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Abstract- Landmarks in speech signal are regions with abrupt spectral variations. Automated 

detection of these regions is important for several applications in speech processing. Performance of 

landmark detection using parameters extracted from predefined spectral bands generally gets limited 

by speaker related spectral variability. This paper presents a landmark detection technique which 

adapts to the acoustic properties of speech. Parameters are extracted from Gaussian mixture 

modeling (GMM) of smoothed spectral envelope. A single rate of rise function, obtained from the set 

of GMM parameters, is used for locating landmark regions. The method was evaluated using 

manually labeled VCV syllables and sentences. It was possible to detect 85 % of stop release bursts in 

VCV syllables and 82 % in sentences, with an accuracy of 5 ms, compared to the manually located 

landmarks.  
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1. Introduction 
Landmarks are information rich areas in speech waveform, with concentration of acoustic cues for 

phoneme identification. Acoustically abrupt landmarks are produced by movement of a primary 

articulator or by sudden changes in sound by glottal or velo-pharyngeal activity [1]. They generally 

coincide with regions of major spectral changes. In TIMIT database [2], about 68 % of the total 

landmarks are acoustically abrupt, 29 % are vocalic, and 3 % are non-abrupt as in the case of semi-

vowels and vowel-to-vowel transitions. 

 Automated landmark detection has several applications in speech processing. Identification of 

landmarks can improve the accuracy and speed of segment based speech recognition systems, by 

reducing the search space required. Schutte and Glass [3] reported a robust landmark detection 

technique for sonorants using mel-frequency cepstral coefficients and support vector machines 

(SVMs). Sainath and Hazen [4] reported a landmark detection method based on sinusoidal model, for 

improving segment based speech recognition, using short-time energy and signal harmonicity as 

parameters. Liu [1] proposed a landmark detection algorithm for distinctive feature based speech 

recognition, based on energy variations in 6 spectral bands (0-0.4, 0.8-1.5, 1.2-2.0, 2.0-3.5, 3.5-5.0, 

and 5.0-8.0 kHz). Time derivative of maximum energy in these bands, taken every 1 ms, was used for 

locating stop closures and releases, fricatives, nasals, and the onsets and offsets of glottal vibration. 

The temporal accuracy of the landmarks detected was evaluated by comparing with manually 

annotated speech material from TIMIT database. Out of the total landmarks, 44 % were detected 

within 5 ms, 73 % within 10 ms, 83 % within 20 ms, and 88 % within 30 ms of the manual labels. 

 Enhancing the landmark regions by natural or synthetic methods may improve speech intelligi-

bility. This involves precise identification of locations of transition segments, stop closure, release 

burst, voicing onset etc, and performing modifications specific to these sub-segments. In automatic 

intelligibility enhancement methods [5], [6], [7], the regions for modification are identified by a 

landmark detection stage. The properties of speech spectrum in the initial 10-20 ms of stop conso-

nants contain important cues for the identification of place of articulation [8]. For modification of the 

burst spectrum and temporal parameters like voice onset time (VOT) and formant transition duration 

to disambiguate stop consonants, we need landmark detection with high temporal resolution, as the 

acoustic events like VOT have short duration (≈ 30 ms). 

 The detection rates and accuracy of landmark detectors depend on the extent to which the selected 

parameters represent the acoustic variations, the smoothening performed during the extraction of 
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parameters, and the measure used for locating the landmarks. In an earlier investigation [7] for 

improving identification of stop consonants, we used a modified form of Liu’s landmark detection 

algorithm [1] for locating the boundaries of vowel-consonant and consonant-vowel transition 

segments. The spectrum was divided into 5 non-overlapping bands (0–0.4, 0.4–1.2, 1.2–2.0, 2.0–3.5, 

3.5–5.0 kHz). Speech was sampled at 10 k samples/s, and short-time spectral analysis was performed 

using 512- point DFT on 6 ms Hanning windowed segments. The maximum energy in each spectral 

band and the centroid frequency, evaluated every 1 ms, were used as parameters for landmark 

detection. Rate of rise (ROR) contours of energy and centroid frequencies were computed and their 

geometric mean averaged across bands was used as an indicator of the overall spectral variation. 

Using this method it was possible to detect 60 % of release bursts in VCV syllables within 5 ms of 

manual labels, 80 % within 10 ms, and 94 % within 30 ms.  

 Maximum energy and centroid frequency derived from spectral bands with fixed boundaries 

represent the resonance peaks and frequencies of the vocal tract in an approximate way. Further, the 

fixed bands may not be able to capture spectral prominences due to speaker related spectral 

variability. A better approximation of resonance peaks and frequencies may improve the detection 

rates and temporal resolution of the landmark detector. Gaussian mixture model (GMM) provides a 

reliable parametric representation of smoothed spectral envelope with the effect of excitation 

removed, and can be used for extracting formant like features. Zolfaghari and Robinson [9] developed 

a formant extraction technique using GMM of cepstrally smoothened short-time spectrum. Formant 

tracks agreed with the tracks estimated using an LPC based formant tracker, but the bandwidths were 

found to be slightly broader. Using this analysis technique, they developed a formant vocoder [10]. 

Stuttle and Gales [11] reported performance improvement in speech recognition by combining GMM 

and MFCC parameters, particularly in noisy environments. GMM parameters were found to carry 

information complementary to MFCC parameters and were capable of improving word recognition 

rates by about 7 %. Omar et al. [12] reported improvement in phoneme recognition accuracy by about 

3.5 %, by using a GMM feature set for capturing the dynamics of the speech signal at phoneme 

boundaries, in an HMM based speech recognition system. Lindblom and Samuelsson reported a 

bounded support expectation maximization algorithm (EMBS) optimized for Gaussian modeling of 

speech source spectrum [13]. 

 We have investigated landmark detection using variations in GMM parameters, modeling the 

speech spectra. The GMM means, variances, and amplitudes may be considered to be related to 

formant frequencies, bandwidths, and amplitudes respectively in a parallel-formant model of speech 

production. The articulatory movements result in changes in the acoustic signal, and this gets captured 

by the GMM parameters. As the GMM fitting adapts itself to the spectral properties, the parameter 

tracks are smooth, giving a better representation of the spectral variations, compared to the maximum 

energy and centroid frequency used in [7].  
  

2. Gaussian mixture modeling 
As shown in Fig. 1, a rate-of-rise measure taken 

on the GMM parameter set, modeling the 

smoothed spectrum, is used for landmark 

detection. Speech signal is sampled at 10 k 

samples/s and magnitude spectrum is computed 

using 512-point DFT on 6 ms Hanning 

windowed frames. The short duration window 

suppresses the effect of pitch harmonics in the spectrum. Frames are taken every 1 ms to track 

acoustic variations [1]. The magnitude spectrum is converted to dB scale, with a dynamic range of 

100 dB. The harmonic structure in the spectrum is smoothed by a low pass filter with impulse 

response in the form of a raised cosine window [11]. Assuming the pitch to be lower than 200 Hz, a 

20-point filter is used. The smoothened log magnitude spectrum ( , )S n kx  is approximated by a 

weighted sum of M Gaussian components, given as 

 ( )( , ) ( ) ( ), ( )
1

M
S n k A n G n nx m m m

m
µ σ

∧
= ∑

=
 (1) 

Fig. 1. Landmark detection using GMM parameters. 

Int. Symposium on Frontiers of Research on Speech and Music 2008 (FRSM 2008), Kolkata, India, pp. 323-327.



where the  m th  Gaussian component is given as 
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with amplitude Am(n), mean ( )m nµ , and standard deviation ( )m nσ  at time index n. The GMM para-

meters were computed using expectation maximization (EM) algorithm [9], [11]. Means were 

initialized with equal spacing along the k axis as ( 0.5) /(2 )m N Mmµ = − , for N-points DFT. Mixture 

weights and standard deviations were initialized with equal values of 1/M, and N/(2M) respectively, 

for all the Gaussian components.  

 An examination of the various GMM parameters showed that the amplitude variations were most 

consistent during vowel, consonant, and silence segments, and hence were used for landmark 

detection. The first Gaussian component models the energy variation in the lower frequency range, 

and was found not to be consistently related to landmarks and hence only the amplitudes of higher 

components were used. The parameter tracks were normalized to the range 0 to 1, and were smoothed 

by a 10-point median filter to remove the frame-to-frame discontinuities, without affecting the major 

transitions corresponding to the landmarks. Square root operation on the amplitudes, providing 

expansion in the lower range and compression in the upper range, was found to help in better 

localization of bursts and voice onsets. Normalization, median filtering, and square root operations on 

each Gaussian amplitude Am(n) resulted in parameter track αm(n). An overall rate of rise function was 

calculated as the rms of the first difference of each of these tracks (excluding the first Gaussian)  
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For first differences, s = 15, corresponding to a time step of 3 ms, was used. For landmark location, 

the rate of rise r(n) was compared with an empirically determined threshold. 
 

3. Results and discussion  
This section presents the selection of optimum number of Gaussians required to model the smoothed 

spectral envelope, evaluation results using VCV syllables and sentences, and comparison with the 

method using maximum energy and centroid frequencies in spectral bands with fixed boundaries [7]. 
 

3.1. Estimation of number of Gaussians 
The number of Gaussian components needed to model the spectrum was decided by computing the 

mean squared error estimates between the smoothed spectrum ( , )xS n k  and the Gaussian modeled 

spectrum ( , )S n k
∧

 as 
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The error was computed and averaged for 10 frames. Table 1 lists the errors for vowels (/a/, /i/, /u/), 

and fricatives (/v/, /z/, /f/, /s/). Increasing the number of Gaussian components from 1 to 2 

significantly reduced the error, but not much reduction is observed for further increase in the number 

of components. It is also observed that GMM provides better spectral approximation for voiced 

sounds. As short-time spectral envelope of speech can be considered to have four significant 

resonances, we have used 4 components in GMM for further analysis. Figure 2 shows the windowed 

signal, actual, smoothed, and the Gaussian modeled spectrum using 4 Gaussians, for a 6 ms segment 

of vowel /a/. The waveform, wideband and Gaussian modeled spectrograms of VCV syllable /apa/ are 

shown in Fig. 3 (a), (b), and (c). Variations of Gaussian amplitudes, the rate-of-rise, and the located 

burst landmark for /apa/ are shown in Fig. 3 (d), and (e). 
 

3.2. Evaluation using VCV syllables and sentences  
VCV syllables recorded from 6 speakers (3 male and 3 female), consisting of 6 stops (/b/, /d/, /g/, /p/, 

/t/, /k/), in the context of 3 vowels (/a/, /i/, /u/) were used for evaluation. There were a total of 108 

utterances (6 speakers ×  6 vowel contexts ×  6 stops). The locations of automatically detected stop 

release bursts were compared with the locations obtained manually by inspection of the waveforms 

and spectrograms. A comparison was made in terms of detection rates and temporal accuracy of the 
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presented method (M1), with the method using maximum energy and centroid frequency in fixed 

spectral bands (M2). The detection rates of release bursts versus the temporal accuracy in detection 

for both these methods are shown in Fig. 5 (a). It is observed that 85 % of the burst landmarks are 

detected within 5 ms, using M1, compared to 57 %, using M2. The differences between the detection 

rates for the two methods decreased as the time limit was relaxed. For 30 ms limit, M2 performed 

slightly better, there being 4 deletions in M1, and 2 deletions in M2.  

 

 
 
 The method was also evaluated using 15 Marathi sentences with 98 manually marked stop release 

bursts, uttered by a male speaker. Waveform of a portion of a sample sentence, Gaussian parameter 

tracks, ROR and located burst landmarks are shown in Fig. 4. The detection rates versus temporal 

accuracy for the two methods is shown in Fig. 5(b). It was observed that out of the 98 release bursts, 

M1 detected 81 within 5 ms of manual labels, compared to 31 detected in the same range by M2. The 

performance difference decreased as the time limit was relaxed. At 30 ms, M2 performed slightly 

better, as there were 10 deletions in M1 and 8 deletions in M2. This indicates that Gaussian 

amplitudes capture spectral prominences more effectively, with good temporal resolution, compared 

to parameters from spectral bands with fixed boundaries.  

 

Table 1 Normalized mean squared error in 

GMM based spectrum approximation 
 

No. of Gaussian components Phone-

me 1 2 3 4 5 

/a/ 0.22 0.08 0.06 0.05 0.04 

/i/ 0.45 0.08 0.05 0.05 0.05 

/u/ 0.35 0.12 0.08 0.07 0.05 

/v/ 0.18 0.05 0.04 0.04 0.03 

/z/ 0.49 0.10 0.01 0.01 0.01 

/f/ 0.43 0.28 0.20 0.19 0.18 

/s/ 0.77 0.16 0.13 0.11 0.13 

 

Fig. 3. (a) Signal, (b) wideband spectrogram 

(c) GMM spectrogram. (d) variation of 

parameters (e) ROR and landmark.  

Fig. 4. (a) Sentence, (b) GMM parameter 

tracks (c) signal with automatically 

detected bursts, (d) ROR and landmarks.  

(d) 

(e) 

(c) 

(a) 

(b) 

(a) 

(b) 

(c) 

(d) 

Fig. 2. Signal, actual, smoothed, and 

Gaussian modeled spectrum for /a/.  
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4. Summary and conclusion 
A landmark detection technique is presented using Gaussian parameters used for modeling the speech 

spectrum. The parameter extraction process involves smoothening in the spectral domain, and no 

smoothening is needed in the temporal domain. This makes the temporal resolution of detected 

landmarks high compared to the method using maximum energy and centroid frequency in fixed 

spectral bands. The method adapts to speaker related spectral variations. However, this method is 

computation intensive and further investigations are needed for adapting it for real-time applications. 
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Fig. 5. Detection rates and localization errors for (a) VCV syllables (b) sentences. 
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