

 Performance of Quantile-based thresholds is compared with SURE shrink and 

universal threshold. The mean and standard deviation of output SNR vs input SNR from -20 

dB to 20 dB are presented in Table 4.2. High performance is shown by 90-percentile for input 

SNR from -20 dB to 5 dB, while 75-percentile gives better results for input SNR from 5 dB to 

15 dB. Results with 50-percentile are relatively low unless the input SNR itself is very high. 

Signal distortion occurs if high thresholds are chosen in case of high input SNR. It is seen that 

the 90-percentile results in lower standard deviation as computed for wide range of SNR and 

hence it may be considered as optimal choice for EMG suppression. 

 Plots of output SNR vs input SNR, for denoising obtained by 1D  removal and 

thresholding with thresholds selected using 90, 75, and 50 percentiles are shown in Fig. 4.4. 

For low input SNRs, denoising results in nearly constant SNR improvements. The SNR 

improvements decrease for input SNR exceeding 5 dB. For input SNRs below 5 dB, 

thresholds obtained using 90-percentile give better SNR improvement. A comparison of 

denoising with different threshold estimators is given in Fig. 4.5. It is seen that quantile-based 

thresholds give better output SNR for a wide range of input SNR. 

 The WWPRD values summarized in Table 4.3 indicate that use of 90-percentile for 

input SNRs below 5 dB results in lower distortion. Low WWPRD values for input SNRs 

above 5 dB indicates that distortion is less for high SNRs. 

 The clinical feature distortion due to addition of noise to clean ECG signal and 

denoised ECG signal are tabulated in Table 4.4 and Table 4.5. P-wave amplitude, T-wave 

amplitude, and PR interval are getting improved after denoising. Robust features like R-wave 

amplitude, QT interval, and RR interval are not much affected due to noise and hence they 

can be measured without denoising.  
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Fig. 4.2 Example of decomposition of noisy ECG signal (record 100 added to EMG noise, at SNR 

−5 dB). 

 

 

Figure 4.1 Example of decomposition of clean ECG signal (record 100). 
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Table 4.1. Output SNR vs input SNR for denoising using D1 removal and 

thresholding: Mean and Std. Dev. for 20 records. 

Input SNR 

(dB) 

 

Output SNR 

D1 Removal 

 

 

D1 removal & thresholding 

Mean Std Mean  Std 

−10 −4.41 0.61 −0.55 1.06 

−5 0.59  0.61 3.68  0.82 

0 5.57  0.6 7.11  0.56 

 

Table 4.2. Output SNR vs input SNR for denoising and thresholds obtained by UT, SURE Shrink, and 

Quantile-based methods: Mean (Std. Dev.) for 20 records. 

Input 

SNR 

(dB)  

 

Output SNR (dB) 

Universal 

threshold 
 SURE 

Shrink 
 Quantile-based threshold 

     P90     P75        P50 

Mean Std Mean Std  Mean Std  Mean Std  Mean Std 

20 12.65 3.12 20.55 2.71 

 

16.23   3.0 
 

19.51 3.57 

 

20.31  3.67 

15 12.24 3.12 18.28 1.94 15.58 2.7 17.99 2.75 18.28  2.72 

10 11.07 2.35 14.87 1.42 14.23 2.1 15.35 1.85 15.14  1.87 

5 8.91 1.70 10.62 1.29 11.44 1.2 11.66 1.35 11.01  1.47 

0 5.62 1.42 5.93 1.33 7.32 1.0 6.81 1.35 6.31  1.42 

−5 1.45 1.49 1.04 1.36 2.43 1.1 1.77 1.41 1.37  1.44 

−10 −3.21 1.64 −3.92 1.38 −2.68 1.2 −3.27 1.43 −3.62  1.45 

−15 −8.06 1.77 −8.04 1.65 −7.71 1.27 −8.29 1.44 −8.62  1.46 

−20 −13.00 1.83 −11.75 2.29 −12.68 1.28 −13.28 1.44 −13.62  1.46 
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Fig. 4.3. (a) Noisy ECG. Noise estimate using (b) moving mean (c) moving median (d) moving 

mean followed by moving median (e) moving median followed by moving mean (f) moving 

median followed by moving median. 

(b) 

(c) 

(a) 

(d) 

(e) 

(f) 
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Fig. 4.4. Output SNR vs input SNR using quantile-based method for percentiles 90, 75, and 50. 

 

Fig. 4.5. A plot of output SNR vs input SNR for different threshold estimators. 



 

21 

 

 

Input 

SNR 

(dB) 

      
Quantile-based threshold 

P90    P75        P50 

Mean Std  Mean Std  Mean Std 

20 1.88 0.52 1.33 0.43 1.01 0.27 

15 2.13 0.52 1.67 0.41 1.44 0.30 

10 2.64 0.50 2.38 0.49 2.29 0.49 

5 3.91 0.76 3.90 0.89 3.95 0.97 

0 6.45 1.49 6.83 1.73 7.05 1.85 

−5 11.34 2.76 12.26 3.19 12.69 3.38 

−10 19.95 4.95 22.07 5.74 22.92 6.09 

−15 36.06 8.91 39.79 10.29 41.38 10.89 

−20 64.98 16.05 71.69 18.34 74.62 19.36 

 

Table 4.3. WWPRD values vs input SNR for denoising using Quantile-based 

thresholds with percentiles 90, 75, and 50: Mean and Std. Dev. for 20 records. 

Feature 

(Amp) 

      Clean ECG    Noisy ECG        Denoised ECG 

Amp 
 

Time error 
Amp 

error 

 
Time error 

Amp 

error 

P-wave 0.11 3.83 104% −2.69 36.5% 

R-wave 1.21 −0.14 1.6% −0.11 9.7% 

T-wave 0.04 6.00 32.2% 3.41 15.1% 

 

Table 4.4.  Errors in P-wave amplitude, R-wave amplitude, and T-wave amplitude for 

record 100m at 0 dB input SNR and with time-varying threshold at percentile-90 

Feature 

      Clean ECG    Noisy ECG        Denoised ECG 

Mean Std  Mean Std  Mean Std 

PR interval 66.50 5.19 84.41 22.45 79.16 18.41 

RR interval 294.81 9.45 294.72 9.65 294.79 9.78 

QT interval 191.18 4.57 188.18 9.11 191.45 10.53 

 

Table 4.5.  Errors in PR-interval, RR-interval, and QT-interval for record 100m at 0 dB 

input SNR and with time-varying threshold at percentile-90 
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Chapter 5 

 

SUMMARY AND CONCLUSION 

 

 
 Electrocardiogram is a non-stationary biological signal which consists of 

morphological features of P, T, and R wave amplitudes, width of QRS complex, time 

intervals between different points are used for diagnosis of cardiovascular disorders. These 

features get corrupted by various noises and artifacts like EMG noise, baseline wander, and 

motion artifact. Wavelet-based thresholding using dmey wavelet has been investigated for 

denoising of ECG corrupted with EMG noise. It involves non-linear modification of wavelet 

coefficients at different levels after multilevel wavelet decomposition of the noisy ECG. 

Quantile-based estimation of time-varying dynamic thresholds is investigated. It is evaluated 

by denoising the simulated noisy signals generated using ECG and EMG noise records from 

MIT-BIH database. SNR improvement, WWPRD, and distortions of clinically important 

features are used for evaluating the performance of denoising. Comparing the contributions of 

1D  removal and thresholding (using thresholds obtained by 90th percentile), it is seen that 

thresholding results in additional SNR improvement of 3.86 dB, 3.10 dB, and 1.54 dB for 

input SNR of -10 dB, -5 dB, and 0 dB, respectively. Visual inspections show that non-linear 

smoothening consisting of median followed by mean combination estimates the EMG noise 

envelope more effectively than other combinations of mean and median. Choosing 90-

percentile in time-varying threshold for input SNR from -20 dB to 5 dB and 75-percentile for 

input SNR from 5 dB to 15 dB gave better SNR improvements. Results with 50-percentile are 

relatively low unless the input SNR itself is very high. The WWPRD values 19.95, 22.07, and 

22.92 for 90, 75, and 50 percentiles respectively for −10 dB input SNR also indicated that use 

90-percentile for low input SNRs resulted in lower feature distortion. Distortion in P-wave 

amplitude and T-wave amplitude got decreased from 104% to 36.5% and 32.2% to 15.1%, 

respectively. 
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